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We present the fabrication and analysis of efficient and highly dispersive gratings for the x-ray and extreme ultra-
violet (EUV) regime. We show that an asymmetric-cut multilayer structure can act as a near-perfect blazed grating.
The precision and high line density are achieved by layer deposition of materials, which can be controlled to the
angstrom level. We demonstrate this in the EUV regime with two structures made by cutting and polishing mag-
netron-sputtered multilayer mirrors of over 2000 bilayers thick, each with a period of 6.88 nm. These were cut at
angles of 2.9° and 7.8° to the surface. Within the 3% bandwidth rocking curve of the multilayer, the angular dis-
persion of the diffracted wave was in agreement with the grating equation for elements with 7250 and 19,700 line
pairs/mm, respectively. The dependence of the measured efficiency was in excellent agreement with a formula-
tion of dynamical diffraction theory for multilayered structures. At a wavelength of 13.2 nm, the efficiency of the
first-order diffraction was over 95% of the reflectivity of the uncut multilayer. We predict that such structures
should also be effective at shorter x-raywavelengths. Both the Laue (transmitting) and Bragg (reflecting) geometries
are incorporated in our formalism, which is applied to the analysis of multilayer Laue lenses and focusing and
dispersing Bragg optics. © 2012 Optical Society of America

OCIS codes: 050.0050, 050.1960, 050.7330, 340.0340, 340.7480.

1. INTRODUCTION
Because of the weak refraction in all materials, optical ele-
ments for hard and soft x rays and extreme ultraviolet
(EUV) radiation generally rely upon the process of diffraction.
This requires the fabrication of structures at length scales
comparable to the wavelength of the radiation. For example,
the resolution of a zone plate, which is proportional to the
wavelength divided by the numerical aperture of the zone
plate, is equal to the smallest zone width of the element. Si-
milarly, the dispersion of a grating is maximized by reducing
the linewidth to the limit of the wavelength. However, because
the interaction of x rays with materials is weak, the scattering
efficiency of structures approaching the size of a wavelength
is low. Substantial diffraction efficiency from such small fea-
ture sizes is only possible if the radiation field interacts
throughout a large volume of material. Such is the case of hard
x-ray crystal diffraction, where an efficiency up to 100% can be
reached. In the soft x-ray regime, artificial multilayer struc-
tures attain high reflectivity through the interaction of many
layers through the depth of the stack [1,2]. Similarly, high-
numerical-aperture zone plates, for example, require diffrac-
tion occurring throughout a volume to achieve high efficiency
[3]. Achieving high performance therefore requires the tailor-
ing of structures in three dimensions with a precision well be-
low 10 nm. The layer-by-layer deposition of materials (of
thickness comparable to the wavelength) onto a substrate, fol-
lowed by patterning or shaping, provides a means to achieve
volume optical elements with the required precision and qual-
ity at the scale of a wavelength.

Gratings are primarily manufactured today by ruling or by
other means of modifying an initially smooth surface. For the
soft x-ray and EUV regime, such elements are often over-
coated with a multilayer, conformal to the substrate profile,
to increase the reflectivity of a particular order [4–6]. The
most efficient soft x-ray blazed grating substrates have been
made by multiple-level electron-beam lithography [7] or wet
anisotropic etching of silicon [6]. All multilayer-coated grat-
ings suffer inefficiencies due to the unavoidable imperfections
in gratings manufactured by ruling. Diffraction efficiency is
reduced by deviation of the grating facets from the ideal saw-
tooth shape, rough facets, and the rounding of the sawtooth
shape by the multilayer coating. These imperfections also
cause multiple diffraction orders and ghost fringes.

In this paper we explore the fabrication and characteriza-
tion of high-quality gratings for EUV and soft x rays by using
the volume diffraction effect in asymmetrically cut layered
structures. The high quality is obtained by the angstrom-
precision of material deposition by sputtering which reveals
a grating structure when sliced at an angle. X rays reflect from
the multilayer structure, yet they are angularly dispersed due
to the asymmetric truncation of the stack. We explain how
such a structure acts as a blazed grating, free of imperfections
of ruled gratings, and show that optics of extremely high dis-
persion can indeed be fabricated by layer deposition followed
by asymmetric slicing, by measuring the EUV diffraction from
blazed gratings with almost 20,000 line pairs per millimeter.

We first describe diffraction from asymmetric-cut multi-
layers in Section 2 and model the volume diffraction with
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dynamical diffraction theory in Section 3. The fabrication of
these elements is described and discussed in Section 4. Mea-
surements of reflectivity and dispersion of these components
are presented in Section 5. These measurements are com-
pared with calculations using the formalism and conventions
we relate in Section 3. We find excellent agreement between
the theory and experiment, which indicates that these struc-
tures do indeed approach the ideal in terms of their function.
Finally, in Section 6, different applications of these novel
optical elements are presented, including their use as mono-
chromators, spectrometers, pulse compressors, and volume
zone plates.

2. ASYMMETRIC-CUT MULTILAYERS
The highest efficiency in a diffracted order of a plane grating is
achieved by blazing. The blaze condition is satisfied when the
diffracted light of the particular order is specularly reflected
from the groove facets. That is, for incident and diffracted an-
gles of α and β, respectively, as shown in Fig. 1, the blaze angle
should satisfy 2ϕ � α� β. In this case, the grating equation is

nλ � D�sin α − sin β�; (1)

� 2D cos ϕ sin θ; (2)

whereD is the grating period, θ is the grazing angle of specular
reflection from the groove facets (θ � α − ϕ � ϕ − β), and n is
the grating diffracted order.

In the EUV-to-x-ray wavelength region, the efficiency of
both laminar and blazed gratings is much enhanced by coating
the grating with a multilayer coating [4]. Ignoring a small cor-
rection due to refraction in the coating, the Bragg condition
for which efficient reflection occurs is given by

mλ � 2d sin θB; (3)

where d is the multilayer period, m is the diffraction order,
and θB is the same angle of reflection from the grating facets,
as given above. It is clear then, by comparing Eqs. (2) and (4)

that, when the first-order blaze and Bragg conditions are si-
multaneously met, the step height of the facets, given by
D cos ϕ, is equal to the multilayer period, d. That is, the layers
of the multilayer coating are in phase with the facets of the
grating: the top of the first layer period deposited above a par-
ticular facet of the grating will be in line with the adjacent
facet. In general, the nth grating order can be matched to
the mth-order reflection from the multilayer, in which case
�D∕n� cos ϕ � d∕m [5].

The above discussion immediately suggests that a blazed
grating can be made quite simply by cutting, or slicing a multi-
layer coating so that the surface normal is at an angle ϕ to the
layers rather than the usual 90°. The Bragg-reflected light from
such an asymmetric-cut multilayer will behave just as light dif-
fracting from a blazed grating with periodD � d∕�m cos ϕ�. A
sliced multilayer should be indistinguishable from a perfect
blazed grating that is multilayer coated, as long as the number
of multilayer periods is larger than the extinction depth. The
only difference between the two cases is that the top surface
of the sliced multilayer is flat, whereas the top surface of a
multilayer-coated grating will (ideally) conform to the blazed
grating substrate. However, because in both cases the reflec-
tion is a volume effect and arises from the addition of reflected
fields from every layer interface, the small missing material at
the top will only cause a small refractive change (the differ-
ence between a triangular cross-section of vacuum or multi-
layer material). The equivalence between a grating and an
asymmetric multilayer has been noted before [2,4], demon-
strated, and applied [8,9]. This equivalence is also valid in the
case of diffraction from crystals, where it is well known that
the diffracted x rays from an asymmetric-cut crystal are dis-
persed, in accordance with the grating equation [10,11]. In
fact, dynamical diffraction theory can be applied with full
validity to the case of asymmetric-cut multilayers, as is pre-
sented in Section 3.

Thick multilayers can also be used in the transmitting Laue
geometry, and in this regard they are analogous to a perfect
blazed transmission grating, based on refraction. In this case
the analogous transmission grating might be physically impos-
sible due to the limited change in refractive index that can be
achieved. For example, symmetric Laue diffraction is analo-
gous to a double-sided refractive blazed grating. However, un-
like the blazed reflection grating, adding a multilayer to the
surface of the transmission grating does not produce the anal-
ogous Laue structure.

To describe a completely general geometry we follow the
sign conventions of angles as used by Authier [12]. As de-
picted in Fig. 1, the normal unit vector, directed into the sur-
face, is given by n, the direction of the incident beam is given
by the unit vector s0 and that of the diffracted beam is given by
sm. The trace of the layers is given by s. The quantities α, β, and
ϕ are the angles between n and the incident, reflected, and
facet directions, respectively: α � �n; s0�, β � �n; sm�, ϕ �
�n; s�. The sense of the angles is set by defining �s; s0�≡
�θB at the Bragg condition, where 0 ≤ θB < π∕2 for a positive
diffraction order. For Bragg reflection, we then have the fol-
lowing relationships:

−
π
2
< α < −

π
2
� 2θB; (4)

Fig. 1. A multilayer is cut at an angleΦ � π∕2 − ϕ (right). The reflec-
tion from the asymmetric-cut multilayer film (center) is identical to
reflection from an ideal multilayer-coated blazed grating (left) [5] be-
cause the multilayer structure is the same in both cases. The incident
wave is in the direction s0 and the reflected wave is in the direction sm.
The sense of the angles and the direction of the trace of the surfaces s
is defined by 0 < θB � �s; s0� < π∕2, and so the angles α � �n; s0�,
β � �n; sm�, ϕ � �n; s� are all negative in this diagram. A beam of width
W in exits with width Wout.

Bajt et al. Vol. 29, No. 3 / March 2012 / J. Opt. Soc. Am. A 217



−
π
2
− 2θB < β < −

π
2
; (5)

−
π
2
− θB < ϕ < −

π
2
� θB: (6)

Just as for an asymmetric-cut crystal, diffraction from an
asymmetric-cut multilayer in the Bragg or Laue geometry
can be described an asymmetry parameter [13], b, given by

b � n · s0
n · sm

� γ0
γm

� cos α
cos β ; (7)

where the direction cosines γ0 � n · so and γm � n · sm. Note
that

jbj � W in

Wout
(8)

is the ratio of the widths of the incident and diffracted beams.
The asymmetry parameter can also be applied to any order of
diffraction from a grating (blazed or not). In the x-ray crystal
diffraction literature, the asymmetry parameter is sometimes
defined as the inverse of Eq. (7). We follow the convention
used in [11,13]. For the Bragg geometry, where the diffracted
light exits on the same side of the surface as the incident
beam, we have b < 0, whereas b > 0 describes Laue diffrac-
tion. Specifically, b � −1 corresponds to symmetric Bragg dif-
fraction and b � 1 corresponds to symmetric Laue diffraction.
Note also from Eq. (1) we have

∂β
∂α � b: (9)

The properties of asymmetric multilayers are naturally de-
scribed in terms of the asymmetry parameter b (the geometry
of the reflection) and the Bragg angle θB (the period of the
multilayer). Often in experimental design we wish to deter-
mine the cut angle ϕ that satisfies a given b and θB, which
can be found by solving

b � cos�ϕ� θB�
cos�ϕ − θB�

: (10)

This equation has the four solutions given by

ϕ � �cos−1
�
� �1� b� sin θB�������������������������������������������

1� b2 − 2b cos 2θB
p

�
: (11)

In the case of Bragg reflection, we must have −π < ϕ < 0,
from Eq. (6). When −1 < b < 0, which is the beam expanding
geometry for which −π < ϕ < −π∕2, we have 1� b positive
and so

ϕ � −cos−1
�
−

�1� b� sin θB�������������������������������������������
1� b2 − 2b cos 2θB

p
�

� −cos−1
�
−

m�1� b�λ
2

�����������������������������������������
�b − 1�2d2 �m2λ2b

p
�
; (12)

where the usual definition of cos−1 is used, which has a range
of �0; π�. In the beam condensing Bragg geometry, for which
−π∕2 < ϕ < 0 and 1� b is negative, Eq. (12) is also the correct

solution. A similar analysis can be carried out in the Laue
geometry, where b > 0. In this case, however, we can have
−π∕2 < ϕ < π∕2, for which cos ϕ > 0. In Laue geometry,
when −π∕2 < ϕ < 0, we always have the incident beam at a
shallower angle from the surface than the transmitted, corre-
sponding to b > 1. Thus, in general for Bragg and Laue geo-
metries, the solutions to Eq. (10) are

ϕ � −cos−1
�
−

�1� b� sin θB�������������������������������������������
1� b2 − 2b cos 2θB

p
�
; b < 0; (13)

ϕ � cos−1
� �1� b� sin θB�������������������������������������������

1� b2 − 2b cos 2θB
p

�
; 0 < b < 1; (14)

ϕ � −cos−1
� �1� b� sin θB�������������������������������������������

1� b2 − 2b cos 2θB
p

�
; b > 1. (15)

The dispersion of the diffracted light from an asymmetric-
cut multilayer follows directly from the grating equation
(Eq. 1), from which

∂β
∂λ � −

1
λ �1� b� tan θB: (16)

As expected, there is no dispersion for symmetric Bragg geo-
metry (b � −1) because there is no grating structure in that
case. The dispersion is negative for expanding Bragg reflec-
tions, −1 < b < 0, and positive for condensing Bragg
reflections, b < −1. Equation (16) is also valid for Laue diffrac-
tion. The dependence of the angular dispersion on the multi-
layer period is implicit through the Bragg angle θB, defined by
the Bragg equation (Eq. 3), and the dependence on the inci-
dence and exit angles α and β is implicit through the asymme-
try parameter b. These angles can be determined from the cut
angle ϕ, as given above, and noting that α � ϕ� θB and
β � ϕ − θB. In the reflection geometry, the largest dispersion
for a given multilayer period occurs for b → ∞, which corre-
sponds to grazing exit angle (jβj → π∕2) where the beam
width is condensed on reflection. As has been pointed out
elsewhere, this is a consequence of Liouville’s theorem. A qua-
si-monochromatic collimated beam (of finite width) that is re-
duced in width must be dispersed in angle to preserve the
space-angle phase volume.

3. DYNAMICAL DIFFRACTION OF
ASYMMETRIC MULTILAYERS
The optical properties of asymmetric-cut multilayers can be
calculated by solving Maxwell’s equations for fields interact-
ing with the periodic structure (through the susceptibility of
the material), with the application of the appropriate bound-
ary conditions, and with the ersatz solution of a sum of an in-
cident and diffracted plane wave. Such a system has been
solved for this case of sliced multilayers [8], but we note that
the problem is exactly that addressed by the dynamical dif-
fraction theory of crystals for which a huge body of literature
exists. In the analysis that follows, we prefer to apply the
dynamical diffraction theory, because we can easily examine
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effects that are known to practitioners of crystal diffraction.
Another theory that has been applied to asymmetric multi-
layer diffraction is coupled-wave theory [14,15].

The dynamical diffraction theory gives the intensities of the
diffracted and refracted beams for a slab of thickness t of a
material with periodic structure of period d. The direction
of the periodicity relative to the two parallel surfaces of
the slab is specified by the asymmetry parameter b and the
direction of the diffracted beam, m [corresponding to a mo-
mentum transfer q � �4π∕λ� sin θB � 2πm∕d]. In the case
where the susceptibilities of the layered materials are com-
plex (the materials are absorbing as well as refractive), the
intensity of the diffracted beam in the Bragg geometry is given
by {see Eq. (7.11) in [12]}

RB �
���� χmχ �m

���� jϵ1 − ϵ2j2����η�ϵ1 − ϵ2� �
�������������
η2 − 1

p
�ϵ1 � ϵ2�

����
2 ; (17)

with ϵ1 � exp�iπt∕Λ�, ϵ2 � exp�−iπt∕Λ�, where
Λ � Λ0∕�η2 − 1�1∕2. In the above,

η � �Δθ −Δθs�∕δs (18)

is the deviation parameter, where Δθ � θ − θB is the depar-
ture of the incidence angle from the Bragg angle defined by
Eq. (3), and

Δθs � −
χ0�1 − 1∕b�
2 sin 2θB

; (19)

δs �
C

������������χmχ �m
p
������
jbj

p
sin 2θB

; (20)

Λ0 �
λjγmj

δs sin 2θB
: (21)

The real part ofΔθs is the deviation from Bragg’s equation due
to refraction, the real part of 2δs is the Darwin width or the
angular width of the Bragg reflection, and the real part of
Λ0 is the extinction distance (at the middle of the Bragg peak,
corresponding to η � 0, the 1∕e penetration depth is Λ0∕2π).
The factor C depends on the polarization state of the beams:
C � 1 for σ polarization, and C � cos 2θB for π polarization.
Note the inverse relationship between the Darwin width and
the extinction length: the larger the extinction depth the more
layers contributing to the reflection and the narrower the
bandwidth of the reflection. The extinction depth is a property
of the multilayer materials and is independent of the cut
geometry.

Experimental characterization of soft-x-ray and EUV multi-
layers is often performed at fixed geometry and varying
wavelength. From Eq. (3) we can formulate the equations
for the reflected intensity in terms of the change in wavelength
from the Bragg wavelength by substituting for the dependent
parameter

Δθ � −Δλ∕λ tan θB � −
mΔλ

2
���������������������
d2 −m2λ2

p : (22)

We then obtain the wavelength refractive shift Δλs and
Darwin width Δλw, relative to the Bragg wavelength λB �

2d sin θB and for fixed incident angle, from Eqs. (19), (20),
and (22), as

Δλs∕λ �
χ0�1 − 1∕b�
4 sin2 θB

; (23)

Δλw∕λ � −
C

������������χmχ �m
p
������
jbj

p
sin2 θB

: (24)

In the Laue geometry, the reflected and refracted beams
transmitted through a slab of thickness t and asymmetry para-
meter b, are given by {see Eq. (6.16) in [12]}

RL �
���� χmχ �m

���� exp
�
−
μ0
2

�
1
γ0

� 1
γm

�
t
� jϵ1 − ϵ2j2
4j1� η2j ; (25)

TL � exp
�
−
μ0
2

�
1
γ0

� 1
γm

�
t
�
����η�ϵ1 − ϵ2� �

��������������
1� η2

p
�ϵ1 � ϵ2�

����
2

4j1� η2j ;

(26)

where μ0 � −2π Imfχ0g∕λ is the mean linear absorption coef-
ficient of the materials of the structure. The dimensionless
parameters ϵ1 and ϵ2 are as defined previously, except that
in the Laue geometry we haveΛ � Λ0∕�η2 � 1�1∕2. In this case
the lengthΛ0 is known as the Pendellösung distance, which is
equal to the period of the oscillation of energy in the reflected
and refracted beams as a function of thickness t. When there is
no absorption, the intensity at Δθ � 0 in the reflected and re-
fracted beams is unity and zero, respectively, for thicknesses
of integer multiples of Λ0.

To apply the conventional crystal dynamical diffraction the-
ory, the structure factors of atomic unit cells of a crystal are
replaced by the structure factors of the material layers. Fol-
lowing the usual treatment (see, for example, Subsection 2.7
in [12]),

χm � 1
V

Z
χ�r� exp�−iqm · r�dr; (27)

� 1
d

Z
χ�z� exp�−2πimz∕d�dz; (28)

where V is the volume of material, and we have assumed a
layered structure of period d and that our diffracted order
m satisfies the Bragg condition such that jqmj � 4π sin θB∕λ
� 2πm∕d. The complex real-space susceptibility χ�z� can be
described by the complex refractive index of the materials
(neglecting any crystalline structure of the layer materials
themselves). Because the refractive index is given by
n�z� � �1� χ�z��1∕2, and n�z� � 1 − δ�z� − iβ�z� defines the re-
fractive index decrement δ and absorption term β, we have

χ�z� ≈ −2�δ�z� � iβ�z��: (29)

We use a layer model of two materials with sharp interfaces,

δ�z� �
�
δ1; 0 < z ≤ Γd;
δ2; Γd < z ≤ d;

(30)
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where Γ is the ratio between the layer thickness of layer 1 to
the period and z is distance into the multilayer. A similar ex-
pression holds for β. It is easily verified that with this layer
model, Eq. (27) leads to

χ0 � −2��δ� i�β�; (31)

������������χmχ �m
p � 2�δ1 − δ2 � i�β1 − β2��

sin�mπΓ�
mπ ; (32)

���� χmχ �m

���� � 1. �33�

Here, �δ � Γδ1 � �1 − Γ�δ2 is the mean index decrement of the
materials, and similarly for �β. The linear absorption coefficient
required for the reflectivity expressions in the Laue geometry,
is given by μ0 � π�β∕λ. Structures with more than two layers
per period can be considered similarly.

Note that more realistic models of the layer materials that
take into account layer roughness or interdiffusion can be ap-
plied, either by deriving χm from an analytic description of
χ�z�, or by applying a discrete Fourier transform on a numer-
ical representation of the layer properties. We can represent
interfaces that have diffused into each other, for example, by a
refractive index profile function that varies across the inter-
faces according to [16]

δ�z� � δ2 �
1
2
�δ1 − δ2�

�
Erf

�
z
σ1

�
− Erf

�
z − Γd
σ2

��
; (34)

and equivalently for β�z�, where 2σ1 and 2σ2 are the widths of
the interfaces. It can be shown in this case that for σ1 and σ2 ≪
d that

������������χmχ �m
p

≈ 2�δ1 − δ2

� i�β1 − β2��
sin�mπΓ�

mπ exp
�
−
m2π2�σ21 � σ22�

d2

�
;

(35)

and χ0 remains unchanged from Eq. (31).
A limitation of the framework of the dynamical diffraction

theory used here is that it does require strict periodicity. An-
other formulation of a dynamical diffraction theory is the op-
tical-matrix theory [17–20], in which a recursion relationship
is used to find the superposition of transmitted and reflected
waves at each boundary. This theory has the advantage that
arbitrary nonperiodic layered structures can be analyzed [20]
but is only valid in the symmetric Bragg geometry where the
layers are parallel to the surface. We can therefore compare
the results of this theory in this case to check our implementa-
tion of the dynamical diffraction, but it cannot be used to ex-
amine the properties of sliced multilayers. In Fig. 2 we show
the symmetric Bragg (b � −1) reflectivity of a Mo-Si EUV mul-
tilayer, as calculated from Eq. 17 and as calculated using the
IMD program [20]. In both cases a periodic (d � 7.5 nm)
structure of layers of 4.5 nm thick Mo and 3.0 nm thick Si
was simulated, with perfect interfaces, and σ-polarized EUV
radiation of 13.4 nm wavelength. The same optical constants
were used in both cases: δMo � 0.07656, βMo � 0.0061289,
δSi � −0.0001196, βSi � 0.00181825 [21].

There is some discrepancy between the exact calculation
made by the IMD program and the result of Eq. (17), especially
for θ > 70°. We find that this difference is not entirely due to
the approximations in the classical dynamical diffraction
formalism that break down for large Δθ, because we get es-
sentially the same computed result when we apply the univer-
sal computational method of Huang and Dudley [22] and De
Caro and Tapfer [23]. This method solves the quartic disper-
sion equation exactly, and it is thus applicable over full range
of θ. Similarly, the two-beam approximation of dynamical dif-
fraction cannot explain the difference, for when we model a
structure with a sinusoidal depth variation in the refractive
index using the IMD program, we obtain less than a 0.1%
change in reflectivity. The discrepancy may be due to the dif-
ference in the way the interaction between the layered struc-
ture and the electromagnetic field is taken into account in the
two theories, and we note that making a change in the value of
δMo by 10% in the dynamical diffraction theory substantially
reduces the discrepancy between the two models.

In Fig. 2b we show computed reflectivities for the same d �
7.5 nm EUV multilayer, with various asymmetric-cut angles ϕ,
ranging from −70° to −140°. From Eq. (10) b varies from −1.45
to −0.25 for θB � 63.6°, and as expected from Eqs. (20) and
(19) the width of the reflectivity curve and the deviation from
the Bragg angle increase with this progression. Note that the
plots in Fig. 2b show the reflectance as a function of θ,
achieved by varying the incidence angle α and essentially cap-
turing all reflected light with a detector with a large angular
acceptance. That is, these curves plot the reflectance, irre-
spective of the exit angle β, and do not depend on the effect
of dispersion or how β varies with α. If we describe the experi-
mental geometry by the angle Θ � α − β, which is the angle
between the reflected and incident beams, then as the multi-
layer is rocked, the reflection angle will vary according to
∂Θ∕∂α � 1 − b. For symmetric reflection with b � −1 we
get the familiar α-2α scans to measure multilayer reflectivity,
but for the condensing geometry with b � −2, for example, the
detector must be scanned at three times the rate of the multi-
layer rocking angle.

4. FABRICATION OF SLICED MULTILAYERS
A. Low-Stress Thick Multilayer Mirrors
We made sliced multilayers by first fabricating a Mo:Si multi-
layer coating on a Si wafer substrate. A coating with 2020
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Fig. 2. a, Reflectivity at a wavelength of 13.4 nm for σ polarization of
a symmetric Mo-Si EUVmultilayer (b � −1, d � 7.5 nm), as calculated
by Eq. (17) with θ � θB �Δθ (solid line) and as calculated by the IMD
program [20] for a multilayer with sharp interfaces (dashed line). b, σ-
polarization reflectivity of the same Mo-Si structure with an asym-
metric-cut angle ϕ varying from −70° (highest peak reflectivity) to
−140° (lowest peak reflectivity), in 10° steps. The Bragg angle of
63.6° is indicated in panels a and b.
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periods of 3.47 nm thick layers of Mo and Si (period
d � 6.88 nm, and ratio of the Mo thickness to period
Γ � 0.5) was made by DC magnetron sputtering [24]. This
17.5 μm thick multilayer is more than 20 times thicker than
required for full beam extinction for the symmetric geometry
at a wavelength of λ � 13.2 nm. The key to manufacturing
such thick multilayer structures is to minimize the stress of
the coating and to reduce the buildup of roughness in the
layers. For a film of thickness t and intrinsic stress σ adhered
to a thick substrate, the film tension, proportional to σt, may
deform the substrate or cause the film to de-adhere from the
substrate. In conventional multilayer films of less than 100 bi-
layers, developed for 13.4 nm EUV lithography, the film stress
is usually less than 300 MPa. Increasing the thickness of this
conventional multilayer by more than a factor of 50 may result
in effects such as film crinkling, cracking, and de-adhesion.
The inherent stress in a multilayer may be reduced by mod-
ifying the thickness ratio Γ of the multilayer, by modifying the
growth conditions of the layers with a residual gas, or by mod-
ifying the properties of the interfaces between the layers.
Stress can sometimes be lowered by in situ annealing. We
achieved a low stress of <30 MPa by choosing Γ � 0.5. The
RMS roughness of the 2020-period multilayer was 0.42 nm, as
measured by atomic force microscope (AFM) over spatial per-
iods between 1.9 nm to 1 μm. This compares with the typical
roughness of 0.13 nm for a 60-period multilayer made for EUV
lithography [25].

An additional requirement of the deposition system is that
the deposition rate must not drift over the ≈48 h it takes to
deposit 2020 layers. In our system, no feedback is applied
to the deposition rate to control layer thickness. Instead, we
rely solely upon the stability of the power supplies to achieve
less than 0.1% variation of period throughout the stack. This
stability was verified from x-ray reflectometry measurements
made from a series of multilayer films that were fabricated
before and after growing the 2020-period multilayer. The stan-
dard deviation of the measured wavelengths at peak reflectiv-
ity for this series was 0.008 nm. Cross-section TEM imaging of
the top and bottom of the 2020-period stack also showed no
observable variation in period, although the precision of this
measurement was about 0.07 nm.

The structure of the uncut multilayer was probed by mea-
suring the reflectivity as a function of wavelength, at a Bragg
angle of θ � 80°. The multilayer materials and thick-
nesses were optimized for near-normal-incidence reflection
of 13.2 nm light, as required for EUV lithography [26], and
these thick multilayers exhibit high reflectance in this wave-
length region. The reflectivity is shown in Fig. 3 (dashed line),
as measured at the reflectometer at beamline 6.3.1 at the Ad-
vanced Light Source [27]. This measurement is sensitive to no
more than the topmost 70 periods, due to extinction. The mea-
surement confirms the 6.88 nm period, although the reflectiv-
ity is lower than the 67% routinely achieved on 70-period
multilayers, presumably due to the increase in interfacial
roughness and interdiffusion that has occurred in this thicker
structure. In this structure the diffusion occurred to such an
extent that the model of Eq. (34) does not provide a good fit to
the observed reflectivity. Instead, we employed a four-layer
model for each period, where layers of MoSi2 (with a density
of 6.13 g cm−3) are placed between the Si and Mo layers. The
layer thicknesses found by fitting the reflectivity curve were

Si:Mo : Si2:Mo:Mo : Si2 � 1.58 nm:1.36 nm:3.00 nm:1.03 nm,
in order increasing toward the surface. Our fit includes inter-
diffusion parameters [see Eq. (34)] between each of these four
layers of σ � 0.4 nm, which agrees well with the AFM mea-
surement of the top surface of the uncut multilayer of 0.42 nm
RMS. In addition, we model the surface of the structure as a
5.4 nm layer of MoSi2 terminated with 4.8 nm of SiO2. The cal-
culated reflectivity from this model is shown in Fig. 3 as a
dotted line, and is seen to agree with the measured reflectivity
of the uncut portion of the multilayer (dashed line).

The diffusion of thematerials to form layers ofMoSi2 is most
probably caused by the excessive heating of the structure and
substrate that occurs during the long deposition process. Usual
deposition runs of 70 periods take 2–3 h, during which time the
substrate rises in temperature by less than 80°C. During the
48 h deposition run for this 2020-period structure, the tempera-
ture was estimated to rise to 150°C, which is enough to cause
this diffusion-driven silicide formation [28]. As seen from our
calculations, this silicide reduces the refractive index contrast
and is responsible for the measured peak reflectivity of 53.7%,
as compared with 67% for thin Mo:Si multilayers. We expect
that we could produce thick multilayers of reflectivity higher
than 60% by the use of diffusion barriers [29,30], combinations
of materials that are more thermally stable [31], or by cooling
the substrate during deposition.

B. Sliced Multilayers
The silicon wafer with the 2020-period multilayer was cleaved
into several pieces of a size about 1 cm × 1 cm. Asymmetric
cuts to these pieces were made with a diamond saw, followed
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Fig. 3. (Color online) a, Measured reflectivity of the cut multilayer
withΦ � 7.8°, θ � 80°, α � −2.2°, β � −162.2° (solid line) and the un-
cut multilayer (dashed line). The dotted line shows the calculated re-
flectivity of the uncut multilayer, obtained by fitting a four-layer model
of the periodic structure. The wavelength satisfying the Bragg condi-
tion, Eq. (3), is indicated, and the insert depicts the experimental geo-
metry. b, Measured reflectivity of the same Φ � 7.8° cut multilayer at
a fixed wavelength of 13.2 nm, as a function of detector angle, 2θ, for
an incidence angle of α � −2.2°. An equivalent grating with a period
D � d∕ cos ϕ � 50.7 nm would have a second-order diffraction peak
at 2θ � 143.8° [as per Eq. (1)].
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by polishing the resulting beveled edge with diamond paste
(carried out by Evans Analytical Group, LLC, USA). The pro-
cess was similar to that used to prepare thin sections of sam-
ples for imaging in a transmission electron microscope.
Atomic force micrographs of two samples are shown in Fig. 4,
for cuts made at a shallow (a) and steeper (b) angle. The cut
angles were determined from EUV dispersion measurements
(see Subsection 5.B) to be Φ � 2.9° and 7.8°, as defined in
Fig. 1. These designations are confirmed by examination of
the AFM height maps. Ideally, the surfaces of the polished
multilayers would be plane, so that these images would be fea-
tureless, but in fact the layered structure can be seen. This
may be due to a difference in polishing or oxidation rates be-
tween Mo and Si. For the sample in Fig. 4a, the period is
D � 137 nm, which agrees with d � D sin Φ for the known
multilayer period d � 6.88 nm. This is equivalent to a grating
with 7250 line pairs/mm. The average step height between the
exposed layers at the surface is 4.5 nm, which is close to the
thickness of the Mo layer with its silicide. Surface analysis re-
veals that Si is predominantly absent on the surface. The sur-
face of the second sample has a structure of period of 50.8 nm,
or 19,700 line pairs/mm, in agreement with the Φ � 7.8° cut
determined from dispersion measurements described later in
Subsection 5.B.

The AFM images show terraced steps with quite irregular
edges, which is not what is usually expected for a grating of
any usable quality. In this case, however, the structure of im-
portance is the underlying layered volume where the interfer-
ence takes place. As can be seen in the height map, the edges
of the steps mainly follow a constant height, and hence the
irregularity of the step edges is because they simply contour
the surface. Several large scratches can be seen, for instance.
Any irregularity in the surface height merely acts as a refrac-
tive screen placed on top of the perfect structure [32]. The
phase change caused by a dip in the surface height by h is
h�n − 1�∕λ � hδ∕λ waves, where n is the refractive index of
the missing material. The phase change for 13.2 nm light,
due to the entire thickness of Mo (δMo � 0.077) is less than
0.02 waves, for example. Such a surface imperfection may
cause scattering of the reflected light, equivalent to a surface
with roughness of only 0.01 waves, or 0.13 nm. That is, unlike
a conventional single-surface reflector, reflection from a mul-
tilayer structure depends primarily on the quality of the under-
lying structure and the top surface is only a small contributor
to the reflection. Even so, the larger scale irregularities, such
as scratches, that show up in the AFM maps could cause a
noticeable reduction in reflectivity due to scattering. We
can estimate the reduction in reflectivity due to this phase dis-

turbance by an exponential factor [33], as

R � RB expf−�4πσs�n − 1� cos α∕λ�2g; (36)

where σs is the RMS surface height variation. For the 7.8° cut
shown in Fig. 4b we measure σs � 2.5 nm (from a 5 μm ×
5 μm area AFM scan), giving a reduction factor in reflectivity
of 0.974 for λ � 13.2 nm and n − 1 � 0.077. Clearly, this sur-
face irregularity does not adversely effect the reflectivity of
the cut multilayer.

5. RESULTS AND DISCUSSION
A. Extreme Ultraviolet Reflectivity
Measurements of the reflectivity of the cut d � 6.88 nm multi-
layers were performed at Bragg angles of 80.0° (wavelength of
13.7 nm) and 30.0° (wavelength of 6.88 nm) for comparison
with theory. Some possible geometries are listed in Table 1
for measurements from the two cut angles of Φ � 2.9° and
7.8°, plus the symmetric reflection from the uncut portions
(Φ � 0°). The measured reflectance as a function of wave-
length, for a fixed incidence angle relative to the multilayer
interfaces of θ � 80° and a detector with a 1.3° acceptance,
is shown in Fig. 3a, for the symmetric (b � −1) and asym-
metric (b � −1.05, Φ � 7.8°) reflections. The wavelength of
the incident light was selected by a grating monochromator
that is part of the beamline. The monochromator is designed
to allow a continuous adjustment of the wavelength without
changing the incidence angle on the sample.

The measured asymmetric reflectivity has a peak value of
51.4%. For an asymmetry parameter b � −1.05, Eq. (17) pre-
dicts a reflectivity RB almost indistinguishable from the sym-
metric reflection on the plot of Fig. 2a. The reduction in peak
reflectivity from the 53.7% of the symmetric reflection is pre-
sumably due to the difference in the surface structure caused
by polishing. The reflectivity factor of 0.974 caused by the sur-
face roughness of 2.5 nm, as discussed in Section 4, gives a
predicted reflectivity of 52.3% on the cut. That is, surface
roughness partially explains the observed reduction in reflec-
tivity. In addition to the roughness, however, the Mo layers
that become exposed by the cut will completely oxidize
and this incorporation of oxygen atoms will reduce the reflec-
tivity. A MoO3 oxide layer of thickness 4.3 nm and density
4.69 g cm−3, for example, would give rise to the observed
reduction in reflectivity.

Measurements were carried out over a broad range of de-
tector angles for a fixed incidence angle of α � −2.2°. At the

Fig. 4. (Color online) AFM height maps of the cut regions for a, the
Φ � 2.9° cut and b, the Φ � 7.8° cut. The scale bar is 1 μm, and the
range of the color scale is 20 nm from lowest height (black) to highest
(white). These correspond to blazed gratings of 7250 and 19,700 line
pairs/mm, respectively. The grating efficiency is essentially insensitive
to surface imperfections because x-ray diffraction is a volume effect.

Table 1. Geometries of Some Reflections

Possible for the d = 6.88 nm Multilayer with Cut

Angles of 2.9° and 7.8°

λ θB Φ ϕ b

13.7 nm 80.0° 0° −90° −1
13.7 nm 80.0° 2.9° −92.9° −0.982
13.7 nm 80.0° 2.9° −87.1° −1.018
13.7 nm 80.0° 7.8° −97.8° −0.953
13.7 nm 80.0° 7.8° −82.2° −1.050
6.88 nm 30.0° 0° −90° −1
6.88 nm 30.0° 2.9° −92.9° −0.834
6.88 nm 30.0° 2.9° −87.1° −1.192
6.88 nm 30.0° 7.8° −97.8° −0.616
6.88 nm 30.0° 7.8° −82.2° −1.622
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cut angle ofΦ � 7.8°, we have an equivalent grating period of
D � d∕ cos�Φ − π∕2� � 50.7 nm, where d � 6.88 nm. If the
grating was not perfectly blazed, then we would expect some
diffraction at orders other than the first. The second order, for
example, would occur at an angle given by sin β �
sin�−2.2°� − 2 · 13.2 nm∕50.7 nm, or 2θ � 143.8°. As clearly
seen in Fig. 3b, no measurable diffraction above background
could be detected.

B. Dispersion
From Eq. (16) it is clear that we may achieve dramatic demon-
strations of dispersion for significant values of jb� 1j. For our
fabricated multilayer samples, this requires measurement at
wavelengths much shorter than 13.7 nm. At a wavelength
of 6.9 nm the larger dispersion allows higher sensitivity
measurements to be made for comparison with predictions.
The multilayer materials are not optimized for the shorter
wavelength, however, so the reflectivity is only 2%, as mea-
sured. We measured the dispersion at a fixed incidence angle
by scanning the detector angle β and wavelength. The mea-
sured reflectivity as a function of 2θ � α − β (with α constant)
and λ are shown in Fig. 5. The angular acceptance of the de-
tector in the scan direction was 0.1°. The linear dependence of
the angle of the peak reflectivity on the wavelength can clearly
be seen.

For the measurement shown in Fig. 5a, we allowed a small
portion of the incident beam to reflect from the uncut part of
the multilayer. This portion is seen as the low-reflectivity peak
that occurs at a constant 2θ for all values of λ. This has b� 1 �
0 and no dispersion, as expected for a symmetric multilayer.
The two beams reflecting from the cut and uncut parts of the
multilayer intersect at 2θ � 2θB as is necessary from the grat-
ing equation, Eq. (1), which can be rewritten as

sin β � −λ cos ϕ
d

� sin α: (37)

On the uncut portion of the multilayer cos ϕ � 0 and so α � β.
Because α is fixed, β is fixed also, and this symmetric reflec-
tion defines the Bragg angle for this particular geometry as
2θB � 2θ � α − β. For the cut multilayer, where cos ϕ is non-
zero, we see from Eq. (37) that sin β varies linearly with λ and
that when λ � λB � 2d sin θB then sin β � −2 sin θB cos ϕ�
sin α, for which 2θ � α − β � 2θB, intersecting with the sym-
metric reflection. Note that the maximum reflectivity does not
occur at the Bragg condition. This displacement of the peak
from the Bragg wavelength is the refractive shift Δλs
[Eq. (23)], which can be measured here, because this intersec-
tion of the two beams is independent of the choice of ϕ. The
determination of λ and θB at the intersection of the two re-
flected beams in Fig. 5a provides a way to measure d without
needing to know the materials properties of the multilayer. In
particular we find that θB � 30.39� 0.03° and λB � 6.96�
0.02 nm, giving d � 6.88� 0.02 nm. This is in agreement with
the 6.876� 0.005 nm period determined by a diffractometer
measurement at 8.054 keV.

For each wavelength we determined the 2θ position of
the peak reflectivity by a Gaussian fit. These positions are
displayed on Fig. 5a as white diamonds (peaks for only every
second wavelength value are displayed for clarity). The grat-
ing equation was then fit to the peak positions, varying ϕ and
setting d � 6.88 nm. The best fit was found for ϕ � −81.2° or a

cut angle ofΦ � 7.8°. This is in agreement with the AFMmea-
surement, as mentioned in Subsection 4.B. We carried out the
same procedure on the Φ � 2.9° cut multilayer and found
a similar agreement between the inferred cut angle and the
period determined by AFM.

In Fig. 5b we show the reflectivity of the cut multilayer as a
function of wavelength, determined by integrating over the 2θ
scans for each wavelength, and normalizing by the integrated
scan over the incident beam. This was performed for a 2θ − λ
dataset where the full beamwas reflected by the cut portion of
the multilayer. Themaximum reflectivity is 2.36%, occurring at
Δλ � −0.26� 0.01 nm. This compares withΔλs � −0.251 nm,
calculated from Eq. (23) with the optical constants of the mul-
tilayer materials given in Section 3. Using the multilayer com-
position of repetitions of the four layers plus the termination
with 4.8 nm thick SiO2, determined by fitting the 13.2 nm
reflectivity (Subsection 4.A), we calculate from the IMD pro-
gram [20] a peak reflectivity of the symmetric reflection of
2.5%. (Without the oxide, the reflectivity is calculated to be
4.7%.) The calculation of the reflectivity curve for the cut
multilayer with b � −1.49, from Eq. (17) using the same multi-
layer parameters and replacing Eq. (34) with a four-layer
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Fig. 5. (Color online) a, Reflectivity of the Φ � 7.8° cut mirror at a
Bragg angle of 30.39°, b � −1.49, as a function of detector angle 2θ and
wavelength λ. The incidence angle was α � −53.0°. Positions of the
peak reflectivity at each wavelength are displayed with diamonds,
and the line is a fit of the grating equation, Eq. (1), to these peaks.
b, Reflectivity, integrated over 2θ, from a dataset similar to that shown
in panel a is displayed with diamonds The solid line is a calculation
from Eq. (17), scaled by a factor 0.53, and the dashed line is a calcula-
tion for the symmetric reflection using the IMD program and applying
the same scaling factor.
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model with layer interdiffusion, predicts a maximum reflectiv-
ity of 4.4%. This reflectivity curve is shown in Fig. 5a with a
solid line, after scaling the reflectivity by a factor of 0.53 to
account for the surface oxide. At this wavelength the reflec-
tivity is a strong function of the oxide layer thickness and the
interdiffusion length, and we can also obtain a good fit to the
measured data by varying the oxide layer thickness by 1 nm
instead of scaling. Nevertheless, the oxide thickness as pre-
dicted from the 13.2 nm measurements does fit the results
at 6.9 nm wavelength. The reflectivity curve of the symmetric
reflection, calculated from Eq. (17) and with the same reflec-
tivity factor of 0.53 is shown in Fig. 5b with a dashed line. We
note that the shape of the calculated reflectivity curve of the
asymmetric reflection agrees well with the measurement, ex-
cept at Δλ > 0, where the measured reflectivity is higher. The
calculated refractive shift Δλs and the Darwin width Δλw are
in agreement with the measurement.

The angular width of the diffracted beam depends on the
spectral resolution of the cut multilayer grating. The measure-
ment of this width at the wavelength of maximum reflectivity
is taken from a vertical line-out of the plot in Fig. 5 at a
wavelength of 6.7 nm (Δλ � −0.26 nm). The full-width at
half-maximum (FWHM) of the dispersed beam is 3.7 mrad
and the FWHM of the specularly reflected beam is 2.8 mrad.
The angular width of the specular beam gives an estimate of
the angular extent of the detector slit, and deconvolving this
from the measurement of the dispersed beam gives a FWHM
of 0.9 mrad. This corresponds to a spectral resolving power of
λ∕Δλ � tan θ∕Δθ ≈ 700 [see Eq. (16)]. The bandwidth of the
incident light, set by the grating and monochromator slits of
the diffractometer [27] was Δλ∕λ � 1∕1000. Assuming this
and the contribution to the cut multilayer add in quadrature
then we infer that the intrinsic resolving power of the cut mul-
tilayer is also λ∕Δλ � 1000. This is lower than the upper
bound of a resolving power of 2000 set by the total number
of periods in the grating. The lower resolving power could
be attributed to an accumulated error in position and period
of the layers in the grating structure, or other unaccounted
instrumentation errors in our measurement.

6. APPLICATIONS OF SLICED
MULTILAYERS
A. Monochromator or Spectrometer
The symmetric Bragg reflection from a multilayer coating
(b � −1) can of course be used as a monochromator (a band-
pass filter). However, in that case the bandwidth depends on
the Darwin width Δλw which is essentially the inverse of the
number of layers that contribute to the reflection. The band-
width can be easily increased by reducing the number of
layers in the multilayer stack to less than the extinction depth
Λ0∕d, but decreasing the monochromator bandwidth requires
thick multilayers with materials of low absorption so that the
x-ray wave field interacts with the entire stack. That is, the
smallest bandwidth that can be achieved with an uncut multi-
layer is dependent on materials properties. It is clear that a cut
multilayer gives much greater freedom in designing a mono-
chromator, because this structure is essentially a dispersing
grating. A cut multilayer also can be used as a spectrometer,
dispersing a portion of the incident spectrum within the multi-
layer’s Darwin width. The smallest monochromator band-
width or spectrometer resolution is limited by the number of

illuminated grating periods. Because the grating period D can
easily be much smaller than gratings made by other means,
more periods could be illuminated than for a conventional
grating in a similar geometry. (Or equivalently, the dispersion
of the cut multilayer can be much higher than a conventional
grating.) Generally, a cut multilayer may be advantageous for
monochromator bandwidths between 10−2 to 10−4, especially
for wavelengths longer than several angstrom where crystals
might not be appropriate.

A practical limitation to the use of a cut multilayer is that
caused by their limited thickness. The 2020-period multilayer
reported here is one of the thickest made, and yet when cut at
an angle Φ � 7.8° intersects a beam height of only 110 μm.
The effective height of the cut can be increased by cutting
or etching a sawtooth pattern into the multilayer stack to pro-
duce a so-called Bragg–Fresnel multilayer optic [34,35]. These
types of structures have achieved bandwidths of 10−6 [36]. For
b � 1, Laue reflection, a rectangular pattern could be etched
into the stack to leave a series of multilayer walls on a sub-
strate. This structuring for Bragg or Laue reflection effectively
increases the number of interacting periods, which would de-
crease the bandwidth if the cuts were all of the same angle.
The layers of the structure would all be in phase from one cut
to another, but small changes in the cut angles would lead to
changes in b and the dispersion in these cuts. From Eq. (16)
the variation in b should be less than the desired band-
width: Δb < �Δλ∕λ��1� b�.

B. Phase Corrector Plates
The option exists of making a profile other than a straight cut
in the multilayer. Cutting a curved profile results in a grating
profile on the curved surface with a variable line spacing. The
line spacing is related to the surface shape (the lines are con-
tours of the shape). A fruitful way to examine multilayers (e.g.,
deposited on a flat substrate) with large-scale curved shapes
cut out of them is to note that the wave field interacts with the
multilayer structure and the phase of the wave field is
“pinned” to the layers. Thus, where the height of the terminat-
ing surface of the multilayer changes there will be a different
path length of the reflecting beam as it either travels through
the multilayer material or vacuum (the region that has been
cut away from the multilayer). For example, in a step of height
h cut into a multilayer that exceeds this height, the phase of
the Bragg-reflected beam is pinned by the same common mul-
tilayer on both sides of the step that exists below the cut. The
only difference between the reflected beams on either side of
the step is that the incident and reflected waves travel through
a height h of vacuum (of refractive index 1) in the milled
region, or a height h of multilayer (with effective refractive
index nm ≈ 1� χm∕2) in the unmilled region, before reaching
the depth where the multilayer is identical. The difference in
the phase of the beam reflecting from the etched region to the
beam reflecting from the unetched region is 4π�1 − nm�h∕λ.
For x rays, which have χm < 0 and 1 − nm > 0, a spherical de-
pression milled out of a multilayer will act as a positive refrac-
tive lens. However, this lens will be weaker in power (by a
factor of 1 − nm) as compared to a substrate of the same shape
that has been coated with a multilayer. The advantage for the
manufacture of optics is that the tolerance for surface imper-
fections is increased by this same factor.
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From Eq. (21) the phase difference between beams re-
flected from a step height equal to the extinction depthΛ0 will
be 2π�χmχ �m�1∕2Λ0∕λ � 2πjγ0j. Thus, it is not possible to gen-
erate phase differences much larger than 2π. A general profile
can be made by cutting the shape, modulo 2π. This is the basis
of the Bragg–Fresnel lens. It is easier, however, to fabricate a
binary structure, leading to a zone-plate lens rather than a
Fresnel lens.

Another possibility to achieve a variable line space is to
vary the d spacing of the multilayer. Point-to-point focusing
can be achieved this way by ensuring the multilayers form
a volume hologram caused by the interference of spherical
waves emanating from those points. These volume zone plates
are discussed in Subsection 6.D.

C. Pulse Compressor

1. Chirped Pulses
The wavelength dispersion of sliced multilayers can be used
to construct optical systems that give a variation of path
length with wavelength but which preserve the collimation
of a beam. These can be used to induce a linear frequency
chirp on a short pulse or to compress a frequency chirped
pulse. X-ray free-electron lasers can in principle be configured
to produce chirped pulses, which could then be optically com-
pressed [37]. X-ray pulse compressors based on a pair of grat-
ings [37] or a strained crystal [38] have been proposed. A
sliced multilayer pulse compressor has the advantage of high
efficiency. It may be easier to fabricate than a strained crystal
and be more practical than a pair of lower dispersion gratings
(which will require a longer length between the elements and
produce a larger shear of the beam for a given compression).

A pulse with a linear chirp can be described as pulse with a
wavelength that varies with position x along the pulse (or time
t � x∕c where c is the speed of light) as

λ�x� � λ0�1 − γcx∕Lp�; (38)

where Lp is the length of the pulse (the pulse duration is Lp∕c)
and γc � Δλ∕λ is the relative bandwidth of the chirp. We de-
fine x � 0 as the leading edge of the pulse. The chirp may be
described as positive, where the leading edge of the pulse
has a longer wavelength [λ�0� � λ0] than the trailing edge
[λ�Lp� � λ0�1 − γc�]. The pulse compressor must produce a
path that compensates for this variation, by directing the long-
er wavelength light along a longer path, so that the tail catches
up with the head:

xc�λ� � x0 � Lp�λ − λ0�∕λ�1∕γc�; (39)

or

Δxc�Δλ� � Lp

�Δλ
λ

�
∕γc: (40)

In the case of a negative chirp, γc < 0, the compressor must
create a longer path for the shorter wavelength light to com-
press the pulse. As an example of chirp parameters, the Linac
Coherent Light Source (LCLS) [39] produces high-fluence
pulses between 70 and 400 fs duration (Lp between 20 and
120 μm) and could be configured to produce a chirp of about
γc � 0.5%.

2. Compressor Geometry
A pulse compressor can be made with two sliced multilayers,
either in the Bragg or Laue geometry (Figs. 6 and 7). Rays of
different wavelength incident on the first element will reflect
according to the reflectivity curve and be dispersed according
to the grating equation as, for example, shown in Fig. 5. These
rays are recollimated by the second element. That is, we have
α2 � β1 � −π and β2 � α1 � −π, which implies that b1 � 1∕b2,
the multilayers must be of the same period d and cut angle ϕ
and that the multilayer surfaces must be parallel. Here the
subscripts refer to the first and second elements. In the follow-
ing, when no numerical subscripts are used, we refer to the
geometry of the first element. Rays impinging on the first ele-
ment at the same position will be spread by an amount S,
which ideally should be much less than the width of the inci-
dent beam. To correct for this shear of the beam a symmetric
layout of four elements may be used, by mirroring the setup
about a plane perpendicular to the output ray direction
(Fig. 8). This, however, will result in reduced efficiency and
increased complexity.

Consider the Bragg compressor shown in Fig. 6, with two
sliced multilayers separated by a distanceH in the direction of
the surface normals. The case for b < −1 is shown. The dis-
tance of the reflected ray, from the point of reflection from
the first multilayer to the point of intersection with the second
multilayer, projected on to the surface of the multilayers is
L � H tan β, and thus

∂L
∂β � H

cos2 β : (41)

Note that the sense of the angles is as defined by the Bragg
angle being positive, θB � �s; s0� as described in Section 2.
That is, a positive increase in β increases L. The difference
in path length between the two rays reflected from the second
multilayer will be

Δxc � ΔL�sin α − sin β�: (42)

Fig. 6. Geometry of a pulse compressor in Bragg geometry for the
case that b < −1. Ray paths are indicated by dashed lines. The circular
arrows labeled “positive” show the direction of positive angles for the
two reflections.
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Combining Eqs. (2), (16), and (41), Eq. (42) can be written as

Δxc � −2
Δλ
λ

H

cos2 β �1� b� tan θB cos ϕ sin θB: (43)

This same equation is valid for the Bragg geometry with
−1 < b < 0, even though the dispersion is reversed. The equa-
tion also applies, except for a sign change, for the Laue case of
Fig. 7, for a distance H between the parallel multilayers. Not-
ing that 1� b � 2 cos θ cos ϕ∕ cos β, we find that the general
expression for both the Bragg and Laue cases can be ex-
pressed as

Δxc � �n1 · n2�
Δλ
λ

H
cos β �1� b�2 tan θB: (44)

As is seen from Eq. (44) the path difference Δxc varies lin-
early with the relative wavelength change Δλ∕λ, as required
by Eq. (40), and on the distance along the ray path between
the elements, jH∕ cos βj. Additionally, the path difference de-
pends on the properties of the sliced multilayer, characterized
by the asymmetry parameter b and Bragg angle θB. By com-
paring with Eq. (16) we see that xc is proportional to the
square of the dispersion ∂β∕∂λ. The largest chirp for a given
wavelength λ is therefore achieved with the largest Bragg an-
gle (or smallest multilayer period) and for the largest value of
j1� bj. For compressors in either the Bragg or Laue geome-
tries, j1� bj is maximized for an incident beam normal to the
surface which asymmetrically reflects at an angle grazing the
surface. That is, the cut angle Φ would be near 45°. However,
we note from Eq. (24) that the bandwidth of the multilayer
decreases with increasing jbj as jbj−1∕2. The asymmetry pa-

rameter must be chosen to pass the relative wavelength range
of the chirped pulse, γc, which will then dictate the lengthH of
the compressor for a given pulse length.

Equation (44) shows that sliced multilayer pulse compres-
sors only compress pulses with a positive chirp. For Bragg
geometry, defined when the reflected ray exits on the opposite
side of the surface as the inward facing normal n, cos β � n ·
sm is always negative. Because the Bragg compressor has
n1 · n2 � −1, we have Δxc∕Δλ > 0 and the compressor pro-
vides a longer path length for longer wavelengths, compres-
sing a positively chirped pulse. For Laue geometry, cos β is
positive by definition, n1 · n2 � 1, and so again Δxc∕Δλ > 0.
The relationship between path length and wavelength can
be easily confirmed from ray diagrams such as shown in Fig. 6.

The displacement of the beam after the two reflections of
the compressor is given by

Δy � −�H∕ cos β� sin 2θB: (45)

The shear S induced on the beam is given by

S � ΔL cos β2 � −ΔL cos α;� Δxc
b

1� b
cot θB: (46)

The magnitude of the shear therefore increases with increas-
ing xc, but is minimized as b → 0, which is the case of grazing
incidence and near-normal reflection from the first element.
The shear is negative for −1 < b < 0 and positive otherwise.
A positive shear is defined as an increase in the displacement
of the beam for longer wavelengths, as shown in Fig. 6.

Depending on the application, the shear S should be re-
duced to be much smaller than the width of the beam. In some
instances, however, the widening of the beam by S may be
beneficial. For example, if the collimated beam was focused
by a Kirkpatrick–Baez (K–B) mirror pair, the stretching of the
beam in one direction by the compressor could compensate
for the larger focal length of one of the mirror pairs relative to
the other. If the stretching factor �S �W�∕W (where W is the
width of the beam incident on the pulse compressor) is equal
to the ratio of focal lengths f V∕f H , for instance, then the nu-
merical aperture of the focused beam would be the same in
the horizontal and vertical directions. Here it is assumed that
the shear occurs in the vertical. If the K–B system was diffrac-
tion limited, then equalizing the vertical and horizontal numer-
ical apertures produces a focal spot of the same vertical and
horizontal dimensions.

3. Compressor Efficiency
For a perfect linear dependence of the wavelength on position
along the pulse, the degree of compression depends on the col-
limation of the incident beam. An error in the incidence angle
of Δα corresponds to a relative change in wavelength of
Δλ∕λ � −Δα cot θB, corresponding to an equivalent error in
the chirp correction. As an example, for a divergence of the
incident beam of 1 μrad for a wavelength of 0.15 nm and Bragg
angle of 2°, the wavelength chirp error will be less than 0.003%.
This implies that a pulsewith a perfect chirp of 0.5%bandwidth,
for example, could be compressed by a factor of 160.

For free-electron laser (FEL) sources, the degree of com-
pression of the pulse depends upon the purity of the chirp of
the incident pulse. Because of the limited longitudinal coher-
ence of pulses produced by self amplification of spontaneous

Fig. 7. Geometry of a pulse compressor in Laue geometry, b > 0. Ray
paths are indicated by dashed lines. The circular arrows labeled “po-
sitive” show the direction of positive angles for the two reflections.

Fig. 8. Four sliced multilayer elements arranged to compress pulses
and correct for the beam shear. The geometry shown here has
−1 < b < 0.
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emission in an FEL, unchirped pulses have a limited band-
width. This is referred to as the homogeneous bandwidth
and is related to the FEL parameter [40]. For the LCLS at
λ � 0.15 nm this homogeneous bandwidth is given by
γn � Δλ∕λ � 0.05%. Any subpulse of the chirped beam will
have this same homogeneous bandwidth. The maximum com-
pression ratio for a pulse with a chirp γc will therefore be
γc∕γn. A 10∶1 compression ratio, required to reduce the pulse
duration at LCLS from 100 fs to 10 fs, for example, thus
requires a bandwidth acceptance of Δλw∕λ of at least 0.5%.

As can be seen from Eq. (24), for a given multilayer material
and period, the sliced multilayer bandwidth Δλw∕λ increases
for increasing wavelength (due to the λ2 dependence of sus-
ceptibility away from absorption edges) and for decreasing
magnitude of the asymmetry parameter, jbj. A small value
of jbj corresponds to the expanding geometry where the width
of the reflected beam is greater than that of the incident beam
(grazing incidence). However, as seen in Fig. 2, decreasing jbj
may lead to a lower reflectivity, depending on the absorption
of the multilayer materials.

The Laue geometry has the advantage of producing a larger
chirp correction for a given instrument length H, due to the
variation of the dispersion on �1� b�2. However, for highly
asymmetric condensing reflections (jbj ≫ 1) the Bragg and
Laue geometries give approximately equivalent chirp correc-
tions. Depending on the materials, higher reflectivity might
also be achievable with Laue rather than Bragg reflection.
Some parameters of pulse compressors are listed in Table 2,
calculated for two wavelength ranges and for various multi-
layer materials. The Bragg or Laue reflectivity, RB or RL, of
a sliced multilayer is computed from Eqs. (17) or (25) as a
function of the parameters b, θB, and Δθ (or Δλ). The parti-
cular geometry that these correspond to can be computed
from Eqs. (13–15). Given a particular geometry of incidence
angle α, asymmetry angle ϕ, and wavelength λ, the reflectivity
can be computed using θB � α − ϕ, λB � 2d sin θB, and
Δλ � λ − λB. By reciprocity, the reflectivity of the second
sliced multilayer will be the same as the first. Thus the reflec-
tivity of the pair is given by R2, and the bandwidth is smaller
than the single-reflection bandwidth Δλw, depending on the
shape of the reflectivity curve.

In Table 2, the bandwidth Δλw∕λ of a single reflection is
listed, and the lengthH required to compress a pulse of length
Lp � 29 μm (100 fs) and a chirp γc � 0.5%. The shear S is also
listed, which can be compared to a beam size of approxi-
mately 1 mm for a beam of wavelength 0.15 nm that has pro-
pagated 400 m from the LCLS source. The table also lists
parameters of some soft-x-ray compressors assuming the

same chirp conditions. The 0.5% chirp can be accepted by
the bandwidth of all cases listed in the table.

D. Volume Zone Plate
Zone plates are diffractive optical elements that provide con-
structive interference for ray paths that converge onto an im-
age point and hence act as lenses. A Fresnel zone plate is a
phase or amplitude screen with zones that alternately π-phase
shift or block paths that differ in path length from the previous
zone by λ∕2. The zone boundaries are given by r2n ≈ nf λ, where
f is the focal length. To focus a collimated beam, a zone at
radius r must deflect a ray by an angle 2θ ≈ r∕f such that it
intersects the axis a distance f from the element. That is, a
structure of period d � λ∕�2 sin θ� is required at that radius,
or d�r� ≈ λf∕r.

Fresnel zone plates are used very successfully in soft-x-ray
microscopy [41,42]. At harder wavelengths, thin Fresnel zone
plates are not efficient and a volume diffractive element is re-
quired. This is clear from a plot of the Laue reflectivity RL of a
W/SiC multilayer, as a function of thickness t for a wavelength
of 0.15 nm and d spacing of 2 nm, shown in Fig. 9. In this case
the reflectivity is maximum for a thickness of t � 4.95 μm,
approximately equal to half the Pendellösung distance Λ0 �
10.7 μm, Eq. (21). This optimum thickness is almost 2500
times the period of the structure. For this particular example,
the Bragg angle is equal to θB � 2.1°. It is clear that a ray en-
tering the zone plate at this point can interact with as many as
t tan 2θB∕d � 186 layers. Such focusing elements can be fab-
ricated by multilayer deposition followed by slicing, and de-
signs can be made in the reflective (Bragg) or transmissive
(Laue) geometry. Volume elements based on sliced variable-
period multilayered structures have been fabricated and

Table 2. Parameters of Pulse Compressorsa

λ (nm) d (nm) θB Φ b H (mm) Δy (mm) jSj (mm) Δλw∕λ R2

0.15 2.00 2.1° −1.0° −2.74 28 105 1.25 0.6% 0.65
0.15 2.00 2.1° �1.0° −0.37 577 786 0.45 1.6% 0.63
0.15 2.00 2.1° �1.5° −0.18 398 469 0.17 2.3% 0.46
0.15b 2.00 2.1° −90.0° �1.00 1060 79 0.40 1.0% 0.47
6.90 6.90 30° −7.8° −1.62 17 40 0.13 3.0% 0.26
6.90 6.90 30° −15.0° −2.73 1.5 5.2 0.08 2.0% 0.22
aλ is the wavelength, multilayer period d, and asymmetric-cut angle Φ � π∕2 − ϕ, giving a Bragg angle θB and corresponding asymmetry parameter b. H is the

multilayer displacement required to compress a 100 fs pulse with a chirp of 0.5%, and Δy and jSj the resulting beam displacement and shear, respectively. The
Darwin widthΔλw gives the maximum chirp that the compressor can efficiently compress. The materials for the 2 nm period are W/SiC with Γ � 0.22 and Ru∕B4C
with Γ � 0.31 for the 6.9 nm period multilayers.

bThis row is for the Laue geometry of Fig. 7.
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Fig. 9. The calculated efficiency of the reflected and transmitted
beams from a cut W/SiCmultilayer slab of thickness t in the symmetric
Laue geometry (e.g., the local zone-plate efficiency), with b � �1 for a
wavelength of λ � 0.5 nm. The multilayer period is d � 2 nm, and the
reflectivity is optimized at Γ � 0.22.
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tested. Called multilayer Laue lenses, they have been used to
produce the smallest one-dimensional focal spots of x rays
[43–45]. Two-dimensional focusing can be achieved with
two orthogonal Laue lenses, or in principle from a circular
“jelly-roll” type lens [46] with concentric conical layers.

It is well appreciated that high efficiency of thick zone
plates requires that the Bragg condition be satisfied [14,47],
requiring a tilt of the layers, which depends on the layer ra-
dius. As with all volume holograms [48], this tilt is specific
for one source and image point pair, and efficiency diminishes
when used in other configurations or over an extended field.
For the case of focusing a collimated beam, the tilt of the
layers is given by θ ≈ r∕�2f �. (Focusing from a source point
a distance 2f from the zone plate to 2f away does not require
any tilt of the layers.) The advantage of the volume effect of
the reflection, just as with reflection from any other sliced
multilayer system, is that the efficiency of the reflection
can reach 100%, which means that the unreflected transmitted
intensity (the zero-order diffraction of the zone plate) can ap-
proach zero. Unlike the thin zone plate there are no negative
or higher order focii.

The dynamical diffraction theory applied in this paper is va-
lid only formultilayers of a single period. Several analyses have
beenmade for volume zone plates, based on coupled-wave the-
ories [14,15,47]. Distorted arrays, such as the 1∕r dependence
of the period, have beenmodeled by the Tagaki–Taupin theory
[49]. Here we simply apply the single-period dynamical diffrac-
tion theory locally to a small patch of zone plate where we as-
sume the period does not change. In this way we can estimate
the zone-plate efficiency as a function of reflection angle and
determine the optimum thickness profile of the plate.

Table 3 lists the Laue reflectivities for various geometries,
multilayer materials, and wavelengths, for lenses of optimal
thickness for that particular θB. The efficiency of the Laue
reflection increases with diminishing absorption, and so high-
er efficiencies are generally obtained with shorter wave-
lengths. Thus, volume zone plates complement thin Fresnel
zone plates which are efficient at longer wavelengths. As ex-
pected, the optimum thickness, tL, increases for decreasing
wavelength.

We find from calculations that the optimum thickness is re-
markably insensitive to d spacing, for all spacings greater than
about 0.1 nm. The optimum thickness is dependent on the ra-
tio of materials, Γ, and the minimum of Λ0 is found at Γ � 0.5
(for multilayers consisting of two materials). The optimum
thickness does depend on the asymmetry parameter b, how-
ever. In a volume zone plate that focuses a collimated beam,
α � 0 and the Bragg condition is satisfied by tilting zones ac-
cording to ϕ � −θB. The asymmetry parameter is then
b � 1∕ cos β � 1∕ cos 2θB. Given that tan 2θB � r∕f we have

b �
���������������������
1� r2∕f 2

q
: (47)

The asymmetry parameter will only vary appreciably for high
numerical apertures above 0.5. Therefore, for practical appli-
cations, the optimum profile of a volume zone plate is of con-
stant thickness.

7. CONCLUSIONS
Sliced multilayer optics are equivalent to perfect multilayer-
coated blazed gratings. The line spacing of the grating is
determined by the multilayer period formed by deposition
of materials. Because periods down to several angstrom
can be fabricated, grating linewidths approaching this value
can be made. This allows for dispersions of x rays that are
much higher than achievable gratings made by ruling or litho-
graphy. We have provided an analysis of asymmetric-cut mul-
tilayers by applying a dynamical diffraction theory of periodic
structures. This allowed us to describe the properties of
blazed gratings in terms of the asymmetry parameter b, pro-
viding a unified framework to characterize diffracting struc-
tures in both the reflecting Bragg and transmitting Laue
geometries. The asymmetry parameter and the Bragg angle
completely specify the geometry of a transmission or reflec-
tion grating but we have found that it is often confusing to
convert this into a description of experimental parameters.
We present solutions to determine the blaze angle in terms
of asymmetry parameter in all geometries of flat transmission
and reflection gratings.

We made grating structures by an asymmetric cut in a thick
x-ray multilayer structure. These gratings were characterized
with soft x rays at the Advanced Light Source reflectometer.
We find that the performance of the grating does not depend
critically on the surface structure exposed by cutting and pol-
ishing the multilayer because the dispersion and reflection of
the light is a volume effect. Creating a high-quality optic does
of course require that the entire multilayer stack is grown
without an interruption in its period and is thick enough to ex-
pose the cut surface. Growing such thick structures requires
conditions that produce low stress and low roughness stacks.

We studied the efficiency of Mo/Si multilayer with 2020 bi-
layers with a period thickness of 6.88 nm and cut under dif-
ferent angles. Fabrication of such a thick multilayer structure
took about 48 h, during which time some interdiffusion took
place, due to a raised substrate temperature. In addition to
accumulated roughness this interdiffusion can explain the
measured normal-incidence reflectivity of 53.7%. The reflec-
tivity from the asymmetric cut is somewhat lower (51.4%),
most likely due to oxidation of the exposed Mo layers as
well as surface imperfections due to cutting and polishing.

Table 3. Reflectivities of Various Sliced Multilayers in the Symmetric Laue Geometry (b = 1)

Material Combination d (nm) Γa λ (nm) tL (μm) Λ0 (μm) RL

W/SiC 2.0 0.22 0.15 4.95 10.6 0.69
W/SiC 10.0 0.22 0.15 4.96 10.6 0.69
W/SiC 2.0 0.13 0.06 18.9 39.6 0.76
W/SiC 2.0 0.50 0.06 7.25 15.7 0.67
Mo∕B4C 2.0 0.10 0.15 17.8 37.2 0.75
C∕B4C 2.0 0.34 0.15 211 430 0.92
Al2O3∕B4C 2.0 0.50 0.15 24.2 50.0 0.87
aThe ratio Γ of material thicknesses was optimized to give the highest Laue reflectivity RL, except in the cases of Γ � 0.5, which minimizes the thickness t.
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Nevertheless, the performance of the grating structures
agrees well with the dynamical diffraction theory predictions.
For example, measurements over a broad range of angles only
revealed diffraction in the first diffraction order, indicative of
the inherent perfect blaze achieved by this method. No higher
diffraction order peaks could be detected. Our experiments
carried out at EUV wavelengths give credence to our simu-
lated results at shorter wavelengths. At shorter wavelengths,
absorption is lower and the dynamical diffraction theory is
even more accurate.

The thick multilayer cut at an angle of Φ � 7.8° is equiva-
lent to a blazed grating with ≈20; 000 line pairs/mm with great-
er than 90% relative efficiency (>51% absolute efficiency).
This is higher efficiency than can be achieved by lithographic
methods [6,7]. A single asymmetric cut only gives a limited
grating area, compared to lithographic methods, which could
be remedied by milling sawtooth cuts into the surface of a
thick multilayer using a focused-ion beam, for example.

We explored the applications of cut multilayers as a mono-
chromator or spectrometer, a pulse compressor, and a volume
zone plate. In the former case we considered multilayer struc-
tures that are cut with sawtooth profiles to extend their areas,
and noted that other profiles can be cut into thick multilayer
stacks to sensitively correct for phase aberrations, for exam-
ple. The highest dispersion is achieved in the Laue or Bragg
condensing geometries where the reflected wave approaches
an angle parallel to the cut surface. This leads to compact de-
signs of grating pulse compressors for positively chirped x-ray
pulses from an FEL source (that is, pulses with longer wave-
lengths leading the pulse). For hard x rays of 1.5 Å wavelength
and shorter, we find the most compact and efficient designs
are achieved in the Laue geometry. For soft x rays and EUV,
these designs are usually too small, and reflective gratings
provide a more convenient design. Finally, we calculate the
local diffraction efficiency of hard x-ray volume zone plates
and find that the optimum zone-plate profile is close to con-
stant thickness.
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