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Abstract

We revisit the definition of th€é; symbols from the modular double &f;(sl(2, R)), referred
to as b6;j symbols. Our new results are (i) the identification of patddy natural normal-
ization conditions, and (ii) new integral representati@rsthis object. This is used to briefly
discuss possible applications to quantum hyperbolic gégmeand to the study of certain
supersymmetric gauge theories. We show, in particulat, theb6; symbol has leading
semiclassical asymptotics given by the volume of a nontitEteahedron. We furthermore
observe a close relation with the problem to quantize neRagboux coordinates for moduli
spaces of flat connections on Riemann surfaces related Behehel-Nielsen coordinates.
Our new integral representations finally indicate a posdifiterpretation of the 65 symbols
as partition functions of three-dimensionl = 2 supersymmetric gauge theories.

1. Introduction

Analogs of the Racah-Wignérj-symbols coming from the study of a non-compact quantum
group have been introduced in [ET1]. The quantum group istipreis related té/,(s((2, R))

and is often referred to as the modular doublé/gk((2, R)). The6j-symbols of this quantum
group, which will be called [t symbols, play an important role for the harmonic analysitef
modular double [PT?2], quantum Liouville theoty [T01] andagium Teichmuller theory [T03].
The terminology 55 symbol is partly motivated by the fact that it is useful tograeterize the
deformation parameterof I/, (sl(2, R)) in terms of a parametérasq = emiv?,

However, the precise definition of thetj-depends on the normalization of the Clebsch-
Gordan maps. Similar normalization issues arise in Lideviheory and in quantum Teich-
mduller theory. In the case of Liouville theory it is relatémlthe issue to fix normalizations
for bases in the space of conformal blocks. In quantum Teidlemtheory it is related to the
precise definition of the representations in which a maxicoaimuting set of geodesic length
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operators is diagonal. The normalizations chosen in tlegeates above were somewhat adhoc.
One of our first goals in this paper is to discuss natural ways this issue.

We will show that there exists very natural normalizatioriscl also appear to be very nat-
ural from the point of view of Liouville- and the quantum Temuller theory. In the latter con-
text, one of the normalizations defining ou6hsymbols will be shown to define a quantization
of the Fenchel-Nielsen coordinates. Somewhat strikingly,will find that the b6; symbols
defined in this way exactly reproduce the hyperbolic volurha aon-ideal tetrahedron with
given dihedral angles in the classical limit> 0. This strongly suggests that Turaev-Viro type
[TuVi] state-sum models built from the & symbols are related to three-dimensional quantum
gravity with negative cosmological constant, which can éensas an analog of earlier obser-
vations for the cases of zero [PR] and positive cosmologicaktants [MT], respectively. The
b-65 symbols are also natural building blocks for combinatajgbroaches to the quantization
of SL(2,R)-Chern-Simons theory or of its complexification.

One of our main technical results will be new integral repreations for the 65 symbols.
One of them strongly resembles the formulae for the uspiaymbols. The new integral rep-
resentations will be obtained from the formula for thé jbsymbols obtained in [PT2] by a
sequence of nontrivial integral transformations thatowllfrom an identity satisfied by Spiri-
donov’s elliptic hypergeometric integrals [S01, $03] (foreview see [S08]) in certain limits.
We will point out that one of these integral representatiadsiits an interpretation as a par-
tition function for a three-dimensional supersymmetricgg theory. This, and the relations
to three-dimensional Chern-Simons theories mentionedeaboggest that the & symbols
could play a key role in the currently investigated prograruentify correspondences between
three-dimensional supersymmetric gauge theories andongpect Chern-Simons theories on
suitable three-manifolds [TY, DiGu, DiIGG].

2. Racah-Wigner 6] symbols for the modular double

2.1 Self-dual representations otf,(sl(2, R)) and the modular double

We will be considering the Hopf-algebtg (sl(2, R)) which has generatois, ' and K subject
to the usual relations. This algebra has a one-parametdyfafmepresentation®,

+mwbx cosh 71-b(p - S) +7bx
N e

E. =7 (F) : — :

ot - ) Ko = ma(K) =™, (2.1)
Fo = mo(F) := e~ OSITOP T 5 - PTs —mhx

sin b2

wherep andx are operators acting on functiofiéz) aspf(z) = (27i) =& f(z) andxf(z) =
zf(z), respectively. In the definition5 (2.1) we are parametegiziasq = ¢™*”, and write the
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parameter asa = /2 + is. There is a maximal dense subsp@ec L*(R) on which all
polynomials formed out ok, F, andK, are well-defined [BT2, Appendix B].

These representations are distinguished by a remarkabldusdity property: It is automat-
ically a representation of the quantum grddgis((2, R)), whereg = /¥ if ¢ = e™**. This
representation is generated from operafeysF, andK, which are defined by formulae ob-
tained from those i (211) by replacibg— b~!. The subspac®, is simultaneously a maximal
domain for the polynomial functions &, F,, andK,, [BT2], Appendix B].

This phenomenon was observed independently in[PT1] arléd€][ It is closely related to
the fact thatt,,, F, andK, arepositiveself-adjoint generators which allows one to construct
E.,F, andK, asEY” F/Y KYY [BT1].

It was proposed in [PT1, BT1] to construct a noncompact quargroup which has asom-
pleteset of tempered representations the self-dual repregamé,,. It's gradually becoming
clear how to realize this suggestion precisely. Relevasyissin this direction were taken in
[BT1] by defining co-product, R-operator and Haar-meastisioh a quantum group. Further
important progress in this direction was recently madépi [Following [F99], we will in the
following call this noncompact quantum group the modulaulzle oft/, (s((2, R)).

2.2 Normalized Clebsch-Gordan coefficients for the moduladouble

The Clebsch-Gordan mag§? ,, : P, ® Pa, — Pa, Were constructed in [PT2]. The defining
intertwining property is

Co  (Tray @ Ty )(A(X)) = Ty - CO (2.2)

2,001 a2,01

In [PT2] it was found that th€%2 = can be represented as integral operators of the form

2,01

(€)= [ doides (231222), 0aa.m). 23)
The intertwining property(2]2) will be satisfied if we takgs | 22 21) = (23 |22 21) ", with
o3 | ag o)t —7i(Aqr—Aa; —Aas)/2 ) b
(ms :B22 -’Ell)b =€ . : ! 2)/ D—lg(a1+a2+a3—Q) ('r2 I If) (24)
X D—%(Q+a2—a3—a1)(x2 - xg - i%)D—%(Q—i—al—ag—ag) (xg - xl - I%) :

In (2.4) we are using the notatiods, = a(Q — o) with@Q = b+ b~! and
(Q/2 —iz+ «)
(Q2—iz—a)

Sp(z) is the so-called double Sine-function which is closelytedgo the functions called quan-

tum dilogarithm in [FK2] hyperbolic gamma function in [Ruw@nd quantum exponential func-
tion in [Wq]. Definition and relevant properties are recdlie AppendixX’A.

(2.5)

S
Dio(z) = SZ
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One should note, however, that our definition of $hieoefficients[(2.4) is not canonical, we
might equally well us€ &2 | 22 1) in 2.3), with

x3 1 T2 T1

(s318281), = Mag,an,00) (53] 520)," (2.6)
This will satisfy (2.2) for arbitrary functions/ (s, as, ;). A natural choice folM (s, as, aq)
can be determined by requiring the Weyl-invariance of theb€th-Gordan maps. In order to
formulate this requirement, we will need the intertwiningeoatorR,, : P, — Pg_, Which can
be represented explicitly as integral operator [PT2]

Rof)(2) 1= 53(20) [ da’ Doiale = ) (@), 2.7)

R

We may now require that

Cag’al (1® RQ_O“) - CQZ,Q—M ’ R. .Cx» — (@ s (2.8)
C2 (R, ®1) = CF o3 " oz T “ezen :

9,0 Q—az,a1

We claim that[(2.B) is satisfied if we choose chod$gvs, as, ) as

M(Oég,OéQ,Oél) = (29)

= (Sb(2Q — Q] — Qg — Oég)Sb(Q — Q] — Qg + Oég)Sb(Oél + N3 — OéQ)Sb(OéQ + a3 — Ozl))_i.

To prove this claim let us consider, for example, the firsthaf €quations in(218), which
would follow from the identity

Si2a) [ del (51828);" Doie0f — ) = € (3115250037 (2.10)
R

where we use abbreviatieh= @) — o and{ = Sy(as + ag — 1) S(2Q — a1 — ap — a3). This
identity can easily be rewritten in the form [BIT1, Equati@n34)] in which it is recognized as
the famous star-triangle relation, see e.g. [BMS1]. Preafsbe found in [K2, V]. It can also
be derived easily from the so-called elliptic beta-intéf@1] following the strategy discussed
in AppendiXB.

We will denote the Clebsch-Gordan coefficients defined ) (@ith functionM (as, a, o)
given in [2.9) ag( 22 |22 21),. We would like to stress that boftf: |22 21) ™ and (22 [2221),

T3 1 T2 X1 2 1 /b x3 T2 T1

both have their virtues. Whiléo‘f3 o2 O‘1)b has more natural symmetry properties, the virtue of

x3 1 T2 T1

(0‘3 a2 O‘1)‘”1 is to have particularly nice analytic properties in all afviariables.

xz3 lx2 1 /b



2.3 Normalized b-6j symbols for the modular double

The composition of Clebsch-Gordan maps allows us to definenatural families of projection
operators

( Czi g, (QS)‘II)(:L"l) = / d[lfld[lfgdl’g (A|X) (1'3,1'2,1’1) 3 (211)
R3

("Co oy ()W) (24) = / daidaadas ED(A|X))(x5, 22, 1) , (2.12)
R3

with integral kernels£$” (4| X) and&l? (4| X) given as

A1) = [dn, (21122, (321225, 213)
0 = [dn (2122), (52 2),. @14
The b6; symbolsy 3! 52 g;}b are then defined by the relations
eAIZ) = [ dutan) {32321), E0(412). (2.15)
Q/2+R
where the Plancherel measulie(«) is explicitly given by the expression
du(a) = da M(a), M(a) = |Sy(2a)*. (2.16)

It is clear that the explicit expression for th&psymbols depends on the normalization chosen
for the Clebsch-Gordan maps. We will denote éhesymbols corresponding t@“S o2 311)1)
and (22 |g201), by {a1 2 o1, respectively.

T2 T1 a3 o4

Qs an

at Jp

a3 a4q

The b6; symbols{ 21 22

a3 a4

Ot

a1 " were calculated iri [PTEJ

aan _ Sl +as —a1)Sh(an + o1 — ay)
b Sp(ag + ap — a3)Sp(as + ag — ay)

X /Cdu Sp(—ag £ (a1 — Q/2) + u)Sp(—ay £ (a3 — Q/2) + u)
X Splag +ayg £ (o — Q/2) —u)Sp(Q £ (as — Q/2) — u) .

The following notation has been us8gl« + u) := Sp(a + u)Sp(ov — w). The integral in[(2.17)
will be defined foray, € /2 + iR by using a contou€ that approache® + iR near infinity,
and passes the real axis(i? /2, ), and for other values af;, by analytic continuation.

aq a2
asz oy

(2.17)

The b6; symbols corresponding to the normalization defined abosdlan given by the
formula

as| . M(as,a2,00)M(ca,a3,as) [ ar az an

ay }b T M(at,as,02)M(aa,ar,01) L a3 g

with M(Ozg, g, al) being defined ”112]9)

1The formula below coincides with equation (228)(in [T01afshiftings — s — a, — Q/2. We have moved
a factor|S,(2a;)|? into the measure of integration i (2115).

a1 a2
a3 o4q

(e
at Jp

(2.18)




2.4 3j symbols for the modular double

3j coefficients describe invariants in tensor products ofaéhiepresentations. Such invariants
may be constructed from the Clebsch-Gordon maps and thaanvilinear formB : P, ®
Po-o — C defined by[[PT2]

Bf.g)i= [ do flelgla —iQ/2). (2.19)
R
We may thereby construct an invariant trilinear fo€m) o, o, : Pay @ Pa, @ Po, — C as

Cas,azar (f3: f2, f1) = B(f?n CSQ ol f2® fl) . (2.20)

The formC,, «,.., Can be represented as

Cossan,an (f3, fo, f1) = / drgdzadzy (5292 0Y) fa(xs) folaa) fi(2) (2.21)

RS

with 3j-symbols( ¢ 22 21) given in terms of the Clebsch-Gordan coefficiefifs | 32 1) as

T3 T2 T1 T2 T1

(Q—O_lfs o2 Oll) ) (222)

(043 Qaz a1)
T3 T2 T1 x3—1Q/2 | z2 =1

We may similarly define

*CE s o (S5 f3, f2o f1) = B( fa, SC% () f30 @ fi),

(2.23)
C2 s amas (fas f3s fo, 1) = B( fu, 'CE 2 () - [3® f2® f1) .
The b6; symbols{ 2! a2 21 are then defined by the relation
Chponen = [ o) {28 8 e (2.29)
Q/2+iR
It follows that
gi gi g:}b — laszdoa g:}b’ d4 = Q — Q4. (225)
The b6;j symbols satisfy the following identities [PTT1]
a1 as Bi1 ai 6 as asz o1 1 al o
[ ae{mpihiassdas i -{ansina i,
Q/2+Rt (2 26)

/Q/2+i1R+ dp(os) {0302 0 1, {00 & o b, = ))~'o(on —ay).

The explicit expression will again depend on the chosen abration of the Clebsch-Gordan
maps, giving us two versiong,s! 22 %} and{ 21 o2 2:1 " respectively.

Iz 04 Ot o3 4 O



2.5 A new integral formula for the b-6j symbols
One of our main results will be the following formula for thesp symbols:

o102 as }b = A(a87 Qg, O(l)A(Oé;l, Qs, OZS)A<Oét, Qs, O{Q)A(O{gl, Oy, al) (227)

X /du Sp(u — 125) Sp(u — as34) Sp(u — vaze) Sp(u — s

C
X Sb(Oé1234 - U)Sb(oéstl?, - U)Sb(ast24 - U)Sb(2Q - U) .

The expression involves the following ingredients:
e We have used the notations;;, = a; + a; + oy, iji = o + o + g + .
o A(ag, s, ) is defined as

Sp(ar +as+ o, — Q) )5
Splaq + ag — ) Sy + s — a2)Sy(as + as —ay) )

A(Oég, Qg, Oél) = (

e The integral is defined in the cases thate (/2 + iR by a contoulC which approaches
2@ + iR near infinity, and passes the real axis in the intefél/2, 2(Q)). For other values
of the variablesy, it is defined by analytic continuation.

The reader may notice how closely the structure of the egjesn (2.27) resembles the well-
known formulae for the classicél symbols.

For establishing this relation, the main step is containgtié¢ following integral identity:

Q1 a2
Qag a4

o Zn =C(a) / du Sp(u — a125) Sp(u — s34) Sp(u — aze) Sp(u — ans)  (2.28)

XSb(Oé1234 - U)Sb(astls - U)Sb(ast24 - U)Sb(2Q - U)a

where the contout’ in (2.28) runs betwee() —ico and2Q + ioc, anda is shorthand notation
for the tuple(ay, as, as, ay, as, o). The prefactof(«) is explicitly given by the expression

Cla) =5Sp(—Q + aq + ay + ) S (Q — a1 — as + ay)
X Sb(—Q + 9 + 3 + Oét)Sb(Q — (9 + N3 — Oét)Sb(Q + Qg — (V3 — Oét) (229)
X Sp(Q — a3 + g — ag)Sp(Q — g — g + ) Sp(Q + a3 — g — ).

The proof of identity [(2.28) is nontrivial. It is described AppendixXB, based on recent ad-
vances in the theory of elliptic generalizations of the hgpemetric functions [SOL, SC3, S08].



3. Relations to three-dimensional hyperbolic geometry

Our goal in this section is to demonstrate by direct caloohethat the b6 symbols reproduce
the volume of non-ideal tetrahedra in the classical limitsécond, perhaps more conceptual
proof of this fact will be outlined in sectidd 5 below.

Similar observations concerning relations between thedassical behavior of the noncom-
pact quantum dilogarithm and hyperbolic volumes have presly been made in[Hil, Hi2, Hi3,
BMS1,[BMS2, DGLZ, AK]. It would be interesting to understatiek precise relations to our
result below.

3.1 Volumes of non-ideal tetrahedra

We are considering non-ideal tetrahedra which are conipldédined by the collection of six
dihedral angles, ..., ns. In order to formulate the formula for their volumes from [} Yet
us use the notatioA, = ¢+, and define

U(u, A) :L12 (u) + Lig(Astlgu) + Lig(A5t24u) + LiQ(A1234u) (31)
— Lig(—Ajosu) — Lig(—Aszqu) — Lis(—Aspu) — Lig(—Asnu),

whereA;;, .= A;A; Ay, Aiji = AiA; A A, along with

A(A) =log AsA; +log Ay Ay + log A1 As (3.2)
+ A<AS7 A17 AQ) + A<AS7 A37 A3) + A<At7 A17 A4) + A(Atu A27 A3) )

where

. _ . _ : _
A(Al, Ag, Ag) = —5 (ng(—AlAQAg 1) + ng(—AlAQ 1A3) + L12<—A1 1A2A3)
+ Lip(—A7 T A7 T AT ") + log® A; + log” As + log” A3).

The following formula was found in [MY, Theorem 2]
Vol(4) = 5 m[Uu,, 4) + AA)] =~ Im[Ulu A) +AQA)], @33)

whereu. are the two roots of the equation

W d) 2w
du N u

(3.4)

It can be shown [MY] that equatiof (3.4) is a quadratic equativhich has two solutions..
which are pure phasey..| = 1.



3.2 Semiclassical limit

In the following we will assume that, € R, 0 < o < @/2. In order to study the quasi-
classical limit of [2.27) let us write the right hand side[@d7) in the form

I .= E(g)/cdul(a, byu) . (3.5)

The integrand(a, b; u) may be written as
H?=1 Sp(ai +u)

Z(a,b;u) = 3 du, (3.6)
Sp(—=Q +u) [Tiz; S6(Q — b + u)
where
a = [al,a2,a3,a4] = [—Oés — a1 — Qg, Qg — A3 — Qy, —Qp — Q1 — Qy, —Qp — Qg — 043]7
b=1[b1,be,b3] = [as+ ap+ a1 + as,as + oy + ag + ay, a0 + ag + az + ay). (3.7)

The quasi-classical limit of (a, b; u) is easily determined with the help of formula (Al17) in
AppendiXA. In order to write the result in an convenient fdethus reparameterize variables

e—27ribock+7Ti = Akza ke {1, 2,3747 Sat} :

Introducing the integration variables= 27b(u — ()/2) we get an integral of the form

dv
I=D(a) /C - T (3.8)

whose integrand/ (a, b; v) has quasi-classical asymptotics

U(e, A)) (1 + 0(b2)) , (3.9)

T(a,bv) = exp (W

with U(e'”, A) given by the formula[(3]1). The quasiclassical asymptatifcthe prefactor in
B.8)is

Da(A) = exp (sz (a4) - 2n )) , (3.10)
whereA(A) was defined in[(3]2) above.

Now we are ready to perform the saddle-point approximatarttie integral[(3J5). The
saddle points are the solutions of the equation (3.4). Thesgaf the b6; at these points are

1 5 -
P (27rib2 Wi(A))’ where  Wi(A) =U(z1,4) + A(4) - §7T2 + 27i log u.
Sinceuy = e*™¢, ¢ € R as noted above, we find that

We(d) = Uler, A) + A(4) - 2x 2%, (3.11)

Taking the imaginary part of (3.11) one sees that we arerggttie volume of a hyperbolic
tetrahedron(3]3).
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4. Relation to Liouville theory and the representation theay of Diff(S!)

In this section we want to explain that the normalizatiordleg to the definition of the 6+
symbols is also very natural from the point of view of Liol@itheory. This is closely related to
the interpretation of Itj symbols a$;j symbols for the the infinite-dimensional groDyf(S?).

4.1 Fusion kernel

Recall that the fusion kernel is usually defined in terms ef¢bnformal blocks appearing in
the holomorphically factorized form of the four-point fuions,

(Ve (24, 24) Vay (23, 23) Vay (22, 22) Ve (21, 21) ) =
= / dog Clay, ag, a,)C(Q — ag, as, al)féi)(A\Z)fés)(A\Z) (4.1)
Q/2+iR

E]

= / dat C(Oé4, Qg Oél)C(Q — Oy, a3, a?)‘F(gft)(A|Z)fo(¢t) (A|Z) (42)
Q/2+iR

t

whereA = (Oél, Qg, O3, 044), 7 = (21, 22, 23, 24), and

1

Clan, s, ag) = (mpry(B)p* 2 ) p(@eamezmas)y (4.3)
ToY(201) T (202) T (20x3)
T(ag+as+ a3 — Q)Y (o1 +as —az)T(og + s —a3) V(g + ag —ay)’
herey is the so-called cosmological constant in Liouville fieléahy andy(z) = I'(x)/T'(1 —
x). We also used (z) = (Ty(z)T4(Q — )1, Ty = | _; where the functio, () is the
Barnes double Gamma function. Appendix A lists the definidod the relevant properties of

Fb(l')

The first expression_(4.1) for the four-point functions esmnts the operator product expan-
sion of the fields,, (22, Z2) andV,, (21, z1), while the second expressidn (4.2) represents the
operator product expansion of the fields, (z3, z3) and V., (22, Z2). The equality of the two
expressionsg (411) and (4.2) follows from the validity of tieéations

X

FO(A|Z) = / day Fooy [0 2] FO(4)2), (4.4)

[P e %]

Q/2+iR
which were established in [TO1]. The following formula wasifid in [PT1| TO1],
N(a57 a2, al)N(a47 Qas, as)
N(at7 Qasg, CYQ)N(CY4, Q, Oél)

a1 o2
a3 oy

(4.5)

Fasat |:a3 OQ} =

[eZ e

o P
where
N(Oég,OéQ,Oél) = (46)

_ Fb(2Q — 2a3)Fb(2a2)Fb(2a1)
Fb(2Q — ] — (g — ag)Fb(Q — 1 — (O + Oég)rb(Oél + N3 — Oég)rb(()ég + g3 — Oél) '
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4.2 Unitary normalization

The expressions (4.1) arid (4.2) strongly suggest to redéfineonformal blocks by absorbing
the three-point function§'(as, as, aq) into the definition,

G(A|Z) = (Clau, az, as)C(Q — as, as, oq))%}"o(i)(A|Z) :
ggt)(A|Z) = (C(OM; g, Oél)C(Q — O, A3, Oég))éf(t)(A|Z) .

Qg

4.7)

This corresponds to normalizing the conformal blocks assed to the three-punctured sphere
in such a way that their scalar product is always unity. Thigmalization may be called the
unitary normalization. We then have

(Vau (24, 24) Vay (23, 23) Vo, (22, 22) Vo, (21, 21) ) = (4.8)
— [ do g0 12 = [ do 60AIZ)6A12),
2 4iR 4R

the second equation being a consequence of the unitaribeafttange of basis
GAZ) = [ o G221 90A12). 49
Q/2+iR

The normalized fusion coefficients,, ., [ 22 2 | are related to thé, ,, [ 2222 | as

Q4 o Q4 o1

Gasat [as ag } — \/C(a47a37as)C(Q_as,Cl(27al) Fasat |:oz3 as } ) (410)

Qg o Clag,ot,a1)C(Q—at,as3,02) Qg 1

The fusion coefficientss,,. ., [af* a2 ] have a simple expression in terms of théjossymbols,

[eZes ]

063 012 a1 ag o«
Gaso‘t [e71 Otl \/ M(aS a3 aq Oé: (411)

Indeed, formulal(4.11) is a straightforward consequencegoftions[(4.10)[ (4.5) and (2]18)
above.

4.3 6j symbols ofDiff (S*)

It is known that Liouville theory is deeply related to the megentation theory of the group
Diff(S') of diffeomorphisms of the unit circle [T08]. The operatooguct expansion from
conformal field theory leads to the definition of a suitableayalization of the tensor product
operation for representations of infinite-dimensionalup®like Diff (S'). One may therefore
interpret the chiral vertex-operators from conformal fidléory as analogs of the Clebsch-
Gordan maps, and the fusion coefficients as anal@g-sfymbols[MS| TOL, TO8].

A similar issue arises here as pointed out above in our dismu®f the modular double: To
find particularly natural normalization conditions. Thermalization defined in[(417) above,
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while being natural from the physical point of view, is notigedt counterpart of the normal-
ization condition used to define tlig symbols of the modular double above. Such a normal-
ization condition can naturally be defined by requiring namace under the Weyl-reflections
a; = @ — «;. Due to the factord (2«;) in the definition ofC'(«s, s, ), the symmetry under

a; — Q — «; is spoiled by the change of normalization (4.7).

However, it is easy to restore this symmetry by replacing tleemalization factor
C(as, az, aq) entering the definitiori(417) by

Iy (2005 (200) T (2ax3)| 2
D(a17a27a3):| b( 1) b( 2) b( 3)| C(O(37042,O{1).

T(Q(Xl)T(QOéQ)T(QOég)

ReplacingC by D in (4.1) leads to the definition of normalized conformal todc.) (A|Z)
and ICS?(A|Z) which can be interpreted as analogs of invariants in tensmsiyets of four
representations dbiff (S*). The kernel appearing in the relation

K9(A|Z) = / doy {2102 2 KE(AZ). (4.12)

Q/24iR a3 o at }Diff(S1
is naturally interpreted as an analog of tiyesymbols forDiff(S!). It coincides exactly with
the b6; symbols,

a1 a2 O a1l 2 Os

a3z 4 o }Diff(Sl) = Qg o4 o }b : (413)

as can easily be checked by straightforward calculations.

5. Application to two-dimensional quantum hyperbolic geonetry

It is known that the Racah-Wigner symbols of the modular d®plkay an important role when
the quantum Teichmiller theory [Fa97, Ka98, CF99] is stddn the length representation
[TO3,[TO5]. Having fixed a particular normalization in ouffidéion of the b6; symbols above
naturally leads to question what it corresponds to in thigext. We are going to show that the
definition of the b6; symbols corresponds to the quantization of a particulaicehaf Darboux-
coordinates for the classical Teichmiiller spaces. Thehreilller space$ (C') are well-known

to be related to a connected component in the moduli spacatdi £l(2, R)-connections on
Riemann surfaces. Natural Darboux coordinates for thisespave recently been discussed in
[NRS].

The quantization of the Teichmuller spaces will be disedss terms of the Darboux coor-
dinates of [NRS] in a self-contained mannerlin [TeVa]. In tbkowing we will collect some
relevant observations that can fairly easily be extraatechthe existing literature.
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5.1 Classical Teichniller theory of the four-holed sphere

To be specific, let us restrict attention to four-holed sphél, ,. The holes are assumed to be
represented by geodesics with lengths= (I;,...,14). There are three simple closed curves
vss Vi, and-y, encircling pairs of pointgz, z2), (22, 23) and (z, z3), respectively. A set of
useful coordinate functions are defined in terms of the Hygéer cosinesL, = 2cosh %’

o € {s,t,u}, of the geodesic length functiofson 7,4 = 7 (Co4). I, is defined as the length
of the geodesig,,, defined by means of the constant negative curvature metrg o.

The well-known relations between Teichmdlller spagé€’) and the moduli spacest;(C)
of flat G = SL(2,R)-connections on Riemann surfaces imply that the geodesitiidunctions
L, are related to the holonomigs along~, as L, = —Tr(g,). This allows us to use the
description given in[[NRS], which may be briefly summarizedfallows. The structure of
M (Ch4) as an algebraic variety is expressed by the fact that the twerdinate functions
L, L, and L,, satisfy one algebraic relation of the for®y (L, L;, L;) = 0. The Poisson
bracket{ L,,, L,, } defined by the Weil-Petersson symplectic form is also akjelin the length
variablesL,, and can be written elegantly in the form

0
8L“PL(LS,Lt,Lt). (5.1)

As shown in[NRS] one may represeit, L; and L, in terms of Darboux-coordinatésandk,
which have Poisson brackgk, k} = 2. The expressions fakt, andZ, are, in particular,

{LS7Lt} =

Ly = 2cosh(l5/2), (5.2)
Li(L? —4) = 2(LoLs + Ly Ly) + Ly(L1 L3 + LoLy) + 2 cosh(ky)\/c12(Ls)esa(Ls)

whereL; = 2 cosh %, andc;;(L,) is defined as

cij(Ls) = L2+ L7 + L3+ LL;L; — 4 (5.3)

lobli+l; lotli—1; lo—l;+1; lo—l;—1;
= 2 cosh %2 cosh %2 cosh %2 cosh —.

Together with a similar formula fok,,, these expressions ensure that both the algebraic relation
Pr(Ls, Ly, Ly) = 0 and the Poisson structufe (5.1) are satisfied. These Dadmuuginates are
identical to the Fenchel-Nielsen length-twist coordisatell-known in hyperbolic geometﬁy.

Similar Darboux coordinateg,, k;) and (l,, k,,) can be associated to the curvgsand~,,
respectively. The change of coordinates between the Darboordinategis, k) and(l;, k;) is
represented by a generating functi®f(ls, /;) such that

0 0
8_l zt<l87lt) = _k37 8_ltszt<lsalt) = k. (54)

2This can be inferred from [ALES]. We thank T. Dimofte for pting this reference out to us
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Other natural sets of Darboux-coordinatés k) can be obtained by means of canonical
transformations! = k, + f(l,). By a suitable choice of (¢), one gets Darboux coordinates
(Is, k.) in which the expression fak, in (5.2) is replaced by

Li(L? —4) = 2(LoLs + Ly Ly) + Ly(L1Ls + Lo Ly) (5.5)
+ 2 cosh %2 cosh ls“j_ll 2 cosh ls”j_l“ 2 cosh % e

—l1— . < c—lq— —Kk
+ 2 cosh IS”T1+I22 cosh L li 129 cosh lé+lﬁf+l42 cosh % e ks

The Darboux coordinate§l,, k) are equally good to represent the Poisson structure of
M (Ch4), but they have the advantage that the expressions,folo not contain square-roots.
This will later turn out to be important.

5.2 The quantization problem

The quantum Teichmuller theory [FO97, Ka98, CF99, CF0OGjstaucts a non-commutative
algebraA, deforming the Poisson-algebra of geodesic length funstmnTeichmiller space.

In the so-called length representation [T03, TO5] one maystract natural representations of
this algebra associated to pants decompositions of thediersurface under consideration.

For the case under consideration, the aim is to constructegparameter family of non-
commutative deformationd, of the Poisson-algebra of functions @§, = 7 (Cj 4) which has
generatorL,, L;, L, corresponding to the functions,, o € {s,t,u}, respectively. There is
one algebraic relation that should be satisfied among tlee tipenerators, £;, L,..

Natural representations,, o € {s,t,u}, of A, by operators on suitable spaces of functions
1,(l,) can be constructed in terms of the quantum counterparted#nboux variables,, k.,
now represented by the operattrsk, defined as

o Yo(l) = Lbe(lL),  keto(l,) = 4wb2i163l¢0(z0). (5.6)

The operatorr, (L,) acts as operator of multiplication in the representatignr,(£,) =

2 cosh(l,)/2. The remaining two generators 4f, are then represented as difference operators.
Considering the representatiar, for example, we will find thatr;(£,) can be represented in
the form

T (Le)¥s(ls) = [Dy(ls)e™ + Do(ls) + D-(L)e ™ [ (1) - (5.7)

This formula should of course reproduge (5.2)[or](5.5) indlassical limit, but due to ordering
issues and other possible quantum corrections it is a geofrom obvious how to define the
coefficientsD,.(l,), e = —, 0, +.
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Note, in particular, that the requirement thatL,) acts as multiplication operator leaves a
large freedom. A gauge transformation

77bs(ls) = 6ix<l$)¢;(l8) ’ (58)
would lead to a representatiat) of the form [5.T7) withk, replaced by
K, =k, + 4707 0, x (1) - (5.9)

This is nothing but the quantum version of a canonical tr@msétion(l,, k) — (15, ks+ f(1s)).
The representation,(L;) may then be obtained from (5.7) by replaciby(l;) — E.(Is) with
E.(I,) equal toe'xUs=4dm*)—x()) D (1) for e = —1,0,1. Fixing a particular set of Darboux
coordinates corresponds to fixing a particular choice ottefficientsD, (i) in (5.7).

5.3 Transitions between representation

The transition between any pair of representationsandr,, can be represented as an integral
transformation of the form

Yo (l) = / Ly AT (o1 1) s (1) - (5.10)

The relations

(o)) 1) = 47 [ dl 430 1) 3 5.
L9 ! (5.11)
rb s (L) = / dly A3 (1, 1) (m(ke)en) (1)

describing the quantum change of Darboux coordinates egetdionsequences.

It is important to note that the problem to find the proper quanmrepresentation of the
generatorsr, (L,) is essentially equivalent to the problem to find the kera€ls*(i,,,l,,) in
(5.10). Indeed, the requirement that L, ) = 2 cosh(l,)/2 implies difference equations for the
kernelA7'**(l,,,l,,) such as

o (Loy) - AT (loy s loy) = 2cosh(ly,/2) AT (loy, Ly, ) - (5.12)

The difference operator on the left is of course understo@att on the variablg,, only. Under
certain natural conditions one may show that the differeegeations[(5.12) determine the
kernelsA7'**(l,,,l,,) uniquely. Conversely, knowingl7'**(l,,,l,,), one may show [TeVa]
that it satisfies relations of the forin (5112), and therebyude the explicit form ofr,, (£,,).

Considering the generalization to Riemann sphékgswith more than four holes itis natural
to demand that the full theory can be built in a uniform marfran the local pieces associated
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to the four-holed spheres that appear in a pants deconmositiC,,. This leads to severe
restrictions on the kernelds (i, ;) known as the pentagon- and hexagon equations [T05]. We
claim that the resulting constraints determitg(l, /;) essentially uniquely up to changes of
the normalization associated to pairs of pants.

Solutions of these conditions are clearly given by th&/tsymbols. It is important to note,
however, that a change of normalization of the form (2.18) lvé equivalent to a gauge trans-
formation [5.8). This means that different normalizatiohthe b6; symbols are in one-to-one
correspondence with choices of Darboux-coordinétes:’ ) obtained from(l,, k) by canon-
ical transformations of the for#y = I, k., = k, + f(l,). Only a very particular normalization
for the b6; symbols can correspond to the quantization of the Fencleséh coordinates.

5.4 Quantization of Fenchel-Nielsen coordinates

The main observation we want to make here may be summarizéz ifollowing two state-
ments:

1) The geodesic length operators can be represented in tefithe quantized Fenchel-Nielsen
coordinates as follows:

T (L) =2cosh(ls/2), (5.13a)
can o 1 2
T (,Ct) = Q(Cosh I~ cos 271'[)2) (2 cosh (L2L3 + L1L4) + LS(Lng + L2L4)>
L etz ealboealls) ey L (5.13b)
2sinh(l,/2) 2 sinh(l,/2) 2 sinh(l,/2)
n 1 Ko /2 V 012(L5)034(L8)€—k5/2 1
\/2sinh(l,/2) 2sinh(l,/2) \/2sinh(l,/2)

whereL, = 2 cosh(ls/2) = m4(L,) andc;;(L,) was defined in(513). The formulae defining the
other representations; and, are obtained by simple permutations of indices.

2) The kernel describing the transition between repregentar, andr; is given in terms of the
b-65 symbols as

s ai a1 as o . Q ; ZZ
A1) = \Jjreg {0 o= 5 TiTs (5.14)

fori = 1,2,3,4, s,t. The formulae for other pairs of representations are agaunid by per-
mutations of indices.

The relations between Liouville theory and quantum Teighen theory found in[[TOB] allow
one to shortcut the forthcoming self-contained derivafi@Va] of the claims above. In[T03] it
was found in particular that the conformal bIocR&?(A\Z) represent particular wave-functions
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in some representatiort,

s . Q .
Us(ls) = FO(AZ) if a, = 5 i
This relation fixes a specific representatidri®*. The generatoL; is represented iml" as
in (5.2) with coefficientsD™°%(,) that can be extracted from [AGGTV, DG(ET]Redefining
the conformal blocks as ih (4.7) is equivalent to a gaugesfaamation[(5.8) which transforms
the representation’°" to the representation denote™. It is straightforward to calculate
the coefficientsD, (I,) from DMeu(l,) using [4.Y) and{4]3). A related observation was recently

made in[IOT]. The case of the one-holed torus was discudsed aimilar lines in[[DiGu].

(5.15)

Other normalizations for the &3 symbols will correspond to different choices of Darboux-
coordinates. In the normalization usedlin [DCOT], for exéenpne would find
1
2(cosh |y — cos 2mb?)
N 4 JK/2 cosh ==t cogh letl=li oog] letlazls cog)y letlals K2
sinh(ls/2) sinh(l5/2)
N 4 K2 cosh st cogh le=l=le cogh letlatls cogh le=la—l K2
sinh(ls/2) sinh(l5/2)
As the analytic properties of the coefficiers(l,) in (5.14) are linked with the analytic prop-
erties of the kernelsls' (i, ;) via (5.12), it is no surprise that the kernel§’ (1, I;) associated
to the representatior, have much better analytic properties th&j(l,, ;) as given by[(5.14).
One may see see these analytic properties as a profoundgcemee of the structure of the

moduli spaces\(C) as algebraic varieties.

T(Ly) =

(2 cos T (LoLy + Ly Ly) + Ly(L1 Ly + L2L4)>

5.5 Classical limit

The classical counterpart of the expression (5.13b) isddoyrreplacing, andk, by commuting
variabled, andk;, respectively, and sendibg— 0. The formulae for the operator§**(L,) and
7" (L,) given above are thereby found to be related to the formul@ f&r L, and L, in terms
of the Darboux coordinatds andk, for 7, .. We conclude that the representatidfi” is the
representation associated to the Darboux coordinateasdied in[[NRS]. The representation
7 reproduced (515).

Furthermore, by analyzing the classical limit of the relasi the relation$ (5.11) with the help
of the saddle-point method one may see that the functjéf,, /;) which describes the leading
semiclassical asymptotics of the kerngl (/,, [;) via

A‘Zt(ls,lt) = exp( !

4ib?

Sst(l, lt)) (1+0?), (5.17)

30ur generatoL,; corresponds ta cos(mbQ)L(72,0) in [DGOT].
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must coincide with the generating function for the candnicansformation between the
Darboux-coordinate§/;, k) and (;, k;). As this function is known [NRS] to be equal to the
volume of the hyperbolic tetrahedron specified by the lem@thls, i3, (4, I, [;), we have found
a second proof of the statement that the semiclassical difhtite b6; symbols is given by the
volume of such tetrahedra.

6. Applications to supersymmetric gauge theories

6.1 Three-dimensional gauge theories on duality walls

Recently remarkable relations between a certain ctsf N = 2 supersymmetric four-
dimensional gauge theories and two-dimensional confofiglditheories have been discovered
in [AGT]. One of the simplest examples for such relationsratations between the partition
functions of certain gauge theories 6t [P€] and physical correlation functions in Liouville
theory. The partition function of th&” = 2 SYM theory withSU(2) gauge group and/; = 4
hypermultiplets, for example, has a very simple expressioterms of the four-point func-
tion (4.1) in Liouville theory. The partition function of ¢hS-dual theory would be given by
the four-point function[(4)2), and the equality betweentthie expressions [T01] represents a
highly nontrivial check of thes-duality conjecture.

Interesting generalizations of such relations were régeniggested in[ [DrGG]: one may
consider two four-dimensional theories from cl&®n the upper- and lower semispheres of
S4, respectively, coupled to a three-dimensional theory @ndéfectS? separating the two
semi-spheres. Choosing the two theories to beXhe= 4 theory and itsS-dual, for example,
the arguments from [DrGG] suggest that the partition fuorcof the full theory should be given
by an expression of the form

/ dagdoy (G (A|Z))" Gaa, [2202 ] G(A|Z)), (6.1)
(Q/2+iR)2

using the notations from Sectibh 4. The interpretationimteof two four-dimensional theories
coupled by a defect suggests [DrGG] that the keéhel,, [gz gﬂ in (6.1) can be interpreted as
the partition function of a three-dimensional supersymimeiauge theory oi$? which repre-
sents a boundary condition for both of the four-dimensigaaige theories on the semi-spheres

of S*.

The identification of the three-dimensional gauge thedvasy on the duality walls may be
seen as part of a larger program [TY, DiGu, DiGG] which aimddwgelop a three-dimensional
version of the relations discovered [n [AGT]. Roughly sgagkthe idea is that there should
exist a duality between certain families of three-dimenalgupersymmetric gauge theories and
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Chern-Simons theories on suitable three-manifolds. Agutace was described in [DiGG] for
the geometric construction of relevant three-dimensigaaige theories from simple building
blocks associated to ideal tetrahedra.

In the simpler case where th€; = 4 theory is replaced by th&/ = 4-supersymmetric
gauge theory, an ansatz for the relevant three-dimenstbaaly was suggested by the work
[GW], where this theory was callet[SU(2)]. In subsequent work [HLP, HHL 2] it was explicit
checked that the analog of the kerrtél,,, for this case is given by the partition function
of the T'[SU(2)] theory. A natural mass-deformation exists for thgU(2)]-theory, and it
was also shown in [HLP, HHL 2] that its partition function wdwessentially coincide with the
counterpart of the kernel which would appear in the casees$thcalledV = 2*-theory rather
than theN; = 4-theory. However, so far no three-dimensional gauge thetiigh would have
the b6 symbols as its partition function has been identified yet.

6.2 Partition functions of three-dimensional supersymmaeic gauge theories

Let us briefly review the general form of the partition funcis for3d supersymmetric field
theories. According ta [HHLUI, HHL2], followind [KWY], the artition function for3d N' = 2
SYM theory with gauge groug: and flavor symmetry group’ defined on a squashed three
sphere has the form

Z(f) = / - raﬁGdu] w) 2" (u Hzch” (f,u (6.2)

Here f;, are the chemical potentials for the flavor symmetry gréugvhile u;-variables are
associated with the Weyl weights for the Cartan subalgebtiaeogauge groug:. For Chern-
Simons theories one haku) = e ™* X527 74} wherek is the level of CS-term, and for SYM
theories one hag(u) = 2™ X521 74 where is the Fayet-llliopoulos term. There are two
different contributions to the partition function (6.2)*““(«) which comes from vector super-
fields andZg""(f, w) arising from the matter fields. All these terms are expregséerms of
noncompact quantum dilogarithms. The contribution of @estiperfield folG = SU(2) which
we are interested in coincides with the Plancherel mea@uté)introduced above,

27 (u) = M(Q/2 +iu), (6.3)

as follows from [HHL2, Equation (5.33)] using (A.l15) arid (&). For each chiral superfield
®; the contribution to the partition function i$,(a) wherea is some linear combination of
the R-charge and mass parameters which can be derived from the gepresentation of the
matter content (see, for example, [DSV]).
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6.3 The b-6j symbols as a partition function

Although expressior (2.28) for & symbol resembles the partition functions3af SYM the-
ory with U(1) gauge group, it cannot easily be interpreted as partitiontfan for some three-
dimensional gauge theory since the parameters enteriggpi®ssion are subject to the con-
dition that their sum equal?), while the parameters entering partitions functions arter&o
stricted.

In the course of the derivation of the new formula (2.28) Fer b6; symbols, as described in
AppendiXB.2, we have found a few other integral representatfor these objects, including

Q-—at—a1—oy + o 3Q—ar—a1—ay a Q+tai—agtor
./41] s s

2 2 2 o (6.4)
—Q-aitoutos Q-aitautos —Q+o—astoy ’ )
— s Tt T~y — 5 + Q3

where we define the integra(.) as

—ioco

_1 o0 H?=1 Sp(pi & u) _ [ K1 p2 M3 }
1w =3 Sp(£2u) du = s ps pe ] (6:5)

and the prefactor in_(6.4) is explicitly given as

Sb(Ozg + N3 — Oét)Sb(Oél — (9 + OéS)Sb(—Q + (03] + QY + Oét)

Ay = .
PTG (E(Q — 204)) Sy + o — ) Syl + ay — a2) Sy (3 — g + )

We would like to point out that this expression, as oppose@i28), admits an interpretation
as a partition function of the forni_(6.2) for a certain thdimensional SYM theory. Namely,
the expression (6.4) without coefficiedt can be interpreted as the partition function of three-
dimensional\/ = 2 SYM theory defined on a squashed three-sphere $if2) gauge group
and6 quarks in the fundamental representation of the gauge gicdupflavor symmetry group
is SU(6) x U(1)4 x U(1)g. The total axial mass isua = % >_7_, us while the masses of 6
chiral multiplets then isn; = p; — £ S°0_ jux,i = 1,...,6 (constrained t&_,_, m; = 0).
We also take theéz-charge in UV to be 0. Considering_(6.4) as the partition fiomcfor 3d
N = 2 SYM theory one obtains a whole series of Seiberg dualitieshvtan be derived from
[DSV] by taking N = 1 there. Keeping in mind the coefficient; in (6.4) one sees that the
corresponding theory hasmore singlet chiral fields and the flavor symmetry group iskbro
toU(1)> x U(1)a x U(1)g.

We would also like to remark that the identification of thé bsymbols as partition functions
works straightforwardly only for the B5 symbolq 51 62 | & }Zn The square-roots appearing in

a3 Qg
the expression fof &1 &2 | o }b seem to prevent a similar interpretation.
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6.4 Applications to the geometric construction of three-dinensional gauge theories?

It is interesting to observe that the example of (mass-dedo) 7’[SU (2)] considered explicitly

in [HLP, [HHL2], after applications of the same type of id¢iets, can be brought t&d N = 2

CS theory withSU(2) gauge group at levél 4 quarks and some singlet chiral fields. The above
statement can be derived from the following integral idgrj&V11]

 S(QMA— A m/2H2) e
/_ioo SGQA— i —maEia (6.6)

= SIS, Q2 — m £ %) /

I S+ 5 +ntiEy)

—27riy2d ]
ico Sb(j:Qy) ‘ Y

These two observations suggest that there may be an anatbhg geéometric construction of
three-dimensional supersymmetric gauge theories dieduss$DiGCG] which is based on build-
ing blocks withSU(2) gauge symmetry rather thdn(1) gauge symmetry. Indeed, the two
three-dimensional partition functions discussed abowebesidentified with the kernels for the
fusion moveA and for the modular transformation of the one-punctureds6r; respectively.
Together with the braiding, the two kernels above generagpeesentation of the modular
groupoid [T08]. This is what one needs to apply standard oustiior the combinatorial quan-
tization of Chern-Simons theories to the caseSdf(2, R)-Chern-Simons theory. It is also
suggestive to point out that the number of quarks of the thatrose partition function gives
(6.4) nicely matches with the number of angles defining threege hyperbolic tetrahedron.

We take these observations above as a hint that three-diomehd/ = 2 SYM theory with
SU(2) gauge group and quarks plus some number of singlets could be associatee twotin-
ideal hyperbolic tetrahedron in a future generalizationhef constructions in_[DiGG], where
the triangulations of three-manifold by ideal tetrahederaplaced by triangulations by non-
ideal tetrahedra. This raises several interesting questidnich should be clarified, including,
in particular, the interpretation of normalization chasm b-6; symbols[(2.1B) from the point
of view of supersymmetric gauge theories.

AcknowledgementsWe would like to thank T. Dimofte, S. Gukov, R. Kashaev and S.
Shatashvili for useful discussions on related topics.



22
A. Special functions

A.1 The function I';(x)

The functionl',(x) is a close relative of the double Gamma function studied np. [B can be
defined by means of the integral representation

[e.e]

logly(z) = /@(( e — e — (Q — 22)° — @- Zx) ) (A.1)
0

t \ (1 —e)(1—et/h) 8et t
Important properties df,(x) are

functional equation T,(z + b) = V276"~ (bz)['(x). (A.2)
analyticity I'y(z) is meromorphic,
poles:z = —nb — mb~ ', n,m € Z=°. (A.3)

A useful reference for further properties|is [Sp].

A.2 Double Sine function

The special functions used in this note are all build fromgbecalled double Sine-function.
This function is closely related to the special functioneh@enoted, (x), which was introduced
under the name ajuantum dilogarithmn [EK2]. These special functions are simply related
to the Barnes double Gamma function![Br], and were also dhiced in studies of quantum
groups and integrable models in [F2, Ru,/Wo, V].

In the strip|Im(z)| < %, functione,(x) has the following integral representation

dt €—2it1’

= — - A.4

() eXp{ 4t sinh bt sinh % } ’ (A-4)
R+i0

where the integration contour goes around the pete) in the upper half—plane. The function
sp(z) is then related te,(x) as follows

sp(z) = e2 T HH O+ e () (A.5)

The analytic continuation of,(x) to the entire complex plane is a meromorphic function with
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the following properties

bﬂ:l
functional equation M = 2 cosh(mb™' ), (A.6)
sp(z — $b*1)
reflection property s,(z) sp(—x) =1, (A.7)
complex conjugation s,(x) = sp(—7), (A.8)
zeros/poles (sy(z))* =0 & xx € {i$+nb+mb';n,m € Z=°}, (A.9)
. [
residue xii_eis% sp(x) = 5 (A.10)
| e FEFRI) for [a] = oo, |arg(z)] < 3,
asymptotics s(z) ~ . ) (A.11)
et 2@+ for |z| = 0o, |arg(z)] > z.
Of particular importance for us is the behavior for> 0, which is given as
v B 1 . v 9
ep <%> = exp (— 512 Lig(—e )) (1 + O )) . (A.12)
In our paper we mainly use the special functieyiz) defined by
Spl(@) = syliz — 5Q) (A.13)
and has the properties
self—duality Sy(z) = Sp-1(z), (A.14)
functional equation Sy(z + b*') = 2 sin(7b™'x) Sy(z) , (A.15)
reflection property Sy(x) Sp(Q —z) =1. (A.16)
The behavior of5,(z) for b — 0 is then given as
L Lt L ey ’
S, (2@) e exp < Lis(e )) (1 + O )) . (A.17)
In terms ofl",(z) the double Sine-function is given as
[y ()
Sp(r) = ——F—.
@) (@ — z)

A.3 The elliptic Gamma function

The second class of special functions we need here is thgie@jamma function which ap-
peared implicitly in[[Bx] and was introduced in [Ru]

ﬁ 1 — 2 lpitigitt

I'(zp.q) = T

(A.18)

1,j=0
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satisfying the following properties

symmetry T'(z;p,q) =T(z;4,p), (A.19)
functional equations I'(¢z; p, q) = 6(z; p)I'(z; p, q), (A.20)
L'(pzip,q) = 0(z ) (zip,9), (A.21)

reflection property I'(z;p,q) I’ (pq7p, q) =1, (A.22)
zeros z € {pt'¢ i, € 270}, (A.23)

poles z € {p~'q7;i,j € Z7°}, (A.24)

residue Eiflsf(z;p, q) = —m. (A.25)

Hered(z; p) is a theta-functiol(z; p) = (2; ) oo (P23 D) co-

B. Proof of identity (2.28)

B.1 The master integral identity

Let us start from thé’-function [S03] which is the example from Spiridonov’ theaf elliptic
hypergeometric integrals [SO1, SaBﬁﬂeflned by

—K/HZ si27ipig) de (B.1)

(z*2,p,q)  2miz’

where[["_, s; = (pq)? is the so-called balancing condition and

_ (PP)oo(45 @)
2

with (2; ¢)s = [[20(1 — 2¢"). The main building block is the elliptic gamma function defin
in (A.18) above.

Theorem 1. [S03]

IT T(sisiip @)L (siasjcai p. @)V (L), (B.2)

1<i<j<4

where

ti=¢es;,1=1,2,3,4; t;=¢ 's;,i=5,6,7,8,

4From physical point of view this integral is the so-callegherconformal index for four-dimensional SQCD
theory with SU(2) gauge group andV; = 4 flavors. The integral transformations for-function describe the
multiple duality effect for the above theory [SV10].
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and

5:\/ pq :\/55868758
51525354 pq

The integral identities used in this paper will be obtaineff (B.2) by limiting procedures
[DS] which reduce the elliptic gamma functions to doubleeSianctions. First, we redudé-
function to the level of hyperbolig-hypergeometric integrals using the reparameterizatfon o
variables

2miru 27ir; L __2mibr _ 2mir/b
z=e , s;p=eTH g =1 ...,8, p=e™", q= et (B.3)

and the subsequent limit — 0. In this limit the elliptic gamma function has the following
asymptotics

F(€27rim; e27rirb’ e27rir/b) Tio €—7ri(2z—b—1/b)/12r5b(z).

Using it in the reduction, one obtains an integral lying oe thp of a list of integrals emerg-
ing as degenerations of théfunction (we omit some simple diverging exponential npliér
appearing in this limit together withi),

ico 8
1 / Hi:l Sp(pi U)d (B.4)

(e, .oy pis) = 5 Sy(£2u) u,

ico

with the balancing conditioEf:1 wi = 2(b+b71). It has the following symmetry transforma-
tion formula descending from the elliptic one

Ih(,ula---aﬂs) = H Sb<ﬁbi—|—ﬂj) H Sb(,ui +Mj)fh(V1,...,Vg), (BS)

1<i<j<4 5<i<j<8

wherev; = p; + &, vigq = pipq — &,1 = 1,2, 3,4, and the parameteris

8 4
2 =Y pmi—b=bTl=b+b"=> p
i=1

1=5

Formula [[B.5) will be our main tool in the following.

B.2 Useful corollaries.

For proving the main transformation formula which allowsaiget from [2.17) the expression
(2.28) we need following corollaries.

Corollary 1.

I(p) = Sp(ps + p6)Se(2Q = > pe) [ Solws + pi)I(w), (B.6)

i=1 1<i<j<4
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where we define the integraiu) as

1 I Sl £ w)
I(p) = 5 A=) du. (B.7)

—ioco
Here we have
[V17V27V37V47V57V6] = [:ul +£7/~L2 +£7M3 +£7M4+£7/~L5 — 57,“6 — é_]

and
4

26 =Q-) .

1=1

Later it will be convenient to write 6 variablesin the following way

= | e,

Ha  fs e
Corollary 2. :
3
J(& Z) = H Sb(,uz‘ + V4>Sb(’/i + M4)I(£)a (B.8)
i=1
with
ico 4
J(p,v) = / H Sp(pi — u)Sp(v; + u)du, (B.9)
100 =1

which hasU(1) gauge symmetry, and the balancing condit@j\zl(ui + ;) = 2Q. Here we
have

(P15 P2, P35 Pas P35, P6] = [ + & pe+ & pus+ & — & o — & v — ¢

and

3 3
2 = Q-wm— pi=-Q+m+y v
i=1 i=1
Again it is useful to have the following notation

M1 p2 p3 o M4
p,v] = { ] :
vy Vy V3 Uy

The inversion of Corollar]2 is the following

Corollary 3.

Ip) =TI Seloi +p)Se(piss + piss)d (pv), (B.10)

1<i<5<3
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and the balancing conditioh;_, /1 + v; = 2Q. Here we have

M1 M2 p3 M4]:{P1—!E p2—T p3—T Q — psse —
vy Vy V3 Uy pitx pst+x ps+r Q—ps+a |
wherepiaz = p1 + pa + p3, pass = pa + ps + ps, andz is arbitrary.

Corollary 4. :

I(w) = 502Q =Y ) [ Selws+u)I(Q/2— p). (B.11)

i=1 1<i<j<6

To get the desired transformation formulas one should westtlowing asymptotic formulas
when some of the parameters go to infinity

lim 222G, (y) = 1, forargb < argu < argl/b+ m,
U—r00
lim e 3522, (y) = 1, forargh— = < argu < argl/b.
U— 00

By taking different restrictions for the parameters onegetiots of identities from the integral
identity (B.5). Let us take

M1 = p T+ fs > s — f

with the following limit x — oc. The left hand-side of (Bl5) gives

1 ico 4_ Sy (i £ 2)Sy (s £ 2
I (g, 13, f1as fle, fh7, i) = 5/ ITi—o Se(pi £ 2)Sp(piya )dz

AEST : (B.12)

ico
without any restrictions for parameters 1, p4, 16, 17, it @nd in the right hand-side one needs

to shift the integration variable — =z — 1/2 and afterwards taking the limjt — oo which
gives

TT SoCus + 1) Suptia + 144) (B.13)

2<i<j<4

< [z S ()2 )2 - €~ )

4
x T Selrs + € = (i + 115) /2 = 2)Sp(ptia — § + (i + 1s) /2 + 2)dz,

=2
and2{ = @ — Z?:2 M-
Inverting now the equality (B.12)E(B.13) one gets Coroil@r To get Corollary 1l one takes
the limit 17, ug — oo such thafu; — us = O(1) in (B.5).



28

Application of [B.2) twice and thrice gives new integralrtséormations formulas fof (Bl.1)
while further application of (Bl2) does not lead to new im@d¢ransformations. It can be shown

[S08]
V(si,...,s5)= || Tlsisjipq) (f . f) (B.14)

1<i<j<8 58

the reduction to the hyperbolic level of which brings to Qltangy (4.

In [SV11] other reductions of -functions were considered in connections with the scedall
state integral fod, knot [Hi1] and with the kernel ob-move [T03].

B.3 Derivation of the indentity (2.28)

Let us start from the expressidn (2.17) and apply Corollétigking parameters as

[, V]

Q Q

_{ Qt(a,—%) awtoata—92 a2+a4—at+%]
—ay £ (a3 — %) T a1 — Qg —%—i—oq—ozg ’

one gets

2

—Q—ai1tog+o —a1 oyt —Q+a1—ay+ao
Q124 t+a2Q124 Ly Ql4t_|_a3

Q—at—a1—ay 3Q—at—a1—ay Q+a1—agto
Tt Sy =«
Ay ( 2 ’ 2 ’ ’ ) (B.15)

2
with

Sp(ae + ag — o) Sp(ar — ag + @) Sp(—Q + a1 + ay + o)

Ay = .
" S(E(Q — 2ay)) Sy + o — ) Sp(as + ay — a2) Sy (3 — g + )

The integral in[(B.1b) is defined far, € Q/2 + iR by using a contout’ that approaches
Q + iR near infinity, and passes the real axig < and for other values af;, € % +iR
by analytic continuation.

404 )
Applying Corollanf1 to[(B.1b) (with the order of parametassstaying in(B.15)) one obtains

Q3 —Q—OQt _ Q3 —Q2—OQt Qat—Q2—Q3
AQI( ¥+ @ = as + 55 at Ty ) (B.16)

oy — Q + a2+o§3+at Q — oy + OCt—Ol22—Ol3 —oy + 042+0£3+04t

defined by the contout’ and where

Sb(OéQ + 3 — Ozt)Sb(—Oél + (6) + as)Sb(al + gy — Oét)Sb(QQ — Qg — Oy — Oés)

A2 = Sp(£(Q — 204))Sp(as — ay + ) Syl + ay — o)

On the next step we apply Corolldry 4 fo (B.16) and get

Q+as—az+at —Q+az—az+ay Q+astaz—at
—Qg + T g+ 5 - +
Ay T ( ° 2 ° 2 ! 2 ) , (B.17)

30—ao—aa— — P —Qo—Qa—
—ay + Q—az—asz—oy ay + Q+aztaz—oy ay+ Q—as—az—ay

2 2 2
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with the same contou?’ and

Sb(Ozl — (9 + as)Sb(al — Oy + Oét)Sb(Oél -+ gy — Oét)
Sb(zl:(@ — QOzt))Sb(OéQ — o3+ at)Sb(al + Qg — Oés)Sb(QQ — O] — Qg — Oét)
" Sp(2Q — ap — ag — ) Sp(—ag + g + ay)
Sb(—Oég + oy + Oés)Sb(QQ — Qg — Qg — Ozt)Sb(Ckl + a4 — Oét)Sb(—ag + a3 + Oét)‘

Az =

Finally, we apply Corollary3 fol.(B.17) with slightly perrted parameters (since the integral
hasSs permutation symmetry over parameters)

—Q+ar—az+at —Q+aztaz—ar 3Q—ax—az—a¢
AI( Oé5—|'72 a1+72 Oé4+72 )
3 )

4 Qtas—as+oy —aq + Q+astaz—at ay + Q-as—az—oy

_as 3

2 2

together with taking

_ Q+asztaztat
2

r = — Oy

to get [2.28) which proves the identify (2128) in the mairt péthe text.

References

[AGT] L. F. Alday, D. Gaiotto, and Y. Tachikawal.iouville Correlation Functions from Four-
dimensional Gauge Theoriglsett. Math. Phys91 (2010) 167-197.

[AGGTV] L. F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa, H. Nde, Loop and surface operators in
N = 2 gauge theory and Liouville modular geometdy High Energy Physl001(2010) 113.

[ALPS] D. Alessandrini, L. Liu. A. Papadopoulos, W. Sthe behaviour of Fenchel-Nielsen distance
under a change of pants decompositian Xi v: 1105. 0202.

[AK] J. E. Andersen, R. Kashae TQFT from quantum TeicHilter theory,lar Xi v: 1109. 6295.

[BMS1] V. V. Bazhanov, V. V. Mangazeeyv, S. M. SergeEaddeev-Volkov solution of the Yang-Baxter
equation and discrete conformal symmetdyicl. PhysB 784 (2007) 234—258.

[BMS2] V. V. Bazhanov, V. V. Mangazeeyv, S. M. Serge®uyantum geometry gfdimensional lattices
J. Stat. Mech0807(2008) P07004.

[Br] E.W. Barnes:Theory of the double gamma functjdrhil. Trans. Roy. SoA196 (1901) 265-388.

[Bx] R. J. Baxter,Partition function of the eight-vertex lattice modéinn. Phys. (NY)70(1972) 193
228.

[BT1] A. G. Bytsko and J. TeschneR-operator, co-product and Haar-measure for the modularleu
of Uy(sl(2,R)), Comm. Math. Phys240(2003) 171-196.

[BT2] A. G. Bytsko and J. TeschngQuantization of models with non-compact quantum group ssAmm
try: Modular X X Z magnet and lattice sinh-Gordon modél Phys. A A39 (2006) 12927-12981.

[CF99] V. V. Fock, L. O. ChekhovQuantum Teichiiler spaces Theor. and Math. Phy4.20 (1999)
1245-1259.


http://arxiv.org/abs/1105.0202
http://arxiv.org/abs/1109.6295

30

[CFO0] V. V. Fock, L. O. ChekhovDbservables ir3 D gravity and geodesic algebra€zechoslovak J.
Phys.50(2000) 1201-1208.

[DS] J. F. van Diejen and V. P. Spiridonaynit circle elliptic beta integrals Ramanujan J10 (2005)
187-204.

[DGLZ] T. Dimofte, S. Gukov, J. Lenells, Don ZagigExact Results for Perturbative Chern-Simons
Theory with Complex Gauge Grougommun. Num. Theor. Phy3.(2009) 363-443.

[DiGu] T. Dimofte, S. Gukov, Chern-Simons Theory andS-duality, lar Xi v: 1106. 4550
[ hep-th].

[DIGG] T. Dimofte, D. Gaiotto and S. GukovGauge Theories Labelled by Three-Manifglds
ar Xi v: 1108. 4389 [ hep-th].

[DSV] F. A. H. Dolan, V. P. Spiridonov and G. S. Vartandsom 4d superconformal indices t8d
partition functions Phys. Lett. B704(2011) 234-241.

[DrGG] N. Drukker, D. Gaiotto, and J. Gomi$he Virtue of Defects inD Gauge Theories anélD
CFTs J. High Energy Phys.106(2011) 025.

[DGOT] N. Drukker, J. Gomis, T. Okuda, J. Teschn&auge Theory Loop Operators and Liouville
Theory J. High Energy Phys.002(2010) 057.

[F2] L. D. FaddeevDiscrete Heisenberg—Weyl group and modular grolyett. Math. Phys34 (1995)
249-254.

[FK2] L.D. Faddeev and R. M. Kashae@uantum dilogarithmMod. Phys. LettA9 (1994) 427-434.

[F99] L. D. FaddeevModular double of a quantum grougonfrence Mosh Flato 1999, Vol. | (Dijon),
149-156, Math. Phys. Stud., 21, Kluwer Acad. Publ., Doralre2000/ar Xi v: mat h/ 9912078

[FO97] V. Fock,Dual Teichniiller spacesar Xi v: dg- ga/ 9702018.

[GW] D. Gaiotto and E. WittenS-Duality of Boundary Conditions IV = 4 Super Yang-Mills Theory
ar Xi v: 0807. 3720 [ hep-th].

[HHL1] N. Hama, K. Hosomichi, and S. Le®&lotes on SUSY gauge theories on three-sphkreligh
Energy Phys2011, no. 3, 127.

[HHL2] N.Hama, K. Hosomichi, and S. Le§USY gauge theories on squashed three-sphérétigh
Energy Phys2011, no. 5, 014.

[HLP] K. Hosomichi, S. Lee, and J. ParRGT on the S-duality wall). High Energy Phys201Q no.

12, 079.

[Hi1] K. Hikami, Hyperbolic Structure Arising from a Knot Invarignint. J. Mod. PhysA16 (2001)
3309-3333.

[Hi2] K. Hikami, Hyperbolicity of Partition Function and Quantum Gravitjucl. PhysB616 (2001)
537-548.

[Hi3] K. Hikami, Generalized Volume Conjecture and thePolynomials — the Neumann-Zagier Poten-
tial Function as a Classical Limit of Quantum Invariadt Geom. Phy$7 (2007) 1895-1940.

[HLP] K.Hosomichi, S. Lee, and J. PaikGT on theS-duality Wall J. High Energy Phy4.012(2010)
079.


http://arxiv.org/abs/1106.4550
http://arxiv.org/abs/1108.4389
http://arxiv.org/abs/math/9912078
http://arxiv.org/abs/dg-ga/9702018
http://arxiv.org/abs/0807.3720

31

[Ip] I. C. H. Ip, Representation of the Quantum Plane, its Quantum DoubtEHammonic Analysis on
GL}(2,R),lar Xi v: 1108. 5365.

[IOT] Y. Ito, T. Okuda, M. Taki,Line operators onS' x R? and quantization of the Hitchin moduli
Spacelar Xi v: 1111. 4221.

[KWY] A. Kapustin, B. Willett, and I. YaakovExact results for Wilson loops in superconformal Chern—
Simons theories with matte¥. High Energy Phys.003(2010) 089.

[K] R. M. Kashaev,The hyperbolic volume of knots from the quantum dilogarjthait. Math. Phys.
39(1997) 269-275.

[Ka98] R. M. KashaevQuantization of Teichiiller spaces and the quantum dilogarithirett. Math.
Phys.43(1998), no. 2, 105-115.

[K2] R. Kashaev,The quantum dilogarithm and Dehn twists in quantum Teiagimtiieory “Integrable
structures of exactly solvable two-dimensional modelsuafrqum field theory”, (Kiev, 2000) 211-
221, NATO Sci. Ser. Il Math. Phys. Chem., 35, Kluwer Acad. IBubordrecht, 2001.

[MS] G. Moore, N. SeibergClassical and quantum conformal field thepyomm. Math. Phys123
(1989) 177-254

[MT] S. Mizoguchi and T. TadaThree-dimensional gravity from the Turaev-Viro invarigBhys. Rev.
Lett. 68(1992) 1795-1798.

[MY] J. Murakami and M. YanoOn the volume of a hyperbolic and spherical tetrahedr@omm.
Anal. Geom.13(2005), no. 2, 379-400.

[N] N. A. Nekrasov,Seiberg-Witten prepotential from instanton countidglv. Theor. Math. Phys?
(2003) 831-864.

[NRS] N. Nekrasov, A. Rosly, S. Shatashvibarboux coordinates, Yang-Yang functional, and gauge
theory, Nucl. Phys. Proc. Supp216(2011) 69-93.

[Pe] V. Pestun,Localization of gauge theory on a four-sphere and supersgtmenWilson loops
ar Xi v:0712. 2824 [ hep-th].

[PR] G.Ponzano, T. Regg&emiclassical limit of Racah coefficientSpectroscopic and Group Theo-
retical Methods in Physics”, ed. F. Bloch (North-Hollandnéterdam, 1968).

[PT1] B. Ponsot and J. Teschnéfpuville bootstrap via harmonic analysis on a noncompagarum
group, jar Xi v: hep-th/ 9911110l

[PT2] B.Ponsotand J. Teschn@iegbsch-Gordan and Racah-Wigner coefficients for a contisiseries
of representations df,(s/(2, R)), Commun. Math. Phy£24(2001) 613—-655.

[Ru] S. N. M. RuijsenaarsFirst order analytic difference equations and integrablgagtum systems
J. Math. Phys38(1997) 1069-1146.

[S01] V. P. SpiridonovOn the elliptic beta functionJspekhi Mat. Naulb6 (1) (2001) 181-182 (Russian
Math. Survey$6 (1) (2001) 185-186).

[SO3] V. P. Spiridonov,Theta hypergeometric integral&lgebra i Analiz15 (6) (2003) 161-215 (St.
Petersburg Math. 15 (6) (2004), 929-967).


http://arxiv.org/abs/1108.5365
http://arxiv.org/abs/1111.4221
http://arxiv.org/abs/0712.2824
http://arxiv.org/abs/hep-th/9911110

32

[S08] V. P. SpiridonovEssays on the theory of elliptic hypergeometric functidsspekhi Mat. Nauk
63(3) (2008), 3—72 (Russian Math. Surve3(3) (2008), 405-472).

[SV10] V. P. Spiridonov and G. S. Vartandsuperconformal indices fok” = 1 theories with multiple
duals Nucl. Phys. B324(2010) 192-216.

[SV11] V. P. Spiridonov and G. S. Vartanoklliptic hypergeometry of supersymmetric dualities 1.
Orthogonal groups, knots, and vortices Xi v: 1107. 5788 [ hep-th].

[Sp] M. SpreaficoOn the Barnes double zeta and Gamma functidiesirnal of Number Theor§29
(2009) 2035-2063.

[TY] Y. Terashima and M. Yamazaki L (2, R) Chern-Simons, Liouville, and Gauge Theory on Duality
Walls J. High Energy Phys.108(2011) 135.

[TO1] J. Teschned,.iouville theory revisitedClass. Quant. Grai.8 (2001) R153—-R222.

[TO3] J. TeschnerOn the relation between quantum Liouville theory and thentjaad Teichriller
spacesint. J. Mod. PhysA19S2(2004), 459—-477From Liouville theory to the quantum geometry
of Riemann surface€ont. Math.437(2007) 231-246.

[TO5] J. TeschnerAn analog of a modular functor from quantized Teic¢Htier theory, “Handbook of
Teichmiller theory”, (A. Papadopoulos, ed.) Volume |, EM$blishing House, Zurich 2007, 685—
760.

[TO8] J. Teschnemonrational conformal field theoryNew Trends in Mathematical Physics” (Selected
contributions of the XVth ICMP), Vladas Sidoravicius (e@pringer Science and Business Media
B.V. 2009.

[TeVa] J. Teschner, G. S. Vartanov, In preparation.

[TuVvi] V.G. Turaev, O.Y. Viro,State Sum Invariants 8iManifolds and Quanturfij-SymbolsTopology
31(1992) 865-902.

[V] A.Yu.\Volkov: Noncommutative hypergeometr@ommun. Math. Phy58 (2005) 257-273.

[Wo] S.L. Woronowicz:Quantum exponential functioRev. Math. Physl2 (2000) 873-920.


http://arxiv.org/abs/1107.5788

	1 Introduction
	2 Racah-Wigner 6j symbols for the modular double
	2.1 Self-dual representations of Uq(sl(2,R)) and the modular double
	2.2 Normalized Clebsch-Gordan coefficients for the modular double
	2.3 Normalized b-6j symbols for the modular double
	2.4 3j symbols for the modular double
	2.5 A new integral formula for the b-6j symbols

	3 Relations to three-dimensional hyperbolic geometry
	3.1 Volumes of non-ideal tetrahedra
	3.2 Semiclassical limit

	4 Relation to Liouville theory and the representation theory of Diff(S1)
	4.1 Fusion kernel
	4.2 Unitary normalization
	4.3 6j symbols of Diff(S1)

	5 Application to two-dimensional quantum hyperbolic geometry
	5.1 Classical Teichmüller theory of the four-holed sphere
	5.2 The quantization problem
	5.3 Transitions between representation
	5.4 Quantization of Fenchel-Nielsen coordinates
	5.5 Classical limit

	6 Applications to supersymmetric gauge theories
	6.1 Three-dimensional gauge theories on duality walls
	6.2 Partition functions of three-dimensional supersymmetric gauge theories
	6.3 The b-6j symbols as a partition function
	6.4 Applications to the geometric construction of three-dimensional gauge theories?

	A Special functions
	A.1 The function b(x)
	A.2 Double Sine function
	A.3 The elliptic Gamma function

	B Proof of identity (??)
	B.1 The master integral identity
	B.2 Useful corollaries.
	B.3 Derivation of the indentity (??)


