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Abstract

We present a new algorithm for an analytic parton shower. While the algo-

rithm for the final-state shower has been known in the literature, the con-

struction of an initial-state shower along these lines is new. The aim is to have

a parton shower algorithm for which the full analytic form of the probability

distribution for all branchings is known. For these parton shower algorithms

it is therefore possible to calculate the probability for a given event to be

generated, providing the potential to reweight the event after the simulation.

We develop the algorithm for this shower including scale choices and angular

ordering. Merging to matrix elements is used to describe high-energy tails of

distributions correctly. Finally, we compare our results with those of other

parton showers and with experimental data from LEP, Tevatron and LHC.
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1 Introduction

Parton Showers are an indispensable part in the simulation of hadronic collisions in today’s

high-energy colliders, like the now-running LHC at CERN. A precise simulation of these col-

lisions demands a coordinated interplay of such diverse elements as the calculation of hard

matrix elements, the simulation of parton showers, a matching procedure to combine matrix

elements and parton shower, the modeling of the underlying event and the hadronization and

the simulation of the detector response. The main task of parton showers in this framework is

to describe collinear and soft emissions off incoming or outgoing partons from the hard matrix

element, thereby affecting the jet substructure and possibly increasing the number of resolved

jets. The parton shower implementation most commonly used is the one in PYTHIA [1,2]. Alter-

natively, programs such as Herwig++ [3] and SHERPA [4] implement parton shower algorithms

as components for their event generation frameworks. Moreover programs that are tailored

exclusively to parton showers and work as plug-ins to event generators are available, the most

prominent being Vincia [5].

Recently it was shown that the formulation of parton showers can be reproduced by the

soft-collinear effective field theory [6]. This led to the formulation of so-called analytic parton

showers [7]. In this work, we intend to use the analytic parton shower for event generation.

We extend the analytic final-state parton shower presented by Bauer et al. [8] and develop a

new analytic parton shower for initial-state radiation. During this work, we implemented both

these parton showers in the event generator WHIZARD [9]. We succeeded in reproducing event

shape distributions simulated using PYTHIA’s parton shower, as well as distributions measured

at LEP, Tevatron and LHC very well, given that very little tuning was done.

Section 2 describes the theory of the parton shower derived from the analytic approach,

as well as the extensions and improvements implemented in the final-state parton shower and

the newly implemented parton shower for the initial state. Section 3 describes the steps to be

taken for a comparison of the implementation of our algorithms to data and other showers.

These include the implementation of a MLM-type matching, described section 3.1, an interface

to an external hadronization routine, in our case PYTHIA, in section 3.2 and the handling of

beam-remnants, described in section 3.3. In section 4, we show distributions obtained using

our shower or PYTHIA’s shower for various event and jet shapes. Furthermore we compare those

to the respective measurements at LEP, Tevatron and LHC. Finally, in section 5 we summarize

our findings, conclude and give an outlook on future developments.
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2 The Analytic Parton Shower - Introduction and Algo-

rithm

2.1 Concept of Parton Showers

Parton showers are commonly formulated using branchings of one particle into two, which can

either be considered as one parton splitting into two partons or one parton emitting a new

parton1. The central entity of the parton shower is the Sudakov factor ∆, its simplest form is

given by

∆(t1, t2) = exp





t2
∫

t1

dt

z+
∫

z−

dz
αs

2πt
P (z)



 (1)

giving the probability for a parton to evolve from scale t2 to t1 without emitting a further

parton. Therein, the variable z describes the relation of the two partons after the branching,

the most common choice is to take z to be the ratio of one parton after the branching and

the parton prior to the branching. The functions P (z) are called splitting functions. They

describe the probabilities for the respective branchings and can be inferred from approximate

calculations of matrix elements. The variable t is called the scale. There is a certain ambiguity

how to define the scale in an implementation. Here we use the virtuality that is defined as the

square of the four-momentum t = p2. The simulation of the parton shower is an evolution in

the scale. For final-state radiation, the branchings that occur after the hard interaction, the

evolution is from a scale corresponding to the hard interaction, t ∼ ŝ, down to a cut-off scale

t = tcut, that symbolizes the transition to the non-perturbative physics encapsulated in the

hadronization. For initial-state radiation2, branchings that appear before the hard interaction,

the evolution is from a cut-off t = −tcut, representing the factorization scale and thus the parton

density functions, down to a scale corresponding to the negative of the center of mass energy,

t ∼ −ŝ. In the implementation, this evolution, that corresponds to an evolution in physical

time, is replaced by an evolution starting at the hard interaction and ending at the cut-off scale.

This is the so-called backwards-evolution, its most prominent consequence is the appearance of

parton density functions in the Sudakov factor.

2.2 The Analytic Parton Shower

The parton shower is a well-defined approximation to the full matrix element. Therefore it

should be preferable to be able to reconstruct the matrix element from the parton shower. In

common parton shower algorithms, this ability is lost due to the formulation of the parton

1The exception to this are the newly-introduced dipole and antenna showers, that use splittings of two into

three partons.
2For now, only initial-state radiation for partons stemming from hadrons are considered.
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shower as a Markov chain in such a way, that branchings that fail to respect correct kinematics

can be produced and are subsequently rejected or manually modified to respect momentum

conservation. It is these branchings that prevent the probability for a branching to be calculated

after the branching is generated. Therefore in developing an analytic parton shower, care was

taken to avoid branchings that need to be rejected or manually modified, thereby preserving

the ability to reconstruct the matrix element. The two main changes are the simultaneous

simulation of the branchings of sisters and replacing the splitting variable z, that normally

is the ratio of the first daughter’s energy or light-cone momentum to the mothers’ energy or

light-cone momentum.

The first modification is to replace the simulation of individual branchings by the simulation

of so-called double branchings. A double branching consists of the simultaneous branching (or

no-branching) of the two daughter-partons of one parton. So instead of taking one parton a

and letting it branch into two partons, a → bc, an existing branching a → bc is replaced by the

double branching a → bc → defg with the new partons d, e, f, g in case both partons b and c

branch. The corresponding situations where one or both of the daughters do not branch are

also taken into account. The advantage is that the energy-conservation3

√
ta ≥

√
tb +

√
tc (2)

can be included in the generation of the branchings, avoiding the production of complicated

interconnections between different single branchings. The sequence of steps is then

• Pick a branch with unprocessed daughters b and c.

• Generate {tb, vb} and {tc, vc} for both daughters independently with the probability given

by the single branching probability. (vi stands for the values needed to describe the

branching apart from the virtuality tX , like the opening angle cosϑ, the azimuthal angle

φ and the type of the daughter parton.)

• Keep the branch of the daughter with the higher scale tmax = max (tb, tc). Discard the

branching of the other daughter.

• Determine new values for the other daughter with the maximum scale set to t∗ =

min
[

tmax,
(√

ta −
√
tmax

)2
]

.

For the different cases, the double branch probabilities can be constructed from the single

branching probabilities [7] Pbr
i (ti, vi) and Sudakov factors ∆i(ta, t) for a branching at the scale

ti and the remaining values vi and the probability Pnb
i for no branching above the cut-off. The

3The following equation can best be understood in the rest frame of the mother. Then
√
ta is the mother’s

mass and energy and trivially the sum of the daughters’ masses
√
tb +

√
tc has to be less.
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double branch probabilities for the case in which both daughters branch is

Pbr,br(tb, vb, tc, vc) = θ(tb − tc)Pbr
b (tb, vb)∆c(ta, tb) (3)

Pbr
c (tc, vc; ta = t∗)

+ θ(tc − tb)Pbr
c (tc, vc)∆b(ta, tc)

Pbr
b (tb, vb; ta = t∗),

while in the case that only one daughter branches

Pbr,nb(tb, vb) = Pbr
b (tb, vb)∆c(ta, tb)∆c(t∗, tcut) (4)

Pnb,br(tc, vc) = Pbr
c (tc, vc)∆b(ta, tc)∆b(t∗, tcut), (5)

and in the case no parton branches

Pnb,nb = ∆b(ta, tcut)∆c(ta, tcut). (6)

Taking all different combinations into account, the double branch probability can be composed

in the following way

P(tb, vb, tc, vc) = Pbr,br(tb, vb, tc, vc)

+ Pbr,nb(tb, vb) δ(tc)

+ Pnb,br(tc, vc) δ(tb)

+ Pnb,nb δ(tb)δ(tc). (7)

The second step is replacing the kinematic ratio z with the angle cos θ in the mother’s rest

frame between the momentum of the first daughter and the boost axis. This leads to simple

phase space limits

−1 ≤ cos θ ≤ 1.

There is a direct correspondence between the cos θ angle and the energy splitting z [7] as a

function of the masses of the daughters tb and tc:

z =
1

2

[

1 +
tb
ta

− tc
ta

+ βa cos θaλ(ta, tb, tc)

]

(8)

with the boost βa and the phase space factor λ:

βa =

√

1− ta
E2

a

and λ(ta, tb, tc) =
1

ta

√

(ta − tb − tc)2 − 4tbtc

The important distinction between common and analytic parton showers is that in the analytic

parton shower every branching is generated with a calculable probability. Every source for

vetoing branchings where the probability for the veto cannot be calculated has therefore been

avoided.
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tata

tb tc

Figure 1: Schematic view of a double branching. Before the double branching (left): A parton

has branched at a scale ta into two on-shell daughter partons. After the simulation of the double

branching the branching scales tb, tc for the daughter partons are known. In case the daughters

branch themselves the needed values are generated as well. The case in which both daughters

branch, tb > tcut, tb > tcut, is shown on the right. For the next step the double branchings of

the two daughter partons will be simulated, the branchings at tb and tc respectively replace the

parton branching at ta on the left.

2.3 Improved Analytic Final State Parton Shower

The GenEvA framework [10,8] is an event generation framework designed to combine matrix

elements and parton showers during event generation. It uses its parton shower to distribute

events over phase space, in order to reweight them to a corrected distribution later. Therefore

only a simplified implementation of parton showers was included in the framework, as the

reweighting would later reintroduce the correct distributions. We, on the other hand, will

use the analytic parton shower to generate physical events and cannot defer anything to a

reweighting procedure, we are therefore forced to implement the full theory of parton showers.

The two main simplifications made in the GenEvA framework are the omission of the running

of the coupling constant and the omittance of color coherence. Our extensions to the parton

shower are as follows.

The running of the coupling constant αS(Q
2) was implemented, the inclusion is straight-

forward. The coupling was chosen to be

αS = αS

(

z(1 − z)Q2
)

= αS(z(θ), Q
2) (9)

in agreement with most parton shower generators.

As color coherence is approximated by demanding that the angles of subsequent emissions

decrease – this is known as angular ordering – the resulting phase space cuts have to be imple-

mented in the parton shower. The opening angle4 cosϑ is given by

cosϑ = 1− t

2z(1 − z)E2
(10)

4not to be confused with the angle cos θ used in the description of branchings
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tbtb

ta, za

tc(vc)

Figure 2: Schematic view of a double branching in ISR: Before the double branching (left): At

the scale tb a parton b exists. For this parton, the scale ta of the branching that produced this

parton, the corresponding energy ratio za and the scale tc where the emitted parton c branches,

and if necessary the remaining quantities (vc) are simulated (on the right).

in the approximation for massless children. Using z(1 − z) ≤ 1
4
this can be used to give a cut

on the scale of a next branching

t ≤ E21− cosϑcut

2
(11)

for the branching to have an opening angle less than cosϑcut. An additional cut on z [7] is

necessary
∣

∣

∣

∣

z − 1

2

∣

∣

∣

∣

≤ β

2

√

1− t

β2E2

1 + cosϑcut

1− cosϑcut

. (12)

With these phase space cuts angular ordering is enforced in the approximation of massless

daughter partons. However the inclusion of this constraint demands keeping track of the used

energy E and the used angle cosϑcut either by explicitly storing their values for every branching

or by using a distinct rule to calculate them for every branching.

As a minor extension we allow for parton masses, although these are only taken into account

when distributing momenta, the splitting functions are still taken for massless daughter partons.

2.4 Introducing the Analytic Initial State Parton Shower

For physics at the LHC, a parton shower has to be able to describe both, initial and final-state

radiation. We therefore implement an initial-state parton shower satisfying the requirement of

analyticity analogously to the parton shower for the final state.

The changes applied to the final-state shower cannot be transferred to the initial-state

shower5. A different set of changes is needed to reformulate the the initial-state parton shower

in order to fulfill the demand of analyticity. The known Sudakov factor for initial-state radiation

5Due to the negative virtualities all momenta and energies would be imaginary in the mothers restframe.
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is

∆ISR
b (ta, tb) = exp






−

|tb|
∫

|ta|

dt′
1
∫

0

dz

z

αS

2πt′

∑

a,c

(

Pa→bc(z) + Pa→cb(z)

)

fa
(

xb

z
, t′
)

fb(xb, t′)






(13)

with the splitting function Pa→bc(z) for a parton of type a branching into two partons of

type b and c and the parton density functions fa(x, t). The conservation of momentum can

be enforced by explicitly vetoing momentum conservation-violating branchings directly in the

Sudakov factor. To do this, the branching of the mother parton and the branching of the

emitted parton have to be simulated simultaneously, cf. figure 2. The simulated branching

therefore effectively becomes a 1 → 2 (if the emitted parton does not branch) or a 1 → 3 (if

the emitted parton branches) branching. The Sudakov factor that takes the emitted parton’s

branching into account can be written in the form

∆ISR
b (ta, tb) = exp

[

−
|tb|
∫

|ta|

dt′
1
∫

0

dz

z

αS

2πt′

∑

a,c

t′
∫

0

dtc Pc(tc| − t′, z)

Θ̄ (−t′, tb, tc, za, Ea)

(

Pa→bc(z) + Pa→cb(z)

)

fa
(

xb

z
, t′
)

fb(xb, t′)

]

(14)

with the veto function

Θ̄
(

ta, tb, tc, za, Ea

)

= Θ
(

|~pb|+ |~pc| − |~pa|
)

·Θ
(

|~pa| − ||~pb| − |~pc||
)

, (15)

and the one parton branching distribution function for the emitted parton c

Pc(tc| − t′, z), (16)

giving the probability distribution for the branching of the emitted timelike parton as a function

of the branching this parton was produced, described by −t′ and z. The veto function ensures

that the three partons a, b, c can be combined in a branching that conserves momentum by

enforcing the triangle inequality. By adding more terms it can also be used to impose cuts for

angular ordering or a minimum energy for the emitted timelike parton. If the emitted parton

branches, its final-state parton shower can now be simulated further by the use of the known

double branching probabilities from the analytic final-state radiation.

However there is a slight difference in the interpretation of the known one-branching Sudakov

factor as used for example in PYTHIA and the supplemented one in equation (14). In the former,

the probability for a branching is independent of the available allowed branchings of the emitted

parton, while in the latter the probability for a branching is reduced when the emitted parton

has a restricted phase space for branchings. Therefore the supplemented Sudakov factor rather

resembles a conditional probability.
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Using these prescriptions, double branch probability distributions can be formulated, analo-

gously to the ones formulated for final-state radiation. The probability for no earlier branching,

the parton being directly emitted by the hadron and therefore being on-shell, ta → m2
a, consists

of the Sudakov factor ∆ISR
b (−tcut, tb) and a δ-distribution forcing the parton to be on-shell and

thus can be formulated in the form

Pnb
b (ta; tb, tcut) = ∆ISR

b (−tcut, tb)δ
(

ta −m2
a

)

. (17)

In case an earlier branching is found, the common single branch probability would be

Pa→bc(ta, za; tb, tcut) =
αS

2πta

1

za
Pa→bc(za)

fa (xa, ta)

fb (xb, ta)

· ∆ISR
b (ta, tb)Θ (ta − tb) Θ (−ta − tcut) (18)

with the Sudakov factor ∆ISR
b (ta, tb), a relative weight, given by the ratio of parton density func-

tions, fa(xa,ta)
fb(xb,ta)

, the probability for the branching itself, αS

2πta
1
za
Pa→bc(za) and two step functions

that force the parton to be in the correct range of virtuality.

For the transition to analytic showers, a dependence on the scale of the emitted parton

tc is introduced. Thus two different cases have to be considered. In the case of the emitted

parton not branching further, the corresponding probability distribution is supplemented by

the no-branching-probability Pnb
c for the emitted parton c and the veto function Θ̄. It can be

written in the way

Pbr,nb
a→bc(ta, tc, za; tb, tcut)

=
αS

2πta
Θ̄ (ta, tb, tc, za, Ea)

1

za
Pa→bc(za)

fa (xa, ta)

fb (xb, ta)

· ∆ISR
b (ta, tb)Θ (ta − tb) Θ (−ta − tcut)Pnb

c (tc; |ta|, tcut) . (19)

In the case, the emitted parton undergoes another branching, the distribution is supplemented

by the single branch probability for the emitted parton Pbr
c→de and has the form

Pbr,br
a→bc→bde(ta, tc, za, vc; tb, tcut)

=
αS

2πta
Θ̄ (ta, tb, tc, za, Ea)

1

za
Pa→bc(za)

fa (xa, ta)

fb (xb, ta)

· ∆ISR
b (ta, tb)Θ (ta − tb)Θ (−ta − tcut)Pbr

c→de (tc, vc; |ta|, tcut) . (20)

Using these expressions the probability distribution for the scale ta can therefore be written

9



analogously to equation (7) in the form

Pb(ta; tb, tcut) = Pnb
b (ta; tb, tcut)

+
∑

a,c

∫

dza

∫

dtc Pbr,nb
a→bc(ta, tc, za; tb, tcut)

+
∑

a,c

∫

dza

∫

dtc Pbr,nb
a→cb(ta, tc, za; tb, tcut)

+
∑

a,c,d,e

∫

dza

∫

dtc

∫

dvc Pbr,br
a→bc→bde(ta, tc, za, vc; tb, tcut)

+
∑

a,c,d,e

∫

dza

∫

dtc

∫

dvc Pbr,br
a→cb→deb(ta, tc, za, vc; tb, tcut). (21)

The probability distributions for the parton species and the energy fractions z follow directly

from this equation.

One aspect of initial-state parton showers that is a rather critical technical point, is the

assignment of momenta for the first branching in the initial state. By the first branching we

mean the branching closest to the hard interaction. As the partons in the hard matrix element

are on the mass-shell and often assumed to be massless, any branching would be kinematically

forbidden. Therefore the partons have to be set off-shell in order to allow for kinematically

allowed branchings. This is done by simultaneously scaling the partons’ momenta, until the

four-momentum squared reaches the scale of the first branching,

t = p2 = E2 − ~p2 = tfirst ≪ 0.

The distribution of tfirst is obtained by solving a Sudakov factor similar to the one given in

equation (14), but with the terms corresponding to the emitted parton removed,

∆ISR
b (ta, tb) = exp

[

−
|tb|
∫

|ta|

dt′
1
∫

0

dz

z

αS

2πt′

∑

a,c

(

Pa→bc(z) + Pa→cb(z)

)

fa
(

xb

z
, t′
)

fb(xb, t′)

]

. (22)

By doing so, the total energy and momentum are conserved. Another possibility would be

to enlarge the three-momenta so that the scales are equal to the negative partonic center-of-

mass energy, t → −ŝ2, and then start the shower from there, but this starting configuration

has the disadvantage that the three-momenta of the initial partons tend to be very large, so

that it becomes very hard to find kinematically allowed branchings.

10



3 Prerequisites for a realistic description

In this section we discuss the technical prerequisites for a realistic implementation of our ana-

lytic parton shower algorithm and the preparations needed to compare results with resultsfrom

other parton showers and with experimental data. To do so, we chose to implement the shower

algorithm within the event generator WHIZARD [9] which contains highly optimized (tree-level)

matrix elements by the matrix-element generator O’Mega [11], a very efficient phase-space

parametrization and a multi-channel adaptive Monte-Carlo integration [12]. WHIZARD has been

developed and has found a wire range of application to lepton collider physics (cf. e.g. [13,14,15]).

The program has been completely recast for hadron collider physics and been successfully ap-

plied to BSM and jet physics (cf. e.g. [16,17,18,19,20]). Several steps to include NLO corrections

in a semi-automatic way have been undertaken [21,22,23,24].

To make contact with experimental distributions, one has to cover the whole of phase space

to access the high-energy tails of distributions. One possibility is using the so-called power-

shower concept where one artificially opens up more phase space than physically available to

generate hard and/or non-collinear jets from the parton shower. We decided not to use this

concept, but to implement a matching procedure of matrix elements with explicit additional

jets with the showered Born process. This is done in the first part of this section. In the second

part we discuss our treatment of hadronization to compare a realistic event simulation with

experimental data, while in the last section we explain how beam remnants are dealt with in

our framework.

The extensions presented in this section will become publicly available in all future releases

from WHIZARD 2.1 on.

3.1 Matching

A matching procedure is a procedure to combine the description of up to a certain number of

multiple, widely separated jets by the matrix element and the description of possible additional

jets and the substructure of the jets by a parton shower. The main approaches for matching

to leading order calculations are the CKKW [25], CKKW-L [26] and MLM [27,28] schemes, for

a general overview see [29,30,31]. In the process of implementing the analytic parton shower,

we also implemented a matching procedure according to the principles of the MLM approach

in WHIZARD with the use of the KTCLUS clustering package [32].

The steps as implemented in WHIZARD are:

1. The cross-sections for the main process and processes with up to N additional partons

in the hard matrix-element are calculated. The phase space has to satisfy the additional

cuts enforced by the matching procedure

pT > pT min, |η| < |ηmax|, ∆Rjj > Rmin (23)

11



with the transverse momentum pT , the pseudo-rapidity η and the η−φ-distance between

two jets ∆Rjj . The values pT min, ηmax and Rmin can be set in the WHIZARD input file.

2. According to the relative probability P (i) given by the relative size of the corresponding

cross-sections,

P (i) =
σi

∑

j σj

(24)

a matrix-element event with i additional partons is generated.

3. These events are then showered with the analytic shower6.

4. After the shower evolution, a kT -clustering jet algorithm [32] is applied to the showered,

but not yet hadronized event, taking only colored partons with a pseudo-rapidity |η| <
ηmax clus into account. Jets are defined by a minimum jet-jet separation ycut

7

ηmax clus = ηclusfactor ∗ ηmax (25)

ycut =
[

pT min +max (ETclusminE,

ET clusfactor ∗ pT min)
]2

(26)

The factors and hence the clustering variables can be varied as part of the systematics

assessment, the defaults for these factors are chosen to be 1.

5. If the jet algorithm in the matching procedure undershoots the number of matrix element

jets the event is discarded. When the event after the jet merging overshoots the number

of matrix element jets, the event is rejected as well, unless the number of matrix element

jets is equal to the maximum number of matrix element jets. In that case the scale ycut

is adapted such that the number of reconstructed jets is reduced to the number of matrix

element jets, i.e. the jet resolution is lowered accordingly.

6. Then it is tested if the reconstructed jets match the matrix element partons. This is done

in an iterative way: The clustering is reapplied to a set consisting of the reconstructed

jets and one matrix element parton. If this additional parton leads to an additional jet

above the scale ycut, the parton is assumed not to be matched to any of the reconstructed

jets and the event is discarded. Otherwise the matched reconstructed jet is removed from

the set and this step is repeated for the next matrix element parton. If and only ifall

matrix element partons can be matched in this way, the event is accepted.

7. The remaining steps of event generation, like multiple interactions, hadronization, and

pile-up, can then be applied.

6As an alternative, one could also use the PYTHIA shower.
7see section A.2 for a short introduction to jet clustering
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3.2 Hadronization

Hadronization of the generated events was delegated to PYTHIA. An interface between WHIZARD

and PYTHIA was written for this purpose. A detailed description of the interface will be given

in the WHIZARD manual once the analytic parton shower is released as an official part of the

WHIZARD package.

3.3 Handling of beam remnants

We implemented a very rudimentary treatment of beam remnants, with the main purpose of

being able to provide a color-neutral input to the hadronization. In dependence of the emitted

particle the beam remnant is assumed to consist of one or two partons, the procedure for

determining these partons’ flavours and momenta is given below.

The given procedure obviously only applies in the case of only one emitted parton per pro-

ton, that is in the case of only one hard interaction. As an implementation of an interleaved

multiple interactions/initial-state radiation evolution along the lines of the Interleaved Evo-

lution approach [33] is in preparation, this simple treatment of beam-remnants will become

inapplicable. Thus a more sophisticated treatment will be implemented in the future.

3.3.1 Flavours

The flavours of the beam remnant are chosen according to a simplified version of PYTHIA’s

procedure [1, section 11.1.1]. Depending on the flavour of the emitted parton the flavours of

the beam remnant are chosen (These rules apply for protons as the initial hadrons, with obvious

substitutions for antiprotons.):

• A valence quark of the hadron is assumed to leave behind a diquark beam remnant. A ud-

diquark8 is assumed to be a ud1 in 25% and a ud0 in 75% of the cases, while a uu-diquark

is always a uu1.

• A gluon is assumed to leave behind a colour octet state, that is divided into a colour

triplet quark and an anti-colour triplet antiquark. The division into u + ud1 for 1/6 of

the cases, into u + ud0 for 1/2 and into d + uu1 for 1/3 of the cases.

• A sea quark, for example a s, leaves behind an uuds̄ state, that is subdivided into a meson

and a diquark. The relative probabilities are 1/6 into us̄ + ud1, 1/2 into us̄ + ud0 and

1/3 into ds̄ + uu1.

• An antiquark q̄ leaves behind a uudq state, that is divided into a baryon and a quark.

Since mostly the qq̄ pair comes from an emission of a gluon, the subdivision uud + q is

8Diquarks are given in the notation qqS , where the q are the building quarks and S is the total spin.
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not allowed as it would correspond to a color singlet gluon. The subdivision is therefore

in 2/3 of the cases into udq + u and in 1/3 of the cases into uuq + d. The three quark

state uuq or udq is then replaced by the corresponding baryon of lowest spin.

3.3.2 Momenta

The total momentum of the beam remnant is given by the remaining momentum of the hadron

after the emitted particle has been removed. In case the beam remnant consists of only one

parton, this parton is assigned the complete momentum, if the beam remnant consists of a

diquark and a quark the momentum is distributed in equal parts to the both constituents. If

the beam remnant consists of two constituents with one of them being a meson or baryon, the

energy is distributed in equal parts but the three-momentum is distributed so that the hadron is

on-shell and the quark is assigned the remaining momentum. This procedure generates on-shell

colorless particles and off-shell coloured particles so that the coloured particles off-shellness is

absorbed in the hadronization.

4 Results and Validation

We compared the predictions for the process e+e− → hadrons at LEP with an energy of
√
s = 133GeV and for Z production, pp̄/pp → Z + X , at the Tevatron and the LHC at

energies of
√
s = 1.96TeV and

√
s = 7TeV. All event sets were generated using WHIZARD,

which means the hard interaction was simulated by WHIZARD/O’Mega, the parton shower was

either simulated using PYTHIA’s virtuality ordered shower or WHIZARD’s own analytic shower,

denoted in the plots by either PYTHIA PS or WHIZARD PS. The hadronization, if activated, was

simulated using PYTHIA with the hadronization tune from [34, table 10, Dec. 93]. This tune was

of course made using PYTHIA’s parton shower, but will be used in here together with WHIZARD’s

parton shower as well. As the hadronization tune depends on the parton shower, using a tuning

obtained with a different parton shower can lead to unsubstantial deviations in the results. As

there is no tune with WHIZARD’s parton shower available, we cannot give an estimate for the

deviations. The differences in the plots are in the expected range for an untuned generator.

The definitions of all observables are given in section A in the appendix.

4.1 Final State Radiation at parton level

Figures 3 to 6 show a comparison of unhadronized distributions of event shapes. The plots

for thrust, thrust major and thrust minor show that WHIZARD’s parton shower generates more

spherical events compared to PYTHIA’s parton shower. Nonetheless, they show a satisfactory

agreement as WHIZARD’s parton shower was not tuned at all for these plots. However, it is
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Figure 3: Plots for thrust T and thrust major Tmajor (without hadronization). The dotted line

is WHIZARD, the dashed line is PYTHIA.
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Figure 4: Plots for thrust minor Tminor and Oblateness O (without hadronization). The dotted

line is WHIZARD, the dashed line is PYTHIA.
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Figure 5: Plots for jet broadenings Bmax and Bmin (without hadronization). The dotted line is

WHIZARD, the dashed line is PYTHIA.
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Figure 6: Plots for jet broadenings Bsum and Bdiff (without hadronization). The dotted line is

WHIZARD, the dashed line is PYTHIA.
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unclear if the discrepancies can be tuned away. Moreover, as distributions at parton level are

not observable in an experiment, it is doubtful if they need to be.

4.2 Final State Radiation at hadron level

4.2.1 Event shapes

For hadronized events, we can compare the generated distributions with experimental data. We

compared the distributions for several event shapes with data from the DELPHI collaboration

[35]. The measurement was performed using e+e− collisions at center-of-mass energies of
√
s =

130GeV and 136GeV. The simulated hard interaction was chosen to be e+e− → uū at a

center-of-mass energy of
√
s = 133GeV.

Both parton showers show good agreement, especially if one takes into account that the

events showered with WHIZARD’s parton shower where hadronized with the PYTHIA hadroniza-

tion tuned to data using events showered with PYTHIA. As for the unhadronized samples, events

showered with WHIZARD tend to populate the regions corresponding to more spherical configu-

rations compared to events generated using the PYTHIA shower. The plot for thrust major Tmaj

shows a slight undershooting of the WHIZARD curve with respect to the data in the two bins

from 0.04 to 0.08. However, both distributions are mostly consistent with the data.

4.2.2 Jet rates

A comparison of the Monte Carlo results for the process e+e− at
√
s = 91GeV with measure-

ments from the JADE and OPAL collaborations given in [36] is shown in figures 11 and 12.

Shown are differential jet rates as a function of the resolution parameter in the kT -clustering

algorithm yi i+1, where the event turns from being a i + 1-jet event into a i-jet event. The

definition of the clustering variable is given in equation (27) in the appendix. The comparison

is equivalent to the one in [37,38], where a tuning of some parton shower and hadronization

parameters was performed. The only tuning applied to the parton shower in the comparison

was a by-hand adjustment of αS, setting ΛQCD to a value of 0.15GeV. Note that small val-

ues of yi i+1 correspond to small invariant masses and that these regions are described by the

hadronization model and not the parton shower.

4.3 Initial State Radiation

A plot for the transverse momentum of a Z-Boson produced in pp̄-collisions at
√
s = 1.96TeV

is given in figure 13. The simulation with PYTHIA was done using Rick Field’s CDF Tune D6

with CTEQ6L1 parton distribution functions. The simulation using WHIZARD’s parton shower

was done using the same PDFs, multiple interactions were disregarded in both simulations.

The data obtained from WHIZARD’s initial-state parton shower shows two distinct features: first
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Figure 7: Plots for thrust T and thrust major Tmajor (with hadronization, data from [35]). The

dotted line is WHIZARD, the dashed line is PYTHIA.
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Figure 8: Plots for thrust minor Tminor and Oblateness O (with hadronization, data from [35]).

The dotted line is WHIZARD, the dashed line is PYTHIA.
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Figure 9: Plots for jet broadenings Bmax and Bmin (with hadronization, data from [35]). The

dotted line is WHIZARD, the dashed line is PYTHIA.
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Figure 10: Plots for jet broadenings Bsum and Bdiff (with hadronization, data from [35]). The

dotted line is WHIZARD, the dashed line is PYTHIA.
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Figure 11: Plots for differential jet rates y23 and y34.
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Figure 12: Plots for differential jet rates y45 and y56.
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Figure 13: Transverse momentum of a Z-Boson in various schemes. The normalization for

events from WHIZARD’s matrix element was chosen manually to fit PYTHIA’s PS result in the

range 10GeV < pT < 20GeV.

of all, the curve in the low-pT region shows a slight deviation with respect to the corresponding

PYTHIA curve. However, as we will see later, this is still in agreement with data. Second

of all, it shows the known phase space cut at pT . mZ [39]. For comparison, the plot is

supplemented by a pT -histogram for the unshowered process uū → Zg. PYTHIA’s description

uses the power-shower and matching and closely resembles the result for the partonic process.

Our approach to solve the shortcomings of WHIZARD’s parton shower was not to include the

power shower ansatz, but instead accept this as a deficiency of the parton shower and delegate

the task of describing the high-pT region to a matching algorithm.

4.4 Matched Final State Radiation

Plots for results obtained with the MLM matching for the final-state parton shower are shown

in figures 14 and 15 for events showered with WHIZARD’s parton shower and figures 16 and 17 for

PYTHIA. The process under consideration is e+e− → uū at a center of mass energy of 91GeV,

hadronization was switched off. The process was simulated in five different ways, first without

any matching at all and then with a variable number of additional jets from zero to three,

where each additional jet could be a gluon or a u,d,s or c quark. For the unmatched case and

for each jet multiplicity an event set consisting of 150000 events was simulated. The plots show

normalized distributions for event shapes obtained from these samples.

The plots show some common features. The line for the (moot) case of no additional jets

closely resembles the line for the unmatched event sample, except in the region of low thrust

26



(right part of the upper image in figures 14 and 15). The missing events are events where the

parton shower splits a hard jet into two separated jets, so that the matching procedure can not

cluster any of the two jets to the original parton and therefore rejects the event.

The lines for one, two and three additional jets lie on top of each other so that it can be

concluded that for these observables, the inclusion of one additional jet is sufficient. The de-

viations between the unmatched and the matched event samples exhibit different behaviour:

for PYTHIA the number of spherical events is larger for the matched sample, stemming from

the better description of large angle emissions. For WHIZARD the deviations are opposite, the

number of more pencil-like events are enhanced, while especially the number of events with

medium values of 1−T and Tmaj is decreased. This can be regarded as correcting the tendency

to favour more spherical events mentioned in section 4.2. The differences between the distri-

butions for matched and unmatched event samples have to be taken into account when tuning

the combination of shower and matching to data. This shows that tunings obtained without

matching cannot be used to generate matched samples and vice versa.

We also did a comparison to data corresponding to the comparison for the unmatched

showers in figure 7. We used the curve for the e+e− → 5jets as the sample for the matched

shower. The plot is shown in figure 18. The curve for thrust T is slightly altered, most

prominent differences to figure 7 is a less pronounced peak with both showers and an increase

for the PYTHIA curve for values 1 − T > 0.1. The curves for Thrust major Tmaj show similar

behaviour to the unmatched curves. Both reproduce the data, except for WHIZARD’s parton

shower’s tendency to more spherical configurations and the small number of events in the lower

Tmaj-bins. Both these deficiencies have already been visible in the unmatched event samples.

4.5 Matched Initial State Radiation

To test the matching procedure for the initial state we simulated the process qq̄ → Z and the

additional corrections j j → Z j (j) for one (two) additional jets, j = u, ū, d, d̄, s, d̄, c, c̄, g. The

resulting distributions for the Z boson transverse momentum are given in figure 19 for WHIZARD

and figure 20 for PYTHIA. For comparison the measured distribution from D0 [40] was included.

Note that all simulated distributions were obtained with disabled primordial kT .

As expected, the results for PYTHIA do not depend much on the application of matching as

its power shower approach already generates a pT -distribution close to the correct distribution

[39]9. The plot for WHIZARD shows the expected addition of high-pT events, the concavity is

weakend. Adding a second jet described by the matrix element does change the distribution

only marginally for both showers.

Figure 21 shows the dependence of the pT -spectrum on the MLM-matching parameter pT min.

The distribution should be independent of pT min, however a small difference is visible in the

9PYTHIA’s own matching was disabled during this simulation.

27



 0.01

 0.1

 1

 10

 100

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

No Matching
Matching for 2 jets
Matching for 3 jets
Matching for 4 jets
Matching for 5 jets

1− T

1/
N

d
N
/d

(1
−
T
)

 0.001

 0.01

 0.1

 1

 10

 100

 0  0.1  0.2  0.3  0.4  0.5

No Matching
Matching for 2 jets
Matching for 3 jets
Matching for 4 jets
Matching for 5 jets

Tmajor

1/
N

d
N
/d

T
m
a
j
o
r

Figure 14: Plots for thrust T and thrust major Tmajor (WHIZARD ME + WHIZARD PS with

matching). The dotted line is WHIZARD, the dashed line is PYTHIA.
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Figure 15: Plots for thrust minor Tminor and Oblateness O (WHIZARD ME + WHIZARD PS with

matching). The dotted line is WHIZARD, the dashed line is PYTHIA.
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Figure 16: Plots for thrust T and thrust major Tmajor (WHIZARD ME + PYTHIA PS with match-

ing). The dotted line is WHIZARD, the dashed line is PYTHIA.
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Figure 17: Plots for thrust minor Tminor and Oblateness O (WHIZARD ME + PYTHIA PS with

matching). The dotted line is WHIZARD, the dashed line is PYTHIA.
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Figure 18: Comparison of the predictions for parton showers matched to the process e+e− →
uū+ 3jets.
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Figure 19: Z-Boson transverse momentum, simulated with WHIZARD ME and PS without and

with matching.
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Figure 20: Z-Boson transverse momentum, simulated with WHIZARD ME and PYTHIA PS without

and with matching for one and two additional jets.
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Figure 21: The “NoMatching” curve and the “Matching (1jet)”(cf. figure 20) curve for three

different values of pT min, 5GeV, 10GeV and 20GeV.

range 10GeV . pT . 80GeV. The high-pT -tail remains stable when changing pT min, the shape

at the peak does not change as well. The differences are within the expected dependence on

the matching parameters.

As a further test, we compared the Z-Boson pT at the LHC. We used the recently published

measurement by CMS [41]. Except for the change from proton-antiproton beams to proton-

proton beams and the increased center of mass energy
√
s = 7TeV, all other settings were the

same as for the Tevatron simulation. This holds particularly for the chosen PYTHIA tune, that

was obtained from measurements at Tevatron and usage at the LHC cannot be regarded as

trustworthy. Nevertheless, the data can be reproduced very well, except for an overshoot in the

lowest bins. As for WHIZARD there are no available tunes yet, so the dependency on a particular

tune is not an issue. Note that the simulation was done with primordial kT disabled, so that

the lowest bins are expected to be overpopulated. Apart from this difference, the simulation

using WHIZARD’s hard interaction, parton shower and matching procedure reproduces the data as

good as the simulation performed using WHIZARD’s hard interaction and matching, but PYTHIA’s

parton shower.

5 Conclusion and Outlook

In this paper, we presented an algorithm for an analytic parton shower for both initial and

final-state radiation. While this parton shower algorithm for the final state has been known for

quite some time, the extension to the initial state had not been done up to now.

Analytic parton showers are especially interesting for conceptual development in a theoret-
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Figure 22: Z-Boson transverse momentum, simulated with WHIZARD ME and PS and WHIZARD

ME + PYTHIA PS. A similar figure with the same data appeared in [41]. The dotted line is

WHIZARD, the dashed line is PYTHIA.

ical description of QCD in a hadron (but also hadronic final state lepton) collider environment,

as they allow to determine the corresponding shower weights from the complete shower histo-

ries. As there are also veto mechanism for probabilistic showers, such a task is not viable there.

The knowledge of complete shower histories and weights enables one to e.g. change the hard

scattering matrix element or the PDFs and reweight the showered events to the new hard scat-

tering process. Furthermore, analytic parton showers might offer the possibility to determine

systematic uncertainties from a parton shower approximation in a reliable and theoretically

well-defined way. Also, it might be able – using analytic parton showers – to systematically

construct higher-order corrections to the parton shower approximation.

The important point for a successful algorithm for an analytic initial-state parton shower is

the scale choice, specifically the starting condition of the backward shower evolution, together

with the prescriptions for energy and momentum projections in the splittings.

We also improved on the original algorithm for the final-state shower, where e.g. running

couplings constants within the shower evolution had not been taken into account. For the

description of complete kinematical distributions at hadron colliders, including the high-energy

tails, we refrained from the power-shower concept, where also hard and/or non-collinear jets are

being produced by means of the shower. Instead we use an MLM-type matching of the analytic

parton shower with matrix elements containing one or more additional hard jets explicitly.

Together with the development of the algorithm, we made a thorough comparison with

other parton shower, like PYTHIA, and also an extended comparison of our parton shower

algorithm with jet and event shape data from the LEP experiments, from the Tevatron Run II
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measurements as well as first results from the 2010/11 LHC run. For this task we integrated

an implementation of our parton shower algorithm into the event generator WHIZARD, while

hadronization needed for the comparison, is performed by means of external packages. Our

setup allows for a direct comparison of the PYTHIA and our own parton shower using the same

hard matrix elements within the framework of the WHIZARD generator.

Without performing an overly sophisticated tuning of the shower, we reproduced the gross

features of a big number of jet and event shape variables at lepton and hadron colliders and

found in all cases good agreement.

This paper serves as a proof of concept that an analytic parton shower for the initial state

is viable to describe QCD in a realistic collider environment. Future lines of developments

will contain a more extensive tuning and validation of the shower as well as the matching and

merging prescription. We will also be investigating a possible exchange of the evolution variable

for the transverse momentum, pT , which would guarantee angular ordering and color coherence

right from the beginning, which might simplify or even improve on the parton shower descrip-

tion given in our algorithm. A development of an interleaved multiple interaction algorithm

connected with a properly color-connected analytic initial-state parton shower together with

its implementation is in preparation and will be part of a future publication.
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A Definitions of Observables

A.1 Event shapes

The summations are always over all final state partons.

• Thrust T :

T = max
~n

∑

i |~pi · ~n|
∑

i |~pi|
,

• Thrust major Tmajor:

Tmajor = max
~n,~n·~nT=0

∑

i |~pi · ~n|
∑

i |~pi|
,

with the thrust axis ~nT .

• Thrust minor Tminor:

Tminor =

∑

i |~pi · ~n|
∑

i |~pi|
,

with ~n perpendicular to the thrust axis ~nT and the thrust major axis ~nTmajor
.

• Oblateness O:

O = Tmajor − Tminor

• Hemisphere broadenings B:

B± =

∑

±~pi·~nThrust>0

|~pi × ~nThrust|

2
∑

i

|~pi|

Bmax = max(B+, B−) Bmin = min(B+, B−)

Bsum = B+ +B− Bdiff = |B+ −B−|

A.2 Jet rates

Jet algorithms are tools to organize the plethora of particles produced in a collision. This

is done by grouping “similar” particles into one pseudo-particle called jet. The criteria can

be the closeness in the geometry of the detector, leading to cone-jet algorithms, where all

particles within a cone of “radius” R are assumed to be one jet. The measure R is given by

R =
√

(∆η)2 + (∆φ)2 with the pseudo-rapidity η and the azimuthal angle φ. For a further

discussion of the problems arising from this approach see e.g. SISCone [42]. A different approach

is to sequentially remove one particle after another. The procedure is to find the minimum value

of the jet separations yij, yib where i and j denote the particles and then, if the smallest value

is a yij both particles are removed and replaced by a combination of the two particles. If the
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smallest value is yib, the particle i is removed and implicitly clustered to the beam axis. The

values yij , yib are given by

yij = 2min (Ei, Ej)
2 (1− cos θij) .

yib = 2E2
i (1− cos θi beam) . (27)

For hadronic collisions another popular definition is

yij = (∆Rij)
2 min

(

p2⊥ i, p
2
⊥ j

)

yib = p2⊥ i. (28)

By consecutively applying this prescription, every event can be gradually clustered to a 2 → 2

process. For each step of the clustering, the y value of the last clustering gives the jet separation

for the corresponding number of jets. These prescriptions for the distance-measures compose the

so-called kT -algorithm [32]. The algorithm can be varied by replacing the 2 in the exponent of

(∆Rij) in equation (27). Other values that have been studied are 0 and −2, changing to 0 leads

to the Cambridge-Aachen algorithm, while changing to −2 produces the anti-kT -algorithm.
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