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Abstract

We discuss the accurate determination of matrix elements 〈f |ĥw|i〉 where neither |i〉 nor

|f〉 is the vacuum state and ĥw is some operator. Using solutions of the Generalized

Eigenvalue Problem (GEVP) we construct estimators for matrix elements which con-

verge rapidly as a function of the Euclidean time separations involved. |i〉 and |f〉 may

be either the ground state in a given hadron channel or an excited state. Apart from

a model calculation, the estimators are demonstrated to work well for the computation

of the B∗Bπ-coupling in the quenched approximation. They are also compared to a

standard ratio as well as to the “summed ratio method” of [1–3]. In the model, we also

illustrate the ordinary use of the GEVP for energy levels.
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1 Introduction

In lattice QCD, masses, energies and vacuum-to-hadron matrix elements are extracted

from the large time asymptotics of Euclidean two-point correlation functions. Con-

vergence to ground state matrix elements and energies proceeds with a rate of order

exp(−∆(A) t) where ∆(A) is the energy difference of the first excited state and the ground

state in the hadron channel characterized by a set of quantum numbers A.

Hadron-to-hadron matrix elements of the type 〈A|ĥw|B〉 require us to consider in

addition three-point functions, which contain two time separations,

C(3)(t2, t1) = 〈O(A)(t2 + t1)hw(t1) [O(B)]∗(0)〉 (1.1)

and the corrections to asymptotic behavior are O( exp(−∆(A) t2), exp(−∆(B) t1) ). Hence

one wants both t1 and t2 to be large. On the other hand, at large times the statistical

errors of the Monte Carlo estimates typically increase: the noise-to-signal ratio grows

with a rate exp(δ(A)t2 + δ(B)t1), where δ(i) is a positive energy difference. It is therefore

necessary to compromise between the two sources of error. This compromise represents

an important limitation to the achievable overall precision (statistical and systematic).

As an example, consider the nucleon axial coupling gA. For this application, ∆(A) =

∆(B) due to isospin symmetry and δ(A) = δ(B) ≈ mnucleon − 3
2mπ [4, 5].1 Due to the

symmetry, t1 = t2 is optimal in this simple but relevant example and

• t1 = t2 � 1/∆(A) ≈ 0.5 fm is required to keep systematic corrections due to

excited states small

• but statistical errors become too large beyond a time t = O(1/δ(A)) = O(1 fm).2

Numerical results have been shown for this particular example in the reviews [8,9] and

recently in Refs. [3, 10].

As a remedy one may try to reduce either the statistical uncertainties or the con-

tamination by excited states. A general idea for reducing statistical fluctuations is

to integrate over part of the configuration space analytically or by a multilevel algo-

rithm [11–13]. In the pure gauge theory, a reduction of the growth of statistical errors

as a function of time has successfully been achieved by multilevel algorithms [11,13] as

well as by symmetry constrained Monte Carlo [14, 15], but it appears difficult to make

further progress in this direction for QCD with dynamical fermions. More radically,

in lower-dimensional models a complete rewriting of the path integral led to simula-

tion methods where errors can be kept constant at large time in specific channels [16].

Returning to more moderate gains, in the Heavy Quark Effective Theory (HQET) one

is in a special situation because δ(A) is power divergent and depends strongly on the

1Another example of interest is the B∗Bπ coupling where ∆(A) = ∆(B) due to heavy quark spin

symmetry and the energy difference δ(A) = δ(B) is discussed in [6, 7].
2For our numbers we consider pion masses above the physical one. Close to the physical point the

situation is somewhat worse.
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discretization. An optimization of the discretization of HQET yielded a much reduced

δ(A) [7]. Despite these advances, we do not have a true solution of the signal-to-noise

problem either in QCD or in HQET. It is therefore important to efficiently exploit the

information present in an available set of gauge fields. In particular, due to translational

invariance it is possible to construct volume-averaged estimators which should have re-

duced variance compared to those in which one of the fields has a fixed position. This

requires the stochastic estimation of the all-to-all quark propagator [17–20] rather than

the traditional calculation of a point-to-all propagator, and given the aforementioned

exponential growth of signal-to-noise in Euclidean time, it is essential to “dilute the

noise sources” (notation of [19]) such that each has support only on a single time-slice.

It is then natural to try to reduce the systematic corrections due to excited states.

As a first step, one improves the interpolating fields O(A), usually by smearing (see

Sect. 2). In this way one may reduce the pref-actor of exp(−∆(A) t2).

But in Ref. [21] it has been pointed out that by considering N interpolating fields

and the Generalized Eigenvalue Problem (GEVP), one can construct a time-dependent

effective GEVP-optimized interpolating field where the gap ∆(A) is enhanced to

∆(A) = E
(A)
N+1 − E

(A)
n . (1.2)

Besides raising the relevant gap for the ground state n = 1 by a considerable amount,

excited states n > 1 can then also be reached in each channel! This was demonstrated

to work very well for a decay constant in HQET, i.e. a matrix element of the type

〈f |ĥw|0〉. In this work we show that it is also very advantageous for non-vacuum matrix

elements.

Moreover, we present a new formula, which involves the 3-point matrix correlation

function and the GEVP eigenpairs. There is a summation over the intermediate time t1
with t = t1 + t2 held fixed. We consider now the “symmetric case” when initial and final

states are related by a symmetry transformation (e.g. for gA), since the general case

without the symmetry is more complicated as we will explain in the following sections.

When ∆(A)t� 1, the corrections to the matrix element are reduced

from C exp(−∆(A) t/2) (fixed t1 = t2 = t/2 GEVP)

to C ′∆(A) t exp(−∆(A) t) (“summed” GEVP) ,

with some coefficients C,C ′ given by matrix elements which are usually unknown.

The N = 1 case of the general formula reduces to the summed 3-point function that

has previously been used in early investigations of the nucleon sigma term [1] and

gA [22]. The improvement of the convergence rate to the ground state has recently

been emphasized in [2, 3]. Let us leave aside the pref-actors C,C ′, about which lit-

tle can be said on general grounds. The remaining time-dependent factors satisfy

∆(A) t exp(−∆(A) t) < exp(−∆(A) t/2) for all t. Furthermore, when one is in the asymp-

totic regime ∆(A) t � 1 the gain becomes significant: the “summed” GEVP method

requires approximately half the total time separation for the same size systematic cor-

rections.
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The derivation of the formula for the matrix element, as well as the associated

correction terms, proceeds roughly as follows. We start from the GEVP expression for

the energy levels, in a theory with degeneracy E(A) = E
(B)
n , and augment the theory

by a “source” term εĥw in the Hamiltonian. The matrix element 〈A,n|ĥw|B,n〉 is then

obtained as a derivative with respect to ε of the effective (time dependent) energy level

at ε = 0. This idea is worked out in Sect. 3. In Sect. 4, we report tests of the method

for a toy model and also in a quenched QCD/HQET calculation. There we revisit the

GEVP for energy levels, using the overlaps computed in the quenched case to fix the

parameters of the toy model and examining the convergence of energies in the model.

As we will discuss in the conclusions, we expect our method to be advantageous in a

number of applications. First we set up the notation and describe the standard GEVP

method of Ref. [21].

2 Matrix elements from Euclidean correlators

In this section we define the problem more precisely and describe the “standard” solution

as well as the one using the GEVP.

We want to compute a matrix element of a local operator ĥw(x),

Mmn = 〈A,m|ĥw(0)|B,n〉 , (2.1)

where m,n ≥ 1 label the excitations in each channel. The quantum numbers A and B

associated with exact symmetries of the (lattice) Hamiltonian including e.g. momentum

or flavors charges remain implicit in M. For the lattice Hamiltonian derived from the

transfer matrix, we have Ĥ|A,m〉 = E
(A)
m |A,m〉. We take the finite (space-) volume

normalization of states 〈A,m|A,m〉 = 1, which is easily related to the relativistic one.

The matrix elements are computed from correlation functions

C
(3)
ij (t2, t1) = 〈O(A)

i (t2 + t1)hw(t1) [O(B)
j (0)]∗〉 (2.2)

C
(A)
ij (t) = 〈O(A)

i (t) [O(A)
j (0)]∗〉 , C

(B)
ij (t) = 〈O(B)

i (t) [O(B)
j (0)]∗〉 (2.3)

where O(B)
j (t) are interpolating fields localized on a time-slice t with j enumerating

different fields. They carry the quantum numbers B in the usual way. We now turn to

different ways of reanalyzing the correlation functions.

2.1 Standard ratios

We consider m = n = 1 for describing the “standard” method, since it is largely

restricted to ground states. One defines a ratio

R(t2, t1) =
C

(3)
ij (t2, t1)

[C
(A)
ii (t)C

(B)
jj (t)]1/2

exp
(

(Eeff
B (t)− Eeff

A (t))(t1 − t2)/2
)

(2.4)
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for fixed i, j with

t = t2 + t1 , Eeff
A (t) = −∂t log(C

(A)
ii (t)) , Eeff

B (t) = −∂t log(C
(B)
jj (t)) .

Our lattice derivative is defined as ∂tf(t) = 1
a [f(t + a) − f(t)]. When the sectors (A)

and (B) are related by a symmetry of the theory, the exponential factor in eq. (2.4) is

unity, as Eeff
A (t) = Eeff

B (t).

Many variations of the ratio are possible, e.g. replacing Eeff
A (t) → Eeff

A (t1). The

ratio has a quantum mechanical representation (based on the transfer matrix of the

lattice theory)3

R(t2, t1) = M11 + c1 exp(−(E
(A)
2 − E(A)

1 )t2) + c2 exp(−(E
(B)
2 − E(B)

1 )t1) + . . . .
(2.5)

These correction terms have already been mentioned in the introduction. Note that

replacing O(A)
j →

∑
k α

(A)
k O

(A)
k and O(B)

i →
∑

k α
(B)
k O

(B)
k with a specific choice of fixed

coefficients α does not change anything in this formula except for modifying the pref-

actors c1, c2. Instead, in the following section we turn to the use of the GEVP in order

to change the exponential rates of the correction terms.

2.2 Summed ratios

An improved asymptotic convergence is provided by the effective matrix element

Msummed
11 (t) = −∂ta

∑
t1

R(t− t1, t1) = M11 + O(t∆ e−t∆) , (2.6)

∆ = Min(E
(A)
2 − E(A)

1 , E
(B)
2 − E(B)

1 ) . (2.7)

Eq. (2.7) can be seen by explicit summation over t1 of the transfer matrix representation

of eq. (2.4) and it is the N = 1 case of eq. (2.15) (taking the limit t0 → t). For the

degenerate case E
(A)
n = E

(B)
n it has been used long ago [1,22] and its improved conver-

gence rate has recently been emphasized in Refs. [2,3]. In Ref. [3] the generalization to

non-degenerate spectra was introduced.

2.3 GEVP improvement

We here summarize Ref. [21] and apply it to the present case. We assume that we have

N linearly independent fields Oj , with couplings to the low lying states. The labels A,B

are dropped where statements independent of the channel are made. The GEVP [23]

([C vn]i =
∑N

j=1Cij [vn]j),

C(t) vn(t, t0) = λn(t, t0)C(t0)vn(t, t0) , (2.8)

3For simplicity, we everywhere neglect terms which decay exponentially with the time extent of the

lattice.
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constructed from the matrices C(A), C(B) at times t > t0 yields effective energies [24]

Eeff
n (t, t0) = −∂t log(λn(t, t0)) (2.9)

which converge as [21]

Eeff
n (t, t0) = En + O(exp(−∆N+1,n t)) , ∆N+1,n = EN+1 − En (2.10)

provided one takes t0 ≥ t/2, which we use here.4

The starting point for computing matrix elements is an operator (in each channel)

which satisfies [21]

Âeff
n (t)|0〉 = |n〉+ O(exp(−∆N+1,n t)) . (2.11)

With the definitions

vn(t) ≡ vn(t+ a, t) , (u,w) =

N∑
i=1

u∗iwi (2.12)

Rn(t) = (vn(t) , C(t) vn(t))−1/2 exp(Eeff
n (t+ a, t) t/2) , (2.13)

the explicit construction of Âeff
n (t) is given by

[Âeff
n (t)]† = e−ĤtRn(t) (vn(t) , Ô†). (2.14)

With respect to [21] we have here made a specific choice for the relation of t0 and t,

denoting the resulting vn as vn(t) with a single argument.

We can then obtain the desired matrix element

Mmn =Meff
mn(t2, t1) + O(exp(−∆

(A)
NA+1,m t1), exp(−∆

(B)
NB+1,n t2)) (2.15)

from

Meff
mn(t2, t1) = 〈0|[Âeff

n (t2)](A) ĥw [[Âeff
n (t1)](B)]†|0〉

= (v(A)
m (t2), C(3)(t2, t1)v(B)

n (t1))R(A)
m (t2)R(B)

n (t1) . (2.16)

Here we have reintroduced the labels A,B. Eq. (2.16) reduces to eq. (2.4) for NA = 1 =

NB, but taking NA, NB larger improves the convergence and enables access to excited

states.

As before, one can formulate a simpler effective matrix element when (A) and (B)

are related by a symmetry and only the m = n matrix elements are required. The

symmetry means

Eeff,B
n (t, t0) = Eeff,A

n (t, t0) , v(A)
n (t, t0) = v(B)

n (t, t0) (2.17)

for all t, t0 and n. The ratio (remember that we use the shorthand v
(A)
n (t) = v

(A)
n (t+a, t))

Meff′
nn (t2, t1) =

(v
(A)
n (t2), C(3)(t2, t1)v

(A)
n (t1))

(v
(A)
n (t2), C(A)(t2 + t1)v

(A)
n (t1))

(2.18)

satisfies eq. (2.15) as well but may have reduced statistical errors. The leading error is

minimized by the choice t2 = t1.

4For fixed t0 one has Eeff
n (t, t0) = En + O(exp(min(∆n+1,n,∆n,n−1)t)) instead [24].
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3 Improved method: sGEVP

Here we combine the improvement by summation of Sect. 2.2 with the GEVP of Sect. 2.3.

3.1 Symmetric case

We consider the symmetric case eq. (2.17) and drop the labels A and B. As derived in

App. A, the effective matrix element

Meff,s
nn (t, t0) = −∂t

{
|(un , [K(t)[λn(t, t0)]−1 −K(t0)]un)|

(un, C(A)(t0)un)

}
, (3.1)

Kij(t) ≡ a
∑
t1

C
(3)
ij (t− t1, t1) , un ≡ vn(t, t0) (3.2)

converges to the exact matrix element as

Meff,s
nn (t, t0) = Mnn + O(∆N+1,n t exp(−∆N+1,n t)) . (3.3)

The formula assumes t0 ≥ t/2 and the exact size of the corrections does in general

depend on how we choose t0, e.g. t0 = t− a vs. t0/t = fixed. We shall demonstrate in

Sect. 4 that the corrections in eq. (3.1) are very small generically. The label “s” stands

for summed, since Kij(t) is a 3-point function summed over one argument.

3.2 Asymmetric case

In the situation when eq. (2.17) is not satisfied or if we want a matrix element Mmn

with n 6= m, we first define the estimator for the difference E
(B)
n − E(A)

m ,

Σ(t, t0) = Eeff,B
n (t, t0)− Eeff,A

m (t, t0)
t→∞∼ E(B)

n − E(A)
m (3.4)

as well as the energy shifted correlation function

Dij(t, t0) = e−tΣ(t,t0)C
(A)
ij (t) . (3.5)

The summed three-point function is then defined by

Kij(t, t0) = a
∑
t1

e−(t−t1)Σ(t,t0)C
(3)
ij (t− t1, t1) . (3.6)

Everywhere we take t0 ≥ t/2. An approximation to the matrix element is

Meff,s
mn (t, t0) = −∂t

{
|(um(t, t0) , [K(t, t0)[λ

(B)
n (t, t0)]−1 −K(t0, t0)]wn(t, t0))|

[(um(t, t0), D(A)(t0)um(t, t0))(wn(t, t0), C(B)(t0)wn(t, t0))]1/2

}
,

(3.7)
with

D(t)um(t, t0) = λ̃m(t, t0)D(t0)um(t, t0) , (3.8)

C(B)(t)wn(t, t0) = λ(B)
n (t, t0)C(B)(t0)wn(t, t0) . (3.9)
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We have observed numerically that in the case of Σ(t, t0) 6= 0, it converges as

Meff,s
mn (t, t0) = Mmn + O(∆ t exp(−∆ t0)) , (3.10)

see Sect. 4. The gap ∆ is given by the minimum one in the two channels,

∆ = Min
(
E

(A)
NA+1 − E

(A)
m , E

(B)
NB+1 − E

(B)
n

)
. (3.11)

Since the exponential convergence is now governed by t0, there is no obvious advantage

compared to eq. (2.16) unless one takes t0 ≈ t. If statistical precision is good enough

to allow for such large t0, 3-point functions and 2-point functions with a maximal

time extent of t are sufficient to obtain a convergence rate of O(∆ t exp(−∆ t)) as in the

symmetric case. Eq. (3.10) has not been proved formally, but our numerical investigation

of toy models leaves little doubt that it is correct.

4 Demonstrations

We carry out two sets of demonstrations of how the various estimators for matrix el-

ements work. First we consider toy models, prescribing spectra and matrix elements

and do not take statistical errors into account. We construct “difficult” (large correc-

tions due to excited states) and “easy” toy models. The second set of experiments

is a quenched computation of the B∗Bπ-coupling, where realistic statistical errors are

present.

4.1 Models

4.1.1 Definition of the models

We first specify the spectra in dimensionless form. Two different ones are used below,

r0E
(l)
n = n , r0E

(h)
n = 1.1× n . (4.1)

The length factor r0 is in principle arbitrary, setting the overall scale of the theory, but

we think of it as r0 ≈ 0.5fm. Level splittings of around 1/r0 are realistic in QCD, as

the particle data book and lattice computations show.

Next the overlaps

ψin = 〈0|Oi|n〉 (4.2)

need to be fixed. In our HQET applications (see Sect. 4.2), we use spatially smeared

quark fields to construct the fields Oi. We computed their overlaps ψin for n = 1, . . . , 5

and i = 1, . . . 7 using the GEVP “creation operator” [Âeff
n (t)]†. For details we refer to

the following section. Here we just take the approximate matrix

ψS =

0.92 0.03 −0.10 −0.01 −0.02

0.84 0.40 0.03 −0.06 0.00

0.56 0.56 0.47 0.26 0.04

 (4.3)
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corresponding to smearing levels 1, 4, 7 which is typically done in practice [25]. We

observed a strong decay of the overlaps ψS
in with increasing n which suggests that a

truncation with ψin = 0 for n > 5 is realistic at reasonable time separations of the

correlation functions, say t > r0/2. In any case, what we discuss here remains a model,

but we expect it to be quite realistic.

The matrix ψS represents a relatively comfortable situation which we may not

always have. For that reason we also construct a more challenging case

ψC
in|n≤3 =

0.9 0.1 −0.1

0.8 0.4 0.2

0.6 0.6 0.5

 ψC
in|4≤n≤20 =

 −1/(3n2)

2n−2 − (2n)−3/2

1/(n− 1)

 (4.4)

with a slow decay in n. We set ψin = 0 for n > 20.

With the model matrix elements (again we note that these are not completely

unrealistic)

Mnn = 0.7
6

n+ 5
, Mn,n+m =

Mnn

3m
for m > 0 , (4.5)

and assuming the sectors A,B to be related by a symmetry,

C
(A)
ij (t) =

∑
n

ψS
in(ψS)∗jne−E

(l)
n t = C

(B)
ij (t) , (4.6)

the model is completely defined. In particular we have

C
(3)
ij (t2, t1) =

∑
n,m

ψS
ine−E

(l)
n t2Mnme−E

(l)
m t1 (ψS)∗jm . (4.7)

We refer to this model as SlSl. Replacing ψS by ψC defines the model ClCl and finally

with ψS, E
(l)
n for channel A and ψC, E

(h)
n for channel B we define the model SlCh. In

other words we have the following table.

model ψ(A) ψ(B) E
(A)
n E

(B)
n

SlSl ψS ψS E
(l)
n E

(l)
n

ClCl ψC ψC E
(l)
n E

(l)
n

SlCh ψS ψC E
(l)
n E

(h)
n

4.1.2 Energies from the GEVP

The corrections of the effective energies extracted from the GEVP, eq. (2.9), compared

to the exact energies is shown in Fig. 1. We see how t0 ≥ t/2 accelerates the convergence.

As expected Cl is a more challenging situation with larger corrections. One also sees

that at short time (t/r0 ≤ 2) the dependence on t0 is typically not very dramatic. This

feature has been observed in a number of practical applications [25,26]. Still, it appears

dangerous to rely on this in general. In the left hand plot, we also observe the difference

of the GEVP and a standard effective mass (dashed-dotted line). Here C22 is shown

(the corrections for C11 are quite a bit smaller).
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Figure 1: Corrections of eq. (2.9). The ground state n = 1 is plotted in red and has the

small corrections. The first excitation (blue) is above. Dotted lines are for t0 = r0/5,

while dashed lines are t0 = t/2 and full lines t0 = t− a. Shown on the left is the model

Sl and on the right Cl. The dashed-dotted lines show the corrections of the standard

effective mass of the correlator C22 which approaches the ground state energy.

4.1.3 Matrix elements

Let us start with the easiest situation, the extraction of ground state matrix elements

m = n = 1 in the symmetric case. These are shown for two models in Fig. 2. The

labeling of the different estimates is as follows:

“ratio” dotted, black eq. (2.4) with t1 = t2 = t/2

“summed” dashed, black eq. (2.6)

“GEVP” dashed-dotted, red eq. (2.18) with t1 = t2 = t/2

“sGEVP” blue eq. (3.1)

The scale of the y-axis covers a variation of 10%. On the x-axis in this and the following

figures we have for each method considered the total time extent of the 3-point functions

since in a MC computation this generically governs the statistical accuracy. The graphs

illustrate that the improved asymptotics of the sGEVP estimate (compared to the GEVP

and the single operators) (N = 1) go hand in hand with smaller corrections at moderate

time separations, t ≈ r0 . . . 2r0.5 Among the estimates which do not use a GEVP, the

summed method is generically better, at least when t is not too small.

Diagonal (m = n) matrix elements for the degenerate case are shown in Fig. 3 on

the left. For n > 1 only GEVP and sGEVP can be used for a systematic computation.

Even though the scale of the y-axis is enlarged, we observe that sGEVP also works

5 Recall that the gaps of the models are ∆n+1,n = 1/r0.
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rather well for determining excited states. Note that with a GEVP with N = 3 states

(as is used here), the convergence of the m = n = 3 matrix elements is rather slow, but

we show them anyway for illustration. It is strongly recommended to use a larger N in

a real computation of M33 if statistical errors allow.

0 1 2 3 4 5 6 7 8
0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

t / r
0

 

 

k=2

k=1

sGEVP, t
0
=t/2

sGEVP, t
0
=t−a

GEVP
O

k
, summed

O
k
, ratio

0 1 2 3 4 5 6 7 8
0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

t / r
0

 

 

sGEVP, t
0
=t/2

sGEVP, t
0
=t−a

GEVP
O

k
, summed

O
k
, ratio

Figure 2: Effective ground state matrix elements, model SlSl on the left and model

ClCl on the right, both shown as a function of the total time-separation of the 3-point

function. On the left side, the sGEVP estimates for t0 = t/2 and t0 = t − a can’t be

distinguished in the figure. For the non-GEVP cases we show two different interpolating

fields, Ok, k = 1, 2.

On the right of Fig. 3, we show the matrix elementsM12. Here the sGEVP means

eq. (3.7) with the energy shifts. The improvement compared to the standard application

of the GEVP, eq. (2.18), is present but is not as impressive as on the left side, where no

energy shifts are needed. We do not show levels above n = 2 since there a larger GEVP

would be recommended as we discussed for the diagonal case.

Finally, consider the situation where the spectra of the A sector and the B sector

are different, as in the model SlCh. Example applications are B → π transitions or

elastic form factors with momentum transfer. On the left side of Fig. 4 theM11 matrix

element is shown. We again observe an impressive advantage of the GEVP methods, in

particular of sGEVP over the standard ratio eq. (2.4). On the right side of the figure we

study M12, where eq. (2.4) is not applicable. In this particular case, the amplitudes of

the corrections of the GEVP effective matrix elements are relatively small and interfere

destructively. It therefore happens to be more accurate than sGEVP for a range of t.

In conclusion, the study of the models shows that the asymptotic convergence

formulae also provide a very good estimate of the relative advantages of the differ-

ent methods at intermediate t. In particular, consider first the degenerate case. The

comparison of the asymptotic behavior, Meff,s
nn (t, t0) − Mnn ∼ O(t∆ exp(−t∆)) vs.
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Figure 4: Effective ground state matrix element M11 (left) and M12 in model SlCh.

Meff
nn(t0, t0)−Mnn ∼ O(t∆ exp(−t0∆)) suggests that t0 ≈ t is needed to reach similar

accuracy in the two cases and indeed we find this generically to be the case. One then

needs the 3-point functions at twice the total time separation in GEVP compared to

sGEVP. In the non-degenerate case, the convergence is governed by t0 in both GEVP

and sGEVP. Here a very significant improvement is the change from a standard ratio

eq. (2.4) to GEVP or sGEVP, see the left of Fig. 4. The right side of that figure shows

that sGEVP yields considerable further improvement over GEVP when a large t0 is

chosen.
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4.2 The B∗Bπ-coupling in the quenched approximation

In the static approximation for the b-quark, the B∗Bπ-coupling is denoted by ĝ. It is

a leading order low energy constant in the heavy meson chiral Lagrangian [27–29] . As

such, it is of considerable interest for chiral extrapolations of lattice results, employing

a systematic expansion in 1/mb and m2
π/(8π

2F 2
π ). The bare matrix element is6

ĝ = 1
2〈B

0(0)|Ak(0)|B∗+k (0)〉 , Aµ(x) = ψd(x)γµγ5ψu(x) (4.8)

with |B∗k(0)〉 polarized along the k-axis, see also [2, 30]. Note that here we use the

normalization of states 〈B(p)|B(p)〉 = 〈B∗k(p)|B∗k(p)〉 = 2L3, which corresponds to the

non-relativistic one in the infinite volume limit. We do not include the renormalization

factor of the axial current anywhere.

Our interpolating fields for B and B∗ are related by the exact spin symmetry of

the static approximation and are generated by gauge-covariant Gaussian wave functions

inserted between the static and the light quark field. Such gauge invariant interpolating

fields were introduced in Ref. [22]. We use exactly the ones of Ref. [2] with width

rwf/r0 = 0.36, 0.51, 0.62, 0.71, 0.87, 1.01, 1.13 (eq. (2.5) of Ref. [2]). For the present

demonstration we work in the quenched approximation and the light quark mass is set

to the mass of the strange as in [25]. An ensemble of one hundred gauge configurations

is used on a 32 × 163 lattice with spacing a ≈ 0.1fm and statistical errors are kept

small by an all-to-all method [19] in combination with the static action “HYP2” [7]

as done previously [2]. Here we use one hundred fully time-diluted noise sources per

configuration.

4.2.1 Approximate overlaps

We first pick five fields Oi from our set with rwf/r0 = 0.36, 0.51, 0.62, 0.71, 1.13. With

the operator eq. (2.14) we can then compute the overlaps

ψin = 〈0|Oi|n〉 = ψin(t) + O(exp(−(EN+1 − En)t) (4.9)

ψin(t) = 〈0|Ôi Âeff
n (t)|0〉 =

∑
j

Cij(t)[vn]j(t)Rn(t) (4.10)

where n = 1, . . . , 5 labels the excitations. The normalization of the fields Oi is irrelevant

for all applications, but in order to have the interpretation of an overlap, we choose the

normalization such that Cii(0) = 1. In this case a value of one for ψ2
in means that

Ôi|0〉 = |n〉 without corrections, i.e. 100% overlap. Furthermore, we fix the signs by

the convention ψin > 0 for the value i which maximizes |ψin| at fixed n.

Figure 5 shows examples of ψin(t). Even if these are not precision determinations

of the overlaps, they show interesting features. The local field shown in the first row

has considerable overlap with all states considered. It is a bad interpolating field for

6We thank Fabio Bernardoni for discussions on the effective theory and a check of the normalization

of ĝ.
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Figure 5: Overlaps for the static B-meson interpolating fields. Column n refers to state

n, row 1 to the local (time component of the) axial current. Rows 2-4 correspond to

the three interpolating fields used in our GEVP computation of ĝ with radii rwf/r0 =

0.36 , 0.62 , 1.13 respectively.

ground state physics. However the other fields with reasonable radii display a rather

strong decay of the overlaps with growing n, indicating that the smeared fields provide

a good basis of interpolating fields which couple little to excited states. Indeed, this

figure demonstrates that these wave functions considerably reduce the overlaps to high

excited states. Conversely, this also means that high excited states are difficult to access

with these fields.
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Figure 6: The matrix element ĝ as a function of t/r0. Left: sGEVP estimate eq. (3.1)

with t0 = t/2, right: GEVP estimate with t0 = t/2. The error band is our best estimate

determined previously with very high statistics [2].

Reading off approximate plateau values, we extract the model ψS for Sect. 4.1. This
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Figure 7: Estimates of ĝ as a function of t/r0. Left: summed ratio estimate eq. (2.6),

right: ratio eq. (2.4). On the top the interpolating field with the biggest overlap with

the ground state is shown (rwf = 1.13 r0). The bottom two figures are for rwf = 0.62 r0.
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Figure 8: Standard plateau plot for ĝ. The ratio R(t− t1, t1) is considered as a function

of t1/r0 with t fixed at t = 2.14r0. The latter is the value used in the so far most complete

determination [31], while earlier t/r0 ≈ 4 was used on a lattice with a = 0.2 fm [32].

Left: wave-function with rwf = 1.13 r0, right: rwf = 0.62 r0.

14



model yields a qualitative understanding of the corrections. We believe that computing

overlaps as done here may also be very useful for understanding the systematic errors in

present extractions of nucleon matrix elements, namely the question of the magnitude

of excited state contamination. Given an approximate knowledge of the spectrum, this

contamination can be roughly estimated when the overlaps are known. Indeed, let us

apply our approximate knowledge of ψ1n < 0.1 for n > 1, together with the plausible

assumption that matrix elements Mmn are of roughly the same magnitude as M11.

Then, at time separations t = r0 and for the best wave function, excited states make

rather small corrections of order 0.1e−1, i.e. of the order of a few per cent. Therefore

the matrix element ĝ is a rather easy test case and all methods should be successful.

4.2.2 The matrix element ĝ

In this section we show numerical results for ĝ, computed with the various methods

introduced above. The GEVP estimates for the ground state, displayed in Fig. 6,

exhibit no corrections exceeding 2% once t = r0 has been reached. For smaller t, sGEVP

has smaller corrections than GEVP. However, at large times the statistical errors are

increasing faster for sGEVP.

For this particular matrix element and for the best interpolating field, the correc-

tions for the summed ratio (Fig. 7, top) are somewhat larger than those of the standard

ratio and again the summed method suffers from larger statistical errors at large times.

However, in the case of a less optimal interpolating field (bottom of Fig. 7), the summed

ratio exhibits its superiority.

For comparison, we also show the frequently used analysis where t is kept fixed

(here at a value used previously in determinations of ĝ [31]) and one looks for a plateau

as a function of t1. With our precision one can observe the lack of a plateau in Fig. 8

for rwf = 0.62 r0, but with errors at a 1% level a false “plateau” would be observed for

t/4 ≤ t1 ≤ 3t1/4. This demonstrates the danger inherent in this method. The left hand

side of the figure shows that for ĝ a plateau with the correct height is obtained for a

larger smearing radius.

4.2.3 Excited state matrix elements ĝnm

For excited state matrix elements, Fig. 9, only the GEVP estimates are applicable.

They appear to work quite well for the first excitation and also for the second excita-

tion a reasonable estimate can be obtained. The sGEVP again seems superior, as the

deviations from our estimated asymptotic values are smaller. Figure 10 demonstrates

these same features for an off-diagonal matrix element.

5 Conclusions

In this paper we have introduced the GEVP method with summation, denoted sGEVP,

and we have examined several alternative methods for computing hadron-to-hadron ma-
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Figure 9: The diagonal matrix elements ĝnn as a function of t/r0. Left: sGEVP estimate

eq. (3.1) with t0 = t/2, right: GEVP estimate with t0 = t/2. An N = 3 GEVP is used.

The matrix elements are seen to be ordered ĝn+1,n+1 < ĝnn.
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Figure 10: The off-diagonal matrix element ĝ12 as a function of t/r0. Left: sGEVP

estimate eq. (3.1) with t0 = t− a, right: GEVP estimate with t0 = t/2− a. An N = 3

GEVP is used.

trix elements. They have rather different asymptotic corrections due to excited states:

ratio eq. (2.4) : exp(−∆2,1t/2) (just ground state)

summed ratio eq. (2.6) : t∆2,1 exp(−t∆2,1) (just ground state)

GEVP eq. (2.16) : exp(−∆N+1,1t/2)

sGEVP eq. (3.1) : t∆N+1,1 exp(−t∆N+1,1) (equal energy case)

sGEVP eq. (3.7) : t∆ exp(−t0∆) (general case)

In the last case, ∆ is given by eq. (3.11) and one will typically use t0 = t/2. The form

of the leading correction term of sGEVP is derived in the appendix for the equal energy

case, while for the general one we deduced it from the numerical investigation of toy

models. The GEVP correction term is known from [21] and for “ratio” and “summed

ratio” it follows directly from the transfer matrix representation.

We investigated two toy models constructed to be quite representative for heavy-
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light meson matrix elements. In these models, the asymptotic forms of the corrections

have been found to be a good guideline for the behavior at intermediate values of t, of

the order t = (2−3)r0. In particular we found that generically sGEVP has the smallest

systematic errors, followed by GEVP. As a rule of thumb, sGEVP requires half the time

separation of GEVP for the same systematic accuracy.

A Monte Carlo computation of the B∗Bπ coupling ĝ confirms our findings in the

models concerning the systematic errors. In addition it allows us to make statements

about the statistical errors which have to be balanced with systematic ones due to ex-

cited states. Statistical errors grow more quickly as a function of t for sGEVP compared

to GEVP, but a comparison at roughly the same amount of excited state contamination

corresponds to a factor two between the values of t. A comparison at roughly fixed

systematic error is shown in Table 1. We observe a minor difference for the ground

state in advantage for sGEVP and the ratio of errors grows up to a factor five in the

error for M33 for the considered matrix element.

m n Meff
mn(t, t) Meff,s

mn (t, t/2) Meff,s
mn (t, t− a)

1 1 0.004 0.003 0.003

2 1 0.010 0.013 0.009

2 2 0.032 0.012 0.013

3 3 0.063 0.012 0.012

Table 1: Statistical errors of various estimators for ĝmn =Mmn for t ≈ r0.

In the comparison of the different methods, one also has to consider the numerical

effort to compute the effective matrix elements. We assume that one wants to control

the corrections by computing the t-dependence of the estimators. In the summed cases,

eq. (2.6) and eq. (3.1), this can often be done with a fixed number of quark propagator

computations yielding a result for all t, by computing sequential propagators. The

computation of ĝ is such a case. In fact, since we have used a full all-to-all computation

with “time dilution” (in the notation of [19]), also the GEVP estimate is obtained at

the same expense. In contrast, if one only uses translation invariance on a time slice

(“time-slice-to-all”), and for example varies t, keeping t1 = t2 = t/2 in eq. (2.4) or

eq. (2.18), then the required number of propagator computations is proportional to the

number of t-values considered. In this situation the sGEVP method has an additional

advantage.

Taking statistical and excited state errors as well as the effort into account, sGEVP

seems to be the overall most accurate, safe and efficient method. Given the difficulty

in evaluating relevant correlation functions at large time separations and assessing the

systematic errors, it still appears advisable to compare the different approaches in most

cases.

In our opinion the sGEVP method (and maybe the GEVP method) should be
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applied to nucleon matrix elements such as gA or moments of structure functions, where

large time separations are difficult to reach [3, 8–10] and it is non-trivial to estimate

possible contamination by excited states. In order to appreciate the last point, recall

that in the standard ratio method, the systematic error drops like exp(−∆2,1t/2). In

order to see such a term, one has to change t to t′ such that the error term changes

appreciably, say by a factor of three. One then needs t′ − t ≈ 2/∆2,1 ≈ 1 fm7. The

summed ratio reduces this requirement by a factor of about two and the GEVP methods

by a larger factor. This gains security in the detection of possible systematic errors.
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A Derivation of the sGEVP method

Here we give a derivation of the formulae of Sect. 3.1.

A.1 Linear perturbation of the original theory

We are here interested in the matrix element Mnn assuming the degeneracy of sectors

A and B via eq. (2.17) and ĥw(x)† = ĥw(x).8 To arrive at an expression for the matrix

element, we augment the original theory with Hamiltonian Ĥ (defined through the

transfer matrix) by adding a perturbation term with strength ε,

Ĥ(ε) = Ĥ + ε ĥw(0) . (A.1)

The twofold degenerate levels with energy E
(A)
n = E

(B)
n ≡ En are then split to E±n (ε).

From standard degenerate perturbation theory one has

E±n (ε) = En ± εMnn + O(ε2) (A.2)

with eigenstates |±, n〉 = [|B,n〉 ± |A,n〉]/
√

2 and

Mnn = E′n(0) ≡ d

dε
E+
n (ε)

∣∣∣∣
ε=0

. (A.3)

7We here again assume a gap of around 400 MeV. Close to the chiral limit lower energy states with

a gap of 2mπ exist, but probably have small overlaps with the typically considered interpolating fields.
8The operator ĥw(x) typically comes from the expansion of the electroweak hamiltonian density in

terms of 1/MW , but other applications are possible. For example the field hw(x) representing ĥw(x) in

the path integral may be hw(x) = A+
k (x)+A−k (x), with A±k (x) = ψ(x)τ±γkγ5ψ, with τ± the raising and

lowering Pauli matrices in SU(2) flavor space. In this case, the matrix elements sought are the B∗Bπ

coupling ĝ or the nucleon axial coupling gA.
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A.2 GEVP in the augmented theory

The desired E′n(0) is efficiently computed with a GEVP method as follows. We combine

the interpolating fields O(A)
i ,O(B)

j from Sect. 2

Oi(t) = O(A)
i (t) , i = 1 . . . N, Oi+N (t) = O(B)

i (t) , i = 1 . . . N . (A.4)

SinceA,B correspond to different sectors (e.g. different flavours) we have 〈A,m|O(B)
i |0〉 =

0 = 〈B,n|O(A)
i |0〉 . Expanding the path integral to first order9 in ε one then sees imme-

diately that the combined 2N × 2N matrix correlation function

Cij(t, ε) = 〈Oi(t)O†j(0)〉 (A.5)

has a simple block structure,

C(t, ε) =

(
C(A)(t) εK(t)

εK(t)† C(A)(t)

)
+ O(ε2) (A.6)

up to first order in ε. The entries C(A) = C(B) were defined in eq. (2.3) and K in

eq. (3.2).

The generalized eigenvalues λn, eq. (2.8), determine effective energies

Eeff
n (t, t0, ε) = −∂t log(λn(t, t0, ε)). (A.7)

In the augmented theory, an extra argument ε has been added to λn for clarity. Eq. (2.10)

describes the corrections by which En(t, t0, ε) differ from the exact energy levels. Dif-

ferentiating that equation with respect to ε yields

Eeff
n
′
(t, t0) ≡ d

dε
Eeff
n (t, t0, ε)

∣∣∣∣
ε=0

=Mnn + O(∆N+1,nt exp(−∆N+1,n t)) . (A.8)

It remains to give an explicit expression for Eeff
n
′
(t, t0) in terms of the correlation

functions, which is equivalent to a solution of the GEVP to first order in ε. The 2N×2N

GEVP equation, C(t, ε)vn(t, t0, ε) = λn(t, t0, ε)C(t0, ε)vn(t, t0, ε), separates into the two

independent ones

[C(A)(t)± εK(t)]u±n (t, t0, ε) = λ±n (t, t0, ε)[C
(A)(t0)± εK(t0)]u±n (t, t0, ε) (A.9)

with v±n = 1√
2

(
u±n
±u±n

)
. The expansion of such a GEVP in ε was written down in [21]

with the intention that ε is given by the HQET expansion parameter. We here just

use the solution. Its first order term in ε yields the desired matrix element in the form

eq. (3.1) in terms of the generalized eigenvectors un of the lowest order (ε = 0) GEVP

of size N ×N in a single channel A.

9See for example [21], sect. 3.2.
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