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Zusammenfassung

In der vorliegenden Arbeit wird eine vollständige Formulierung des Batalin-Vilkovisky
(BV) Formalismus im Rahmen der lokal kovarianten Feldtheorie vorgeschlagen. Im er-
sten Teil der Arbeit wird die klassische Theorie untersucht, wobei der Schwerpunkt auf
die zugrundeliegenden unendlich dimensionalen Strukturen gelegt wird. Es wird gezeigt,
dass die Anwendung der unendlich dimensionalen Geometrie eine konzeptionell elegante
Formulierung der Theorie ermöglicht. Die Konstruktion des BV-Komplexes ist völlig ko-
variant, und eine abstrakte Verallgemeinerung auf der Ebene Funktoren und natürlichen
Transformationen wird vorgegeben. Dies ermöglicht die Anwendung des BV-Komplexes
in der klassischen Gravitationstheorie. Anschließend wird eine homologische Interpreta-
tion der diffeomorphismusinvarianten physikalischen Größen vorgeschlagen.

Im zweiten Teil der Arbeit wird die Quantentheorie untersucht. Ein Rahmen für die
BV-Quantisierung, der vom Pfadintegralformalismus völlig unabhängig ist und nur auf
der perturbativen algebraischen Quantenfeldtheorie basiert, wird formuliert. Um solche
Formulierung zu ermöglichen, wird zuerst bewiesen, dass das renormierte zeitgeordnete
Produkt als eine binäre Operation auf einem geeigneten Definitionsbereich aufgefasst
werden kann. Mittels dieses Resultats wird die Assoziativität dieses Produkts gezeigt und
dadurch lassen sich die renormierte BV Strukturen konsistent definieren. Insbesondere
werden die Quantenmastergleichung und der Quanten-BV-Operator definiert. Dabei wird
die Master-Ward-Identität, eine wichtige Struktur der kausalen Störungstheorie, benutzt.

Abstract

The present work contains a complete formulation of the Batalin-Vilkovisky (BV) for-
malism in the framework of locally covariant field theory. In the first part of the thesis
the classical theory is investigated with a particular focus on the infinite dimensional
character of the underlying structures. It is shown that the use of infinite dimensional
differential geometry allows for a conceptually clear and elegant formulation. The con-
struction of the BV complex is performed in a fully covariant way and we also generalize
the BV framework to a more abstract level, using functors and natural transformations.
In this setting we construct the BV complex for classical gravity. This allows us to give a
homological interpretation to the notion of diffeomorphism invariant physical quantities
in general relativity.

The second part of the thesis concerns the quantum theory. We provide a framework
for the BV quantization that doesn’t rely on the path integral formalism, but is com-
pletely formulated within perturbative algebraic quantum field theory. To make such a
formulation possible we first prove that the renormalized time-ordered product can be
understood as a binary operation on a suitable domain. Using this result we prove the
associativity of this product and provide a consistent framework for the renormalized
BV structures. In particular the renormalized quantum master equation and the renor-
malized quantum BV operator are defined. To give a precise meaning to theses objects
we make a use of the master Ward identity, which is an important structure in causal
perturbation theory.





We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T.S. Eliot, Four Quartets
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CHAPTER 1

INTRODUCTION

The quest to find simple and beautiful principles underlying the laws of nature is driving
the progress of human thought since thousands of years. By applying the scientific
method we search for fundamental mathematical theories that describe the world around
us. We believe that every step we make in exploring the Universe takes us closer to
the underlying truth. We are travelers in this exciting journey in search of the truth
and at each turning there are new surprises awaiting for us. While looking back to the
road we have come so far, one sees that there are some principles that were chosen as
guidelines and they mark our way ever since. One of them is the locality principle. The
importance of this principle as a guideline for the rigorous study of QFT was first put
forward by Rudolf Haag over 50 years ago in his seminal paper [92]. It basically says that
the laws of physics are local. In classical theory it is reflected by the fact that everything
is described by a system of partial differential equations. In the quantum case it means
that the whole physics of the system is encoded in a net of local observables, constructed
by associating the corresponding observable algebras to regions of spacetime. This point
of view is a cornerstone of the local quantum physics approach. To stress how important
this principle is, let me cite at this point the book of Rudolf Haag Local quantum physics
[93].

The German term “Nahwirkungsprinzip” is more impressive than the
somewhat colourless word “locality”. Certainly the idea behind these words
proposed by Faraday around 1830, initiated the most significant conceptual
advance in physics after Newton’s Principia. It guided Maxwell in his formu-
lation of the laws of electrodynamics, was sharpened by Einstein in the theory
of special relativity and again it was the strict adherence to this idea which led
Einstein ultimately to his theory of gravitation, the general theory of relativity

R. Haag

This is a very deep observation and it shows how universal the principle of locality is.
It underlines also our everyday intuition. The relation with the special relativity theory
is also clear, since the locality principle entails that causally separated processes can be
measured simultaneously without any restrictions. This presence of a causal structure is
crucial for the axiomatic formulation of quantum field theory.

There are also other principles that guide our search for mathematical models cor-
rectly describing the reality. Another principle, commonly applied in physical reasoning
is the covariance principle. It was proposed by Einstein as the underlying principle of his
theory of relativity. Its first incarnation, the principle of Poincaré-covariance, states that
there are no preferred Lorentzian coordinates for the description of physical processes.
In other words, there is no absolute time and space, but we can still speak of events as
something localized in given spacetime points. The debate among physicists about the
notion of absolute space and time is actually very old. Traditionally we mark its begin-
ning with the famous papers of the Leibniz-Clarke correspondence 1715-1716. Although
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this was an exchange of letters between Gottfried Wilhelm Leibniz and Samuel Clarke,
it is clear that the latter was actually presenting the position of sir Isaac Newton. In this
debate Leibniz is putting forth the relational point of view on the notion of space:

As for my own opinion, I have said more than once, that I hold space to
be something merely relative, as time is; that I hold it to be an order of
coexistences, as time is an order of successions.

On the other hand Clark was defending Newton’s absolute notion of space and time:

The reality of space is not a supposition, but is proved by the foregoing argu-
ments, to which no answer has been given. Nor is any answer given to that
other argument, that space and time are quantities, which situation and order
are not.

The history showed that the last sentence in this argument was actually said by Nature
itself, since Newton’s idea of space and time was proved incorrect upon the experimental
verification of special relativity. Yet this was not the end of the story. Our idea of space
and time had to be revised even more deeply in the light of general relativity. In this
theory even the concept of spacetime events looses meaning. The principle of general co-
variance says that the laws of physics should be formulated in a coordinate independent
way. In general relativity the geometry itself is a dynamical object. Its behavior is gov-
erned by Einstein’s Equations. The theory of general relativity is not only very successful
in describing the physical phenomena, but also has a beautiful mathematical structure.
This interplay of physical intuition and mathematical reasoning became a hallmark in the
development of modern physical theories. This is however not the end of the journey. As
mentioned above, the diffeomorphism invariance of the theory forces us to abandon the
concept of “points” as physical entities. It is rather the relations between distinguished
events that should be given a physical meaning. The fact that the spacetime itself is
dynamical seems at a first glance to be in conflict with the framework of QFT, where
the theory is formulated with respect to a fixed causal structure. To understand how
locality and covariance can fit into a consistent framework, a new paradigm is needed.
The notion of a locally covariant quantum field was first proposed by K. Fredenhagen at
[74] and was developed in a collaboration with R. Brunetti, S. Hollands, R. Verch and R.
Wald [104, 180, 29]. This was also an important step for the conceptual understanding of
quantum field theory on curved backgrounds. The principle of general local covariance is
a fundament of a new axiomatic framework for qft on curved spacetimes proposed by R.
Brunetti, K. Fredenhagen and R. Verch [29]. The idea is to define a quantum field theory
at once in all the spacetimes in a coherent way. The physical information is then encoded
in a way in which algebras of observables are associated to Lorentzian manifolds (space-
time). From the mathematical point of view this amounts to the construction of a certain
functor. It can also be applied to classical theories, where we associate certain Poisson
algebras to spacetimes. The principle of local covariance was up to now applied in many
interesting examples, including scalar [29], Dirac [159] and electromagnetic fields [46, 45].
Some aspects of the category theory side of the framework were further investigated in
works of Fewster and Verch [62, 63, 64].

Let us now make a short stop in our journey and look around what we have already
found. We recognized two leading principles of theoretical physics, namely locality and
the covariance. Next we discussed how these two principles can be combined into a
consistent framework by the principle of general local covariance. There is however
one more important aspect common to many modern physical theories that we have
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to fit into the picture. It is the principle of gauge invariance. In many aspects it is
similar to diffeomorphism invariance and creates also some problems in quantum field
theory. This principle turned out to be very powerful and universal and led to the
formulation of the Standard Model of particle physics. It is also very attractive from a
mathematical point of view, since classical gauge theory can be described with the use of
simple geometrical structures. This is in agreement with the program of “geometrization
of physics”. Despite the great success of gauge theories, many open questions still remain.
For example, the problem of rigorous nonperturbative quantization of Yang-Mills theory,
confinement, asymptotic freedom, etc. There are also some technical issues related to the
fact that in certain constructions of classical and quantum field theories an appropriate
gauge fixing has to be done in intermediate steps. From the point of view of general
local covariance the gauge fixing procedure also has to be performed in a covariant way.
An obvious candidate for a consistent framework that makes it possible is the BRST
(Becchi, Rouet, Sora, Tyutin) method. It was originally introduced in [18, 19] and
later on it was put in a more general setting, called BV (Batalin, Vilkovisky) formalism
[12, 13, 14, 15]. The present work aims at a systematic treatment of this formalism
in the framework of locally covariant field theory. We treat both the classical and the
quantum case. The most important new insight of the present thesis is the treatment
of the renormalized quantum BV operator and the quantum master equation within
the framework of perturbative algebraic quantum field theory. Moreover we propose an
extension of the BV formalism to a more abstract level of natural transformations, in
agreement with the principle of general local covariance. This formulation makes it also
possible to apply the BV construction in the context of general relativity.

The thesis is divided into two parts. In the first one, we present the basic structures
of the BV formalism in classical theory, since it allows us to avoid technical complica-
tions related to the renormalization procedure. In the second part, we treat quantum
field theory. The first chapter introduces mathematical tools that will be needed for our
formulation. Beside some basic notions of category theory (section 2.4) and distribution
theory (section 2.2) we will also need differential calculus on infinite dimensional mani-
folds (section 2.3). This is a quite natural framework, since field theory is intrinsically
defined as a theory with infinitely many degrees of freedom. Moreover the symmetry
groups, important for the formulation of gauge invariance are infinite dimensional. As
an example we can consider the diffeomorphism group of a finite dimensional manifold
or the group of local gauge transformations (a gauge parameter is associated to each
spacetime point).

In the second chapter we give an overview of the functional approach to classical field
theory and put it into the framework of general local covariance. In this approach [57]
one constructs a Poisson algebra, by defining the Peierls bracket [150, 133] on the space of
smooth functionals on the configuration space. Since we work in an off-shell setting, this
space contains all the possible field configurations of a certain type. For example in case
of the scalar field the configuration space is just C∞(M), the space of smooth functions
on the manifold M . The dynamics is introduced later on. This configuration space
of a classical field theory is an infinite dimensional locally convex vector space. Fields
that satisfy equations of motion constitute a subspace of the configuration space. The
formulation for the scalar fields was done already in [55, 56] whereas the generalization for
the anticommuting fields was systematically described in [154]. We give a short overview
of these results in sections 3.4 and 3.6 accordingly.

The construction of the Peierls bracket relies on the fact that the equations of motion
of a given theory form a normally hyperbolic system. This is unfortunately not the case
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when one has a system subject to a local symmetry. Standard examples are Yang-Mills
theories and gravity. In this case, to obtain a normally hyperbolic system, one has to
“fix the gauge”. As we already mentioned, this can be achieved in the framework of the
BV formalism. We start chapter 4 with some historical remarks on the development of
the BRST and the BV method (section 4.1). Next we propose a new formulation of this
framework that is based on infinite dimensional differential geometry and fits well with
the principle of general local covariance. In sections 4.4 and 4.5 we discuss the concrete
examples, namely Yang-Mills theory and classical gravity. In the last example a further
extension of the formalism is needed to encompass the notion of diffeomorphism invariant
physical quantities. This issue is discussed in detail in section 4.5.2 and in section 4.5.3
the corresponding BV complex is constructed.

The second part of the thesis concerns quantum field theory. We start chapter 5
with some general ideas on how to incorporate the Batalin-Vilkovisky formalism into the
framework of perturbative algebraic quantum field theory (paqft). We describe this
framework in detail in section 5.2. Using these tools we finally provide the definition of
the renormalized quantum master equation and the quantum BV operator in section 5.3.
Our construction differs from other approaches to mathematically rigorous formulations
of the BV formalism, since we don’t employ any explicit regularization scheme. Instead
we work all the time with objects that are well defined and no divergences appear in
the intermediate steps. Moreover our approach uses the notion of causality, therefore
we stay all the time in spacetime with the physical signature. We also don’t require
the compactness of the underlying spacetime, since we work on manifolds that are glob-
ally hyperbolic. All these requirements are physically motivated, but they couldn’t be
consistently employed in versions of the BV quantization present in the mathematical
literature [40, 41, 2, 172]. This was one of the motivations to take a fresh look of the
BV formalism and try to understand its structure from the point of view of paqft. The
reason to do this is not only the conceptual understanding of already existing methods.
The main motivation to put the BV quantization into the framework of locally covariant
field theory is the perspective to apply it in quantum gravity. Indeed, it was proposed
in [75] (see also [26]) that employing the causal perturbation theory one can define the
perturbative quantum gravity as an effective theory and the background independence is
achieved by using the principle of local covariance. This is a very promising perspective
and the present thesis makes a first step towards fulfilling this program. Some of the
results of the first part of this thesis were already published in [77, 78, 154] and these of
the second part will be included in the upcoming paper [79].



Part I

Classical field theory

It is remarkable that nearly 200 years after Faraday and Maxwell the structure of classical
field theory can still provide us with surprises. Although it doesn’t carry the intriguing
and slightly magical flavor of quantum field theory, it has the beauty and rich structure
of its own. The problem of finding a coherent mathematical structure for classical field
theories has been addressed in various ways. In particular we want to mention two
approaches: the multisymplectic geometry [88, 117, 36] and a formalism based on jet
bundles and variational bicomplex [181, 182, 3, 161]. Both approaches aim basically
at mathematically precise formulation of the variational calculus. There is however yet
another possibility. One can take the infinite-dimensionality of field theory “seriously”
and formulate it in the language of calculus on infinite dimensional spaces (see section
2.3.1). This approach is motivated by the recent developments in perturbative algebraic
quantum field theory [30, 55, 57, 56] and have opened a new perspective also for the
classical field theory. Above all it provides us with a deeper conceptual understanding of
the problem and allows to formulate the theory in a concise mathematical language. We
follow this approach in the present work (section 3), using some results of [77, 31].

Even more subtle than the classical theory of Bosonic fields is the conceptual basis
for the classical theory where fermions are present. Various attempts were made to
tackle this problem. On the mathematical side there is again the variational bicomplex
approach [161, 160, 83] and the supermanifold [72] or graded manifold [37, 139] formalism.
The supermanifold approach was used in [32, 33, 34, 111]. The geometrical foundations
of supermechanics on graded manifolds were formulated in [109, 138, 139], including the
notion of graded Lagrangian, tangent supermanifold, space of velocities and Hamiltonian
mechanics of a graded system. Instead of following these approaches we want again to
take a different perspective and look at the problem form the point of view presented in
[30, 55, 57, 56]. Since fermions arise primary in the quantum field theory and the classical
equivalent has to be seen as a kind of a limit, it seems natural to use a framework
which in a simple way can be related to the quantum case. This is easily realized
in the functional approach to classical field theory and moreover the anticommuting
variables are in this formalism on the equal footing with the commuting ones. This
will be especially important in the context of BV formalism, where both kinds of fields
appear. The complete treatment of classical field theory of fermions was presented in
[154]. Here we recall only the most important results. This will be done in section 3.6.

We start our discussion of classical field theory with a chapter introducing mathe-
matical structures that we shall need later for the formulation of the classical field in the
locally covariant framework. In particular, in the discussion of gauge theories and the
BV complex we shall apply methods of infinite dimensional differential geometry. It is
remarkable in physics, that to solve a problem one often has to use techniques from many
different fields of mathematics. This is perhaps what makes the research so challenging
and exciting, but on the other hand a single scientist is not able to explore in detail all
the subtleties of the methods he is using. This is how the research in theoretical physics
differs from pure mathematics. Bearing this in mind we don’t attempt here to give a
complete introduction into the mathematical methods we are using, since it would go far
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beyond the scope of this thesis. Instead we want to provide the reader with a basic vo-
cabulary and give an overview of the fields of mathematics, that turned out to be useful
in our framework. Before taking a jump into a vast ocean of definitions and theorems we
want first to justify why those structures would be needed.

The underlying idea of the BV formalism is actually very simple. To present it,
we start with a toy model. Imagine that your physical system is characterized by a
configuration space E, which has a structure of a finite dimensional manifold. The dy-
namics is implemented by a set of equations on the configuration space and solutions
of these equations form a subspace ES of E. It can now happen that your system has
some symmetries, i.e. there exist one-parameter groups of transformations of ES . Such
transformations map solutions into new solutions. They correspond to vector fields on
the submanifold ES (see figure 4.4.1). In this toy model you can think of observables

E R

ES
x

x’

F

Figure 1.1: The geometrical setting of a classical theory with symmetries. Symmetry
orbits are depicted as red arrows. Two solutions x and x′ are laying on the same orbit.
By performing an experiment we measure the observable F and obtain a result which is
a real number. If F is invariant, then in particular F (x) = F (x′).

as functionals F ∈ C∞(ES) on the solution space. In this interpretation performing an
experiment means assigning to a given configuration x of the system a certain number
F (x). But if your system has symmetries you should not be able to distinguish between
solutions that lie on the same orbit. Therefore your physical observables are those func-
tionals that are constant along those orbits: C∞

inv(ES). The aim of BV formalism is to
use some simple geometrical consideration to describe the space C∞

inv(ES) as a certain
homology.

But wait a minute! Isn’t the configuration space of the field theory really infinite
dimensional? Well, yes it is. Actually there are two ways out of this problem. First
is to use the jet space formalism, which is slightly heavy on the notation, but avoids
delving into the infinite dimensional aspects of the problem. Another way out is to take
the geometrical picture presented above quite literarily and translate it simply to the
language of infinite dimensional manifolds. We chose the second option because in the
end it provides a relatively simple language to describe those problems in a very general
setting. However, to use the machinery of infinite dimensional geometry, one has to learn
some vocabulary.



CHAPTER 2

MATHEMATICAL PRELIMINARIES

Ich glaube, daß es, im strengsten Verstand, für den Men-
schen nur eine einzige Wissenschaft gibt, und diese ist reine
Mathematik. Hierzu bedürfen wir nichts weiter als unseren
Geist.

∗ ∗ ∗

Die Mathematiker sind eine Art Franzosen: Redet man zu
ihnen, so übersetzen sie es in ihre Sprache, und dann ist es
also bald ganz etwas anderes.

G. Ch. Lichtenberg

This is the program of our short tour into the land of mathematics. It all starts in the
realm of functional analysis with some general facts concerning locally convex vector
spaces. The reader who is well acquainted with those issues may just skip this part.
After crossing the jungle of definitions and properties, where strange structures live, we
will enter more safe territory of nuclear vector spaces. There the tensor products are well
behaving and every practitioner of calculus can feel comfortable there. From there we
go by a very frequently used path straight into the distributions’ spaces. Since that land
is quite well known to all mathematical physicists, we shall not spend too much time
there, only shortly stopping to discuss the generalization to vector-valued distributions.
Finally, we leave the realm of functional analysis and pay a visit to the category theory,
careful to avoid too much “abstract nonsense”. After this short trip into the land of
mathematics we can come back to physics in chapter 2, bringing along new techniques
and theorems.
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2.1 Functional analysis

2.1.1 Locally convex vector spaces

Let the journey begin! We start this mathematical introduction with some ba-
sic definitions concerning the topological vector spaces. This section is based on
[156, 112, 167, 125].

Definition 2.1.1. A topological space is a set X in which a collection τ of subsets
(called open sets) has been specified, with the following properties:

• X ∈ τ

• ∅ ∈ τ

• the intersection of any two open sets is open: U ∩ V ∈ τ for U, V ∈ τ

• the union of every collection of open sets is open:⋃
α∈A

Uα ∈ τ for Uα ∈ τ ∀α ∈ A.

Well, that was quite general. A topology doesn’t give us too much structure, but
let’s see what we can do with it. A first thing to do is to look at mappings between the
spaces. A topology already tells us something about the regularity of those mappings,
since it contains already a notion of convergence.

Definition 2.1.2. A function f : X → Y , where X and Y are topological spaces, is
continuous if and only if for every open set V ⊆ Y , the inverse image:

f−1(V ) = {x ∈ X | f(x) ∈ V } (2.1)

is open.

In our applications the topology will not be enough to capture all the structure we
need. In the physics context it is common that we want to add certain quantities and
scale them. This leads in a natural way to a vector space structure. Now we want this
structure to be compatible also with the topology.

Definition 2.1.3. A Topological vector space (tvs) is a pair (X, τ), where τ is a
topology on a vector space X such that:

• every point of X is a closed set

• the vector space operations are continuous with respect to τ .

The subsets of topological vector spaces can have certain special properties. Here we
list the most important ones:

Definition 2.1.4. Let E be a vector space over a field K = C or R and A,B ⊆ E:

1. A is called circled if ∀λ ∈ K, |λ| ≤ 1 : λA ⊆ A.

2. A is called balanced if ∀λ ∈ K, |λ| = 1 : λA ⊆ A.

3. A is said to absorb B if there exists a λ > 0 with [0, λ] ·B ⊆ A.

4. A is called absorbent if ∀x ∈ E : A absorbs {x}.
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5. A is called convex if R ∋ λ1, λ2 ≥ 0, λ1+λ2 = 1, x1, x2 ∈ A implies: λ1x1+λ2x2 ∈
A.

6. A is called absolutely convex if λ1, . . . , λn ∈ K.
n∑
i=1
|λi| ≤ 1, x1, . . . , xn ∈ A

implies
n∑
i=1

λixi ∈ A.

7. A is called bounded if for every neighborhood U of zero, there exists a scalar λ so
that A ⊆ λU . In other words a set is called bounded if it is absorbed by every zero
neighborhood.

An important tool to characterize a topological vector space is a base. It is defined
as follows:

Definition 2.1.5. A local base of a topological vector space X is thus a collection B,
of neighborhoods of 0 such that every neighborhood of 0 contains a member of B. The
open sets of X are then precisely those that are unions of translates of members of B.

There are some important types of topological vector spaces, that have many nice
properties and are therefore commonly used in mathematics and physics. In the following
definitions, X always denotes a topological vector space, with topology τ .

1. X is a locally convex vector space (lcvs) if there is a local base B whose
members are convex.

2. X is locally bounded if 0 has a bounded neighborhood.

3. X is locally compact if 0 has a neighborhood whose closure is compact.

4. X is metrizable if τ is compatible with some metric d.

5. X is a Fréchet space if X is a complete locally convex space with a metrizable
topology

6. X is normable if a norm exists on X such that the metric induced by the norm is
compatible with τ .

In our framework we shall use always topological vector spaces that are locally convex.
On the practical grounds they can be also characterized in terms of seminorms . This is
how they are usually defined in the context of physics.

Definition 2.1.6. A seminorm on a vector space X is a real-valued function p on X
such that:

1. p(x+ y) < p(x) + p(y) for all x, y ∈ X.

2. p(λx) = |λ|p(x) for all x ∈ X and all scalars λ ∈ K.

We see that a seminorm already provides us with a lot of information, but there is
one property that is still missing. We would like to have some notion of distance in
our space, to compare different elements and a single seminorm is not enough to do it.
Indeed, it can happen that a seminorm evaluated on an element is 0 even though the
element itself is non zero. If we want to avoid it, we arrive as the notion of a norm.

Definition 2.1.7. A seminorm p is a norm if it satisfies: p(x) 6= 0 if x 6= 0.
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But what if our tvs doesn’t admit a norm? If we still want to get some notion of a
distance, we can compare two elements not with one seminorm, but use a whole family.

Definition 2.1.8. A family P of seminorms on X is said to be separating if to each
x 6= 0 corresponds at least one p ∈P with p(x) 6= 0.

We can see that a separating family of seminorms already allows us to distinguish
two elements. From the following theorem it becomes clear why locally convex vector
spaces are so commonly used in physics.

Theorem 2.1.9. With each separating family of seminorms on X we can associate a
locally convex topology τ on X and vice versa: every locally convex topology is generated
by some family of separating seminorms.

Proof. See [156].

Now we know, why are seminorms so nice. That’s usually the best you can get, if
you cannot equip your space with a norm. Besides they also provide a notion of distance.
This is quite important, since if you want to think of the configuration space of your
physical model you would like to be able to tell if a certain solution is “close” to a given
one. It turns out that if our family of seminorms is countable this notion of distance is
actually very precisely defined.

Theorem 2.1.10. A locally convex vector space (X, τ) is metrizable iff τ can be defined
by P = {pn : n ∈ N} a countable separating family of seminorms on X. One can equip
X with a metric which is compatible with τ and which provides a family of convex balls.

Proof. See [125, 156].

A lcvs from theorem 2.1.10 can be equipped with the metric:

d(x, y) :=
∑

∈N
2−n

pn(x− y)
1 + pn(x− y)

(2.2)

This metric is compatible with τ but in general this metric doesn’t provide convex balls
(see the discussion in [156] after theorem 1.24 and exercise 18). Nevertheless it is good to
know that you have a metric that can actually be written down in a closed form. You can
also invent as many modifications of this definition as you want. If X is complete with
respect to the metric from theorem 2.1.10 it is a Fréchet space. Usually a Fréchet space
topology is defined explicitly by providing a countable separating family of seminorms.
Those spaces are already well behaving but still not optimal for the calculus. Everything
becomes much easier if we go one step further and equip our topological space with a
norm. Among normed topological spaces there is a class that is especially favored by all
functional analysts.

Definition 2.1.11. A Banach space is a normed tvs which is complete with respect
to the norm.

Theorem 2.1.12. A topological vector space X is normable if and only if its origin has
a convex bounded neighborhood.

Proof. See [156].
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Many of the fundamental theorems of functional analysis don’t work outside Banach
spaces, or they need some more assumptions. Nevertheless notions of calculus exist on
general locally convex vector spaces and a lot can be proven also in this setting. We give
an overview of the crucial results in section 2.3. It turns out that at some point we would
have to leave the save realm of Banach and move the calculus to a more general setting.
But before we do it, we shall stop for a while and admire the dualities.

A very important notion in the theory of lcvs is the duality. A dual space of E,
denoted by E′ is the space of continuous linear mappings L(E,R). In general it can be
equipped with different inequivalent topologies:

1. Weak topology: the so called pointwise convergence topology. A functional x′ ∈
E′ converges to 0 in this topology if all its values 〈x′, x〉 converge to 0, for all x ∈ E.

2. Strong topology: topology of uniform convergence on bounded sets of E.

3. Compact convergence topology: topology of uniform convergence on compact
sets of E.

One notices that the weak topology contains the least information about how good the
convergence is. One can only see what is happening at a given point. It is of course
better to control convergence in the whole bounded set. Therefore, strong and compact
convergence topology are more reliable, but of course it is usually more difficult to prove
them. At this point one more thing requires a comment. Until now we didn’t really
give a definition of a uniform convergence. Actually, it’s a very general notion and can
be applied even in a structure more general than a lcvs, namely in a uniform space.
Since we don’t need such a level of generality we only give a definition of a uniform
convergence here for maps between topological vector spaces. Before we do it there is
one more important notion we have to introduce, namely a net . It is a generalization of
a sequence and will be useful in the context of algebraic formulation of field thory.

Definition 2.1.13. Let I be a directed set (i.e. a nonempty set with a reflexive and
transitive binary relation ≤ with the additional property that every pair of elements has
an upper bound) and V ⊂ X a general set in a tvs X. If for each α ∈ I an element
xα ∈ V is given, then (xα)α∈Z is a net in V .

The notion of convergence of nets is defined in the following way:

Definition 2.1.14. A net (xα)α∈Z is said to be convergent to x ∈ X if for each neigh-
borhood U of x, there exists β(U) ∈ I, such that xγ ∈ U for all γ ≥ β(U).

Now we can come back to the discussion of uniform convergence. Consider X to be a
subspace of the space of all mappings between lcvs E and F . We say that a net (fα)α∈I
in X converges uniformly to an element f ∈ X on a set B ⊂ E if for every U open in F
there exists β(U) such that fα(x)− f(x) ∈ U for all x ∈ B and α ≥ β(U). Now we can
give a precise definition of the topology of uniform convergence on compact (bounded)
sets. We say that a net (fα)α∈I in X converges to f ∈ X in this topology if it converges
uniformly on all the compact (bounded) sets. It is clear that this notion contains more
information on the “quality” of the convergence than the pointwise topology.

2.1.2 Nuclear locally convex vector spaces

Working on the level of infinite dimensional vector spaces often causes problems, since
there are many counterintuitive properties and one has to be careful with using notions
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known from the finite dimensional case. A particular difficulty arises with the definition
of tensor products. On the level of infinite dimensional lcvs the projective and injective
tensor products do not coincide. There is however a class of lcvs for which this is the
case. Those are called nuclear spaces. We give now an abstract definition of nuclear lcvs

and list some properties that are usefull in proving that a given space is nuclear. Many
of the spaces used in this work have the nuclearity property.

First we introduce a notion of a nuclear operator. In principle an operator is
nuclear if it can be approximated by operators of finite rank (finite dimensional image).
A nuclear operator has certain nice properties analogous to finite-dimensional operators.
For example a nuclear operator mapping a space with a basis into itself has a finite trace,
which is given by the sum of the series formed from the diagonal elements of the matrix
of this operator relative to an arbitrary basis. Below we give a precise definition of a
nuclear operator on a locally convex vector space. Let E and F be lcvs over the field
R or C, let E′ and F ′ be their strong duals.

Definition 2.1.15. A linear operator A : E → F is called nuclear if it can be represented
in the form

x 7→ Ax =

∞∑

i=1

λi
〈
x, x′i

〉
yi ,

where {λi} is a summable numerical sequence, {x′i} is an equicontinuous1 sequence in
E′, {yi} is a sequence of elements from a certain complete bounded convex circled set in
F and 〈x, x′i〉 denotes the value of the linear functional x′i at a vector x.

Now we can define what is a nuclear space.

Definition 2.1.16. A nuclear space is a locally convex vector space for which all contin-
uous linear mappings into an arbitrary Banach space are nuclear operators.

Nuclear spaces are commonly used in analysis, since the projective and injective
tensor products (see section 2.1.3) are equivalent for such spaces and also an analogue of
Schwartz’ kernel theorem is valid [90]. They also have quite good permanence properties
that allow us to prove that a given space is nuclear without direct calculations. Here we
give a list of those properties based on [151, 112].

Theorem 2.1.17. The following spaces are nuclear:

i) a linear subspace of a nuclear lcvs,

ii) a quotient of a nuclear lcvs by a closed linear subspace,

iii) a cartesian product and a projective limit of an arbitrary family of nuclear lcvs,

iv) a countable direct sum and a countable inductive limit of nuclear lcvs,

v) a projective tensor product of nuclear spaces.

1A set A of continuous functions between two topological spaces E and F is equicontinuous at the
points x0 ∈ E and y0 ∈ F if for any open set O around y, there are neighborhoods U of x0 and V of y0
such that for every f ∈ A, if the intersection of f(U) and V is nonempty, then f(U) ⊆ O. One says that
A is equicontinuous if it is equicontinuous for all points x0 ∈ E, y0 ∈ F . The notion of equicontinuity
becomes more intuitive, if we choose E and F to be metric spaces. The family A is equicontinuous at a
point x if for every ǫ > 0, there exists a δ > 0 such that d(f(x0), f(x)) < ǫ for all f ∈ A and all x such
that d(x0, x) < δ. In other words we require all member of the familiy A to be continuous and to have
equal variation over a given neighbourhood.
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From properties i) and iii) one can obtain a following useful corollary (see [151],
proposition 5.2.3):

Corollary 2.1.18 ( [151], 5.2.3). Let E be a linear space which is mapped by certain
linear mappings Ti into locally convex vector spaces Ei, i ∈ I in such a way that for each
element x 6= 0 there exists an index i0 ∈ I with Ti0x 6= 0. Space E can identified with
a subspace of

∏
I
Ei and equipped with the initial topology with respect to this family of

mappings. If all spaces Ei are nuclear, then this topology on E is also nuclear.

Many of the spaces commonly used in analysis are nuclear. In particular the spaces
of smooth function E, compactly supported functions D and Schwartz functions S as well
as their strong and weak duals are nuclear.

2.1.3 Tensor products

Nuclear spaces introduced in the previous section are particularly useful in the context
of tensor products on lcvs. We will explain in section 3.3 how the tensor structure is
related to the causality. More on that issue can be found in [78]. It is well known that
the definition of topological tensor product is not unique for general locally convex vector
spaces. Most of the results on this subject can be found in the thesis of A. Grothendieck
[90]. In principle there are two natural notions that can be applied in this case: projective
and injective tensor product. We recall here both definitions. More details can be found
in [112, 22].

Definition 2.1.19. Let E and F be locally convex vector spaces and let ⊗ : E×F → E⊗F
be the canonical map into the corresponding tensor product. The finest topology on E⊗F
which makes ⊗ continuous is called the projective tensor topology or the π-topology.
The space E ⊗ F equipped with this topology is denoted by E ⊗π F

It can be shown that the topology π is locally convex. Another possible topology
on E ⊗ F is the so called injective tensor topology . Its definition is a little bit
more involved. In some sense it is the weakest well behaving topology one can put
on E ⊗ F . The idea is to define it via the topology on the space of continuous linear
mappings L(E′

γ , F ). We equipped E′ with the finest locally convex topology γ that
coincides with the weak one on equicontinuous sets. One can identify E ⊗ F with a
subspace of L(E′

γ , F ). Next we equip L(E′
γ , F ) with a topology of uniform convergence

on equicontinuous compact sets in E′. We denote the resulting topological space by
EεF . It is called the ε-product of E and F . The corresponding topology induced on
E⊗F is called the ε-topology and E⊗F equipped with it is the injective tensor product
E ⊗ε F . This topology is better behaving if we want to consider for example vector
valued distributions (see section 2.2.3) and was used (in a slightly modified version) by
L. Schwartz in [168, 169]. Inequivalent notions of tensor products on lcvs can possibly
create a problem, but there is a large class of spaces, where they coincide. The crucial
result, proved by A. Grothendieck [90] says that:

Theorem 2.1.20. E is a nuclear locally convex vector space if and only if for each
arbitrary lcvs F the projective and injective tensor products coincide, i.e.

E ⊗ε F = E ⊗π F .
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2.2 Distributions

In the previous section we introduced many abstract notions, now it’s time for something
more practical. Most commonly used locally convex vector spaces in physics are spaces
of functions and distributions. Therefore we want to concentrate on them in this section,
where we give a short summary of the definitions and theorems from the theory of
distributions that we are going to use later on. The purpose of this short revision is
twofold. Firstly we want to show how the abstract notions from topology work in specific
examples. Secondly we want to fix the notation and present the concepts we need in a
language consistent with the rest of the thesis. Since the theory of distributions is quite
a standard tool in mathematical physics we can now feel more relaxed in our journey
through the land of mathematics and enjoy nice views, seen now from a slightly different
perspective. First we discuss the distributions on Rn, next we remark on generalization
to distributions on manifolds and vector valued distributions.

2.2.1 Distributions on Ω ⊂ Rn

We start with defining locally convex topologies on spaces of smooth functions on Rn.
Definitions and theorems in this section are taken from [156, 108, 177, 167]. The part on
wave front sets is based on the chapter 4 of [5].

Let Ω ⊂ Rn be an open subset and E(Ω)
.
= C∞(Ω) the space of smooth functions on

it. We equip this space with a Fréchet topology generated by the family of seminorms:

pK,m(ϕ) = sup
x∈K

|α|≤m

|∂αϕ(x)| , (2.3)

where α ∈ NN is a multiindex and K ⊂ Ω is a compact set. This is just the topology of
uniform convergence on compact sets mentioned in section 2.1.1 of all the derivatives.

The space of smooth compactly supported functions D(Ω)
.
= C∞

c (Ω) can be equipped
with a locally convex topology in a similar way. The fundamental system of seminorms
is given by [167]:

p{m},{ǫ},a(ϕ) = sup
ν

(
sup
|x|≥ν,
|p|≤mν

∣∣Dpϕa(x)
∣∣/ǫν

)
, (2.4)

where {m} is an increasing sequence of positive numbers going to +∞ and {ǫ} is a
decreasing one tending to 0. This topology is no longer Fréchet.

The space of distributions is defined to be the dual D′(Ω) of D(Ω) with respect to
the topology given by (2.4). Equivalently, given a linear map L on D(Ω) we can decide
if it is a distribution by checking one of the equivalent conditions given in the theorem
below [177, 156, 108].

Theorem 2.2.1. A linear map u on E(Ω) is a distribution if it satisfies the following
equivalent conditions:

1. To every compact subset K of Ω there exists an integer m and a constant C > 0
such that for all ϕ ∈ D with support contained in K it holds:

|u(ϕ)| ≤ Cmax
p≤k

sup
x∈Ω
|∂pϕ(x)| .

We call ||u||Ck(Ω)
.
= maxp≤k supx∈Ω |∂pϕ(x)| the Ck-norm and if the same integer k

can be used in all K for a given distribution u, then we say that u is of order k.
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2. If a sequence of test functions {ϕk}, as well as all their derivatives converge uni-
formly to 0 and if all the test functions ϕk have their supports contained in a
compact subset K ⊂ Ω independent of the index k, then u(ϕk)→ 0.

An important property of a distribution is its support. If U ′ ⊂ U is an open subset
then D(U ′) is a closed subspace of D(U) and there is a natural restriction map D′(U)→
D′(U ′). We denote the restriction of a distribution u to an open subset U ′ by u|U ′ .

Definition 2.2.2. The support suppu of a distribution u ∈ D′(Ω) is the smallest closed
set O such that u|Ω\O = 0. In other words:

suppu
.
= {x ∈ Ω| ∀U open neigh. of x, U ⊂ Ω ∃ϕ ∈ D(Ω), suppϕ ⊂ U, s.t. <u, ϕ> 6= 0} .

Distributions with compact support can be characterized by means of a following
theorem:

Theorem 2.2.3. The set of distributions in Ω with compact support is identical with the
dual E′(Ω) of E(Ω) with respect to the topology given by (2.3).

Now we want to consider topologies on E′(Ω) and D′(Ω). Most natural choices are
the strong or the weak topology. Spaces E(Ω), D(Ω), as well as their strong duals are
reflexive (coinciding with the dual of the dual space) nuclear spaces. Moreover it is shown
in [167] that E′(Ω) is embedded in D′(Ω) also as a topological vector space, if we equip
both with their strong topologies.

There are many examples of distributions. Clearly any locally integrable function
f ∈ L1

loc(Ω) defines a distribution in D′(Ω) by:

ϕ 7→
∫

Ω
f(x)ϕ(x)dx

There is also a characterization of a wider class of distributions in terms of measures.
This will be important later on in the context of local functionals.

Theorem 2.2.4. Let u ∈ D′(Ω). If suppu is a compact subset of Ω, then u has a finite
order N < ∞. In case when suppu = {x} consists of a single point, then there are
constants cα such that:

u =
∑

|α|≤N
cαD

αδx ,

where δx is the evaluation functional, i.e. δx(ϕ) = ϕ(x).

Proof. See [156], theorems 6.24, 6.25.

This can be further generalized to a theorem that allows us to write the compactly
supported distributions as certain measures:

Theorem 2.2.5. Let u ∈ D′(Ω) be a distribution with compact support K and of rank
N . Let K ⊂ V ⊂ Ω, where V is an open set. Then there exists finitely many functions
fβ in Ω (one for each multiindex βi ≤ N + 2 for i = 1, ..., n) with supports in V such
that:

u(ϕ) =
∑

β

(−1)|β|
∫

Ω
fβ(x)(D

βϕ)(x)dx ϕ ∈ D(Ω) .

Proof. See [156], theorem 6.27.
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The theorem above justifies somewhat the notation used commonly in physics, where
the evaluation of a distribution on a test function is written as an integral. However this
characterization must be taken with certain care, since it is in general not possible to
write a distribution u as a sum of measures with supports contained in the support of u.

Now we discuss the singularity structure of distributions. This is mainly based on
[108] and chapter 4 of [5].

Definition 2.2.6. The singular support sing suppu of u ∈ D′(Ω) is the smallest closed
subset O such that u|Ω\O ∈ E(Ω \ O).

We recall an important theorem giving the criterium for a compactly distribution to
have an empty singular support:

Theorem 2.2.7. A distribution u ∈ E′(Ω) is smooth if and only if for every N there is
a constant CN such that:

|û(ξ)| ≤ CN (1 + |ξ|)−N ,
where û denotes the Fourier transform of u.

If a distribution has a nonempty singular support we can give a further characteriza-
tion of its singularity structure by specifying the direction in which it is singular. This
is exactly the purpose of the definition of a wave front set.

Definition 2.2.8. For a distribution u ∈ D′(Ω) the wavefront set WF(u) is the comple-
ment in Ω× Rn \ {0} of the set of points (x, ξ) ∈ Ω× Rn \ {0} such that there exist

• a function f ∈ D(Ω) with f(x) = 1,

• an open conic neighborhood C of ξ, with

sup
ξ∈C

(1 + |ξ|)N |f̂ ·(ξ)| <∞ ∀N ∈ N0 .

We shall come back to the discussion of wave front sets in section 3.4 when we recall
the construction of a Poisson structure of the classical theory of the scalar field.

2.2.2 Vector-valued distributions on manifolds

In this section we mainly follow the introduction given in [6]. Let M be a manifold
equipped with a smooth volume density dvolM . In particular we can use the volume
form induced by a Lorentzian metric. We consider a real or complex vector bundle
B

π−→ M with fiber V . Let Γ(B) be the space of its smooth sections. We also use
the notation Γ(B) ≡ Γ(M,V ) to stress the fact that locally this is isomorphic to the
space of smooth functions with values of V . All spaces of field configurations have more
or less this structure. The space of compactly supported sections will be denoted by
Γc(B) ≡ Γc(M,V ).

We equip B and T ∗M with connections, both denoted by∇. They induce connections
on the tensor bundles T ∗M ⊗ · · · ⊗ T ∗M︸ ︷︷ ︸

n−1

⊗B, again denoted by ∇. By a tensor product

of bundles we understand a vector bundle over M whose fiber is the n-fold tensor product
of corresponding fibers. For a continuously differentiable section ϕ ∈ C1(B) the covariant
derivative is a continuous section in T ∗M ⊗ B, ∇ϕ ∈ C0(T ∗M ⊗ B). More generally,
for ϕ ∈ Ck(B) we get ∇ϕ ∈ C0(T ∗M ⊗ · · · ⊗ T ∗M︸ ︷︷ ︸

k

⊗B). We choose a metric on T ∗M
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and on B. This induces metrics on all bundles T ∗M ⊗ · · · ⊗ T ∗M ⊗ B and for a subset
U ⊂M and ϕ ∈ Ck(B) we define the Ck-norm by

||ϕ||Ck(U)
.
= max

j=0,...,k
sup
x∈U
|∇jϕ(x)| .

For compact U all choices of metrics and connections yield equivalent norms. Using the
Ck-norm defined above one can introduce locally convex topologies on spaces Γc(B) and
Γ(B) end define spaces of distributions as their duals Γ′

c(B) and Γ′(B). The theory of
distributions on Rn can be easily generalized to the distributions on a manifold.

Since on Lorentzian manifolds we have a distinguished volume element we identify
smooth functions with distributions using the following prescription:

Example 2.2.9. Every locally integrable section f ∈ L1
loc(M,V ) can be interpreted as

a distribution by setting for any ϕ ∈ Γc(M,V ∗):

f(ϕ)
.
=

∫

M

dvolMϕ(f) .

All the definitions and properties mentioned in the previous section extend easily to
manifolds, since locally they are isomorphic to Rn.

2.2.3 Distributions with values in a graded algebra

In this section we describe in details the theory of vector valued distributions. We focus
on the case when the vector space in question is a graded infinite dimensional algebra
A. We denote the graded product of A by ∧. L. Schwartz [168] defines vector valued
distributions in a following way:

Definition 2.2.10. Let X be a lcvs with a topology defined by a separable family of
seminorms {pα}α∈I . We say that T is a distribution on Rn with values in X if it is
a continuous linear mapping from D to X, where D denotes the space of compactly
supported functions on R.

Under some technical assumptions we can identify the space of distributions with
values in A with the appropriately completed tensor product D′⊗̂A. In the the context
of this thesis the choice of a suitable topology for this completion will always be quite
natural. We will discuss it later on with specific examples. The notion of vector-valued
distribution enables us to formulate the classical field theory involving anticommuting
fields in a mathematically elegant way. This will be discussed in section 3.6. One can
generalize all well known operations like convolution, Fourier transform and pullback to
such objects [108, 168, 169].

Definition 2.2.11. Let T = t⊗f and φ = ϕ⊗g, where f, g ∈ A, t ∈ D′ and ϕ ∈ D. We
have an antisymmetric bilinear product on A defined as: ma(T, S)

.
= T ∧ S. We define

the convolution of T and φ by setting:

(T ∗ φ)(x) .= t(φ(x− .))⊗ma(f, g) . (2.5)

The extension by the sequential continuity to D′⊗̂A defines a convolution of a vector-
valued distribution with a vector-valued function.
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Definition 2.2.12. Let T = t⊗ f and S = s⊗ g, where f, g ∈ A, t ∈ E′(R2) and s ∈ D′.
We define the convolution of T and S by setting:

T ∗ S .
=

∫
t(., y)s(y)dy ⊗ma(f, g) , (2.6)

This expression is well defined by [108, 4.2.2] and can be extended by continuity to arbi-
trary S ∈ D′⊗̂A, T ∈ E′⊗̂A.

Definition 2.2.13. In a similar spirit we define the evaluation of T = t⊗f on φ = ϕ⊗g,
by:

〈T, φ〉 .= 〈t, ϕ〉 ⊗ma(f, g) , (2.7)

where f, g ∈ A, t ∈ D′ and ϕ ∈ D. Also this can be extended by continuity to D′⊗̂A.

Let S denote the space of rapidly decreasing functions, i.e. such that:
supx |xβ∂αφ(x)| < ∞ for all multi-indices α, β.

Definition 2.2.14. Let T ∈ S ′⊗̂A. We define T̂ ∈ S ′⊗̂A, the Fourier transform of T
as:

T̂ (φ) = T (φ̂) φ ∈ S . (2.8)

Also the notion of the wave front set [108] can be extended to distributions with
values in a lcvs. The case of Banach spaces was already treated in detail in [158].

Definition 2.2.15. Let {pα}α∈A be the family of seminorms generating the locally convex
topology on A. Let T ∈ S ′⊗̂A. A point (x, ξ0) ∈ T ∗Rn \ 0 is not in WF(T ), if and only

if pα(φ̂u(ξ)) is fast decreasing as |ξ| → ∞ for all ξ in an open conical neighbourhood of
ξ0, for some φ ∈ D with φ(x) 6= 0, ∀α ∈ A.

With the notion of the wave front set we can define a “pointwise product” of two
distributions T, S ∈ D′⊗̂A by a straightforward extension of [108, 8.2.10]:

Proposition 2.2.16. Let T, S ∈ D′⊗̂A, U ∈M (open). The product T ·S can be defined
as the pullback of ma◦(T ⊗S) by the diagonal map δ : U → U×U unless (x, ξ) ∈WF(T )
and (x,−ξ) ∈WF(S) for some (x, ξ).

Obviously we have: T ·S = (−1)|T ||S|S ·T , whenever these expressions are well defined.
In the paper we also use a more suggestive notation: T · S .

= 〈T, S〉.

2.3 Infinite dimensional calculus

After a short trip into the realm of distributions now it’s time for a really exciting
adventure! We set for a journey into the area of the Land of Mathematics, that
was discovered not so long ago and still hides some dangerous surprises. hic svnt

leones. . . Nevertheless it’s worth to take a risk, because it is undoubtedly beautiful and
fascinating. We enter now the realm of the infinite dimensional calculus. As a guide in
this strange land we shall use the lecture notes of K.-H. Neeb [143] and the book of P.
Michor [127]. We start with some historical remarks. Infinite dimensional differential
calculus came into general attention quite recently, mainly due to works of Hamilton
[95] and Milnor [137]. Nevertheless the idea itself seems to be much older. Perhaps the
need for such a generalization became apparent already to Bernoulli and Euler at the
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beginnings of variational calculus. During the 20-th century the motivation for a calcu-
lus in spaces more general than Banach spaces became stronger partially due to possible
applications in physics. There were many different approaches and definitions but they
all met similar difficulties. One of them is the fact that the composition of continuous
linear mappings ceases to be a jointly continuous operation for any suitable topology on
spaces of linear mappings.

Example 2.3.1 (after [127]). Consider the evaluation ev : E × E∗ → R, where E is a
locally convex space and E∗ is its dual of continuous linear functionals equipped with
any locally convex topology. Let us assume that the evaluation is jointly continuous.
Then there are neighborhoods U ⊆ E and V ⊆ E∗ of zero such that ev(U ×V ) ⊆ [−1, 1].
But then U is contained in the polar of V , so it is bounded in E, and so E admits a
bounded neighborhood and is thus normable.

We recal that the polar of a set is defined as follows:

Definition 2.3.2. Given a dual pair (X,Y ) the polar set or polar of a subset A of X is
a set A◦ in Y defined as:

A◦ := {y ∈ Y : sup{|〈x, y〉| : x ∈ A} ≤ 1} (2.9)

This simple counterexample shows that as soon as we leave Banach spaces, we get
into trouble even with very harmless operations like an evaluation. Having this in mind
we will now cautiously move forward into the dangerous realm of infinite dimensional
calculus.

The problem of defining a derivative on a locally convex space has roots in the varia-
tional calculus. The calculus of variations started evolving into a rather formal procedure,
used extensively in physics. At the same time Weierstrass in his lectures gave more reli-
able foundations to the theory, which was made public by Kneser (A. Kneser, Lehrbuch
der Variationsrechnung, Vieweg, Braunschweig, 1900). Further development went into
the direction of the theory of partial differential equations.

The most commonly used definitions of a derivative are the Fréchet derivative and the
Gâteaux derivative, but there are many more. In [127] the authors recall (after Averbukh,
Smolyanov [4]) that in the literature one finds 25 inequivalent definitions of the first
derivative (in tvs) in a single point. This shows that finite order differentiability beyond
Banach spaces is really a nontrivial issue. For continuously differentiable mappings the
many possible notions reduce to 9 inequivalent ones (fewer for Fréchet spaces). And if
we look for infinitely often differentiable mappings, then we end up with 6 inequivalent
notions (only 3 for Fréchet spaces).

The next step into the direction of infinite dimensional geometry is the definition of a
manifold. First idea to generalize this notion to infinite dimensions was a manifold mod-
eled on a Banach space (Banach manifold). Later it turned out that Banach manifolds
are not suitable for some of the important questions of global analysis. A counterex-
ample, interesting also from a physical point of view is due to [145], see also [146]: If
a Banach Lie group acts effectively on a finite dimensional compact smooth manifold
it must be finite dimensional itself. Since in the context of gauge theories we want to
consider infinite dimensional Lie groups, we would like to have a notion of a manifold
modeled on a more general space: Fréchet or just locally convex one.

Another issue related to the smooth calculus is the so called cartesian closedness.
One would like to have a property:

C∞(E × F,G) ∼= C∞(E,C∞(F,G)) (NOT TRUE!), (2.10)
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which is called the cartesian closedness. This is a property fulfilled by many well
behaving categories, but the category of smooth manifolds doesn’t have it. This was a
motivation for developing generalizations of smooth manifolds, so called smooth spaces.
Best known approaches are:

• Chen spaces (Chen, 1977)

• diffeological spaces (Souriau 1980)

The categories of smooth spaces defined in this way have all the nice properties, but
their objects are quite difficult to handle. This was a motivation for development of
different approaches, that aim at cartesian closedness but on the same time provide a
calculus which is relatively “easy to use”. In [80] (see also [127, 2]) a smooth calculus was
proposed which has a property (2.10) holding without any restrictions for the so called
convenient vector spaces. The key idea is to define a different, finer topology on the
product E × F . The approach of [80] is based on bornological instead of topological
concepts.

However if one wants to define a smooth manifold basing on a concept of charts, then
the cartesian closedness is very limited even in the convenient setting (see the discussion
in [127], chapter IV). A way out is to base a definition of a manifold on the concept of
the family of smooth mappings (see: [162, 126]). In other words, one specifies explicitly
which mappings are “smooth”.

In the present work we take a rather “pragmatic” point of view and choose a setting
that resembles closely the finite dimensional case and is easily applicable to problems at
hand. Besides, the physical examples we consider involve relatively well behaving spaces,
namely Fréchet or nuclear lcvs. In the next section we give a short introduction to
calculus on locally convex vector spaces based on the lecture notes [143].

2.3.1 Calculus on locally convex vector spaces

We start with the notion of derivative. Actually it resembles just the directional derivative
we know from the finite dimensional calculus. Let X and Y be topological vector spaces,
U ⊆ X an open set and f : U → Y a map. The derivative of f at x in the direction of h
is defined as

df(x)(h)
.
= lim

t→0

1

t
(f(x+ th)− f(x)) (2.11)

whenever the limit exists. The function f is called differentiable at x if df(x)(h) exists
for all h ∈ X. It is called continuously differentiable if it is differentiable at all points of
U and df : U ×X → Y, (x, h) 7→ df(x)(h) is a continuous map. It is called a C1-map if it
is continuous and continuously differentiable. Higher derivatives are defined for Cn-maps
by

dnf(x)(h1, . . . , hn)
.
= lim

t→0

1

t

(
dn−1f(x+ thn)(h1, . . . , hn−1)− dn−1f(x)(h1, . . . , hn−1)

)

(2.12)
The derivative defined by (2.11) has many nice properties. It is shown for example in
[143, 95], that the following proposition holds:

Proposition 2.3.3. Let X and Y be locally convex spaces, U ⊆ X an open subset, and
f : U → Y a continuously differentiable function. Then:

1. For any x ∈ U , the map df(x) : X → Y is real linear and continuous.
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2. (Fundamental Theorem of Calculus). If x+ [0, 1]h ⊆ U , then

f(x+ h) = f(x) +

1∫

0

df(x+ th)(h)dt .

3. f is continuous.

4. If f is Cn, n ≥ 2, then the functions (h1, ..., hn) 7→ dnf(x)(h1, ..., hn), x ∈ U , are
symmetric n-linear maps.

5. If x+ [0, 1]h ⊆ U ,then we have the Taylor Formula:

f(x+ h) = f(x) + df(x)(h) + . . . +
1

(n− 1)!
dn−1f(x)(h, . . . , h)+

+
1

(n− 1)!

1∫

0

(1− t)n−1dnf(x+ th)(h, ..., h)dt .

Now, following [143] we shall introduce a notion of an infinite dimensional manifold.
Let M be a Hausdorff topological space and E a lcvs. An E-chart of an open subset
U ⊆ M is a homeomorphism ϕ : U → ϕ(U) ⊆ E onto an open subset ϕ(U) of E.
We denote such a chart as a pair (ϕ,U). Two charts (ϕ,U) and (ψ, V ) are said to be

smoothly compatible if the map ψ ◦ ϕ−1
∣∣∣
ϕ(U∩V )

: ϕ(U ∩ V )→ ψ(U ∩ V ) is smooth.

An E-atlas of M is a family (ϕi, Ui)i∈I of pairwise compatible E-charts of M for which⋃
i Ui =M . Many of the objects used in differential geometry can be defined also in the

infinite dimensional case. We start with the notion of a tangent space.

Definition 2.3.4. Let x be an element of a locally convex vector space X. A kinematic
tangent vector with foot point x is a pair (x,Q) with Q ∈ X. TxE ∼= E is the space of
all kinematic tangent vectors with foot point x. It consists of all derivatives c′(0) at 0 of
smooth curves c : R→ E with c(0) = x. The kinematic tangent space of a locally convex
vector space E will be denoted by TE and the space of vector fields by Γ(TE).

We use the term kinematic since in the most general case this definition doesn’t
coincide with the definition of vector fields as derivations. Fortunately for the spaces
considered in the context of BV formalism this doesn’t pose a problem.

Definition 2.3.5. Let M be a smooth manifold with the atlas (ϕi, Ui)i∈I , where ϕi :
Ui → Ei. We consider the following equivalence relation on the disjoint union

⋃

i∈I
Ui ×Ei × {i} ,

(x, v, i) ∼ (y,w, j) ⇔ x = y and d(ϕij)(ϕj(x))w = v ,

where ϕij are the transition functions. One denotes the quotient set by TM , the kine-

matic tangent bundle of M . A kinematic vector field X on M is just a smooth section
of the kinematic tangent bundle.

On finite dimensional manifolds we can define vector fields equivalently as bounded
derivations of the sheaf of smooth functions. In infinite dimensional geometry those
notions don’t coincide in general. The vector fields defined as derivations are called
operational vector fields.
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Definition 2.3.6 ([127], 32.1). By an operational vector field X on M we mean a bounded
derivation of the sheaf C∞(.,R), i.e. for the open U ⊂ M we are given bounded deriva-
tions XU : C∞(U,R)→ C∞(U,R) commuting with the restriction mappings.

Kinematic vector fields are contained in the space of operational vector fields but the
opposite is not always true. In the present work by vector fields we always mean the
kinematic vector fields. We already see that although many of the finite dimensional
concepts can be generalized to the infinite dimensional case, one has to be extremely
cautious. For example the existence of local flows is not guaranteed if we go beyond
Banach spaces, since the implicite function theorem doesn’t hold in the simple form. A
detailed discussion of these issues can be found in section 32 of [127].

Now we want to define differential forms on an infinite dimensional manifold. This
turns out to be a problem, since there is no natural notion of a cotangent space. To see
the source of the problem note that while we can define for each manifold M modeled
on a lcvs E a cotangent bundle by T ∗M =

⋃
m∈M

(TmM)′ and endow it with a vector

bundle structure over M , we cannot endow it with a smooth manifold structure. To
be able to do it we would need a locally convex topology on the dual space E′ such
that for each local diffeomorphism f : U → E, U open in E, the map U × E′ → E′,
(x, λ) 7→ λ ◦ df(x) is smooth. This is fulfilled for the norm topology on a Banach space
but becomes a problem if we consider manifolds modeled on more general lcvs (compare
with the example 2.3.1).

Nevertheless one can still introduce differential forms by a direct definition without
reference to the cotangent bundle. The existing alternative definitions of differential
forms are unfortunatelly not equivalent. A detailed discussion of this problem is given in
[127] (VII.33). It turns out that only one of these notions is stable under Lie derivatives,
exterior derivative, and the pullback.

Definition 2.3.7 ([127],VII.33.22). Let M be a smooth infinite dimensional manifold.
We will define the space of differential forms on M as:

Ωk(M)
.
= C∞(M ← Lkalt(TM,M × R)) . (2.13)

Similarly, we denote by Ωk(M ;V )
.
= C∞(M ← Lkalt(TM,M×V )) the space of differential

forms with values in a locally convex vector space V .

2.3.2 Infinite dimensional Lie groups

In physics one would like to treat certain spaces of functions as infinite dimensional Lie
groups. To put it in an appropriate mathematical setting one needs first a notion of
an infinite dimensional manifold. A definition proposed in [143] makes it possible to
provide certain infinite dimensional spaces with the structure of a manifold modeled on
a locally convex vector space. One can apply all tools of locally convex analysis in this
case. Unfortunately this definition doesn’t cover all the interesting cases. In particular
it fails for the spaces of mappings between noncompact manifolds.

Example 2.3.8 (after [143]). If M is a non-compact finite-dimensional manifold, then
one cannot expect the topological groups C∞(M,K) to be Lie groups. A typical example
arises forM = N (a 0 - dimensional manifold) andK = T := R/Z. Then C∞(M,K) ∼= TN

is a topological group for which no 1-neighborhood is contractible.
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This means that one cannot consider Diff(M) to be an infinite dimensional Lie group
for a noncompact manifold M . One can overcome this problem by restricting to com-
pactly supported diffeomorphisms [144, 84, 85]. We discuss those issues on concrete
examples in chapter 4.

2.4 Categories and functors

In the locally covariant framework [29] one defines a classical or a quantum field theory
as a functor between certain categories. This is motivated by the fact, that we need to
define the theory on all the spacetimes of the given class in a coherent way. Before we
recapitulate the framework of locally covariant field theory in section 3 we recall some
notions from the category theory that will be used later on.

Definition 2.4.1. A category C consists of

• a class Obj(C) of objects,

• a class Hom(C) of morphisms between the objects. Each morphism f has a unique
source object a and target object b where a, b ∈ Obj(C).
Notation: if f : a→ b then we write f ∈ Hom(a, b)

• for a, b, c ∈ Obj(C), a binary operation Hom(a, b) ×Hom(b, c) → Hom(a, c) called
composition of morphisms. It is denoted by f ◦ g.

such that the following axioms hold:

• associativity: if f : a→ b, g : b→ c and h : c→ d then h ◦ (g ◦ f) = (h ◦ g) ◦ f

• identity: for every object c, there exists a morphism idc : c → c, such that for
every Hom(a, b) ∋ fwe have: idb ◦ f = f ◦ ida=f.

An important category in our formalism is the category of spacetimes, with isometric
causal embeddings as morphisms. More precisely we have:

Loc Obj(Loc): all four-dimensional, globally hyperbolic oriented and time-
oriented spacetimes (M,g).

Morphisms: Isometric embeddings that fulfill:

• Given (M1, g1), (M2, g2) ∈ Obj(Loc), for any causal curve γ : [a, b]→M2,
if γ(a), γ(b) ∈ χ(M1) then for all t ∈]a, b[ we have: γ(t) ∈ χ(M1) (see
figure 2.1). This property is called: causality preserving.

• They preserve the orientation and time-orientation of the embedded
spacetime.

The other important categories are: the category of locally convex topological vector
spaces and the category of Poisson algebras.

Vec Obj(Vec): (small) topological vector spaces

Morphisms: homomorphisms of topological vector spaces

Obs Obj(Obs): Poisson (graded) algebras

Morphisms: Poisson (graded) morphisms
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M2

γ(b)

γ(a)

M1

ψ

Figure 2.1: Causality preserving embedding ψ.

Top Obj(Top): topological spaces

Morphisms: continuous maps

Now we define the next important notion from the category theory, namely a functor .

Definition 2.4.2. Let C and D be categories. A covariant functor F from C to D is a
mapping that:

• associates to each object c ∈ Obj(C) an object F(c) ∈ Obj(D),

• associates to each morphism Hom(C) ∋ f : a→ b ∈, a morphism Hom(D) ∋ F(f) :
F(a)→ F(b)

a
f−−−−→ b

F

y
yF

F(a)
F(f)−−−−→ F(b)

(2.14)

such that the following two conditions hold:

• F(idc) = idF(c) for every object c ∈ C.

• F(g ◦ f) = F(g) ◦ F(f) for all morphisms f : a→ b and g : b→ c.

If a similar definition holds with arrows reversed, we say that a functor is contravari-
ant. Just as the functors provide a notion of mappings between categories, one can go a
level of abstraction higher and think how the functors should transform into each other.
This leads to the notion of a natural transformation.

Definition 2.4.3. Let F and G be functors between categories C and D, then a natural
transformation η from F to G associates to every object a ∈ C a morphism Hom(D) ∋
ηa : F(a)→ G(a), such that for every morphism C ∋ f : a→ b we have:

ηb ◦ F(f) = G(f) ◦ ηa .
This equation can be expressed by:

F(a)
F(f)−−−−→ F(b)

ηa

y
yηb

G(a)
G(f)−−−−→ G(b)



CHAPTER 3

CLASSICAL FIELD THEORY IN THE LOCALLY COVARIANT

FRAMEWORK

Ordnung und Sichtung sind der Anfang der Beherrschung,
und der eigentlich furchtbare Feind ist der unbekannte.

T. Mann Der Zauberberg

From the Land of Mathematics our journey leads us back to physics. It’s nice to be home
again and it’s about time to use in practice the tools and technics we learnt. We start
with the classical theory since it is technically less complicated than qft and, remarkably,
some structures used in the quantum world are present already in the classical setting.
Moreover they can be better understood by investigating their classical counterparts.
The main goal of this chapter is to provide a brief introduction into the locally covariant
formulation of classical field theory. Starting classically we have time to get a little bit
acquainted with the concepts, that will be used later on in the quantum case.

3.1 Kinematical structure

In the locally covariant framework [29] with a physical system we associate first the
configuration space of all the fields of the theory. The main principle of the covariant
approach is to make this assignment for all the spacetimes in a coherent way. This can
be formulated with the use of the category theory language. We define a contravariant
functor E from the category of spacetimes Loc to the category of locally convex vector
spaces Vec. It assigns to each spacetime M the configuration space E(M) of fields
defined on it and the isometric embeddings χ : M → N are mapped into pullbacks
χ∗ : E(N)→ E(M). For example in case of the scalar field we have E(M) = C∞(M). We
illustrate this on figure 3.1. In all the physical cases one can identify E(M) with the space
of sections of some vector bundle B over M with a fiber V , i.e. E(M) = Γ(B) ≡ Γ(M,V ).
As discussed in section 2.1, the relevant topology is the topology of uniform convergence,
together with all the derivatives, on compact subsets of M .

Another functor between categories Loc and Vec is the functor which associates
to a manifold the space Ec(M) of compactly supported configurations. This functor is
covariant, because now the isometric embeddings can be mapped into the push forwards
Ecχ = χ∗, namely for ϕ ∈ Ec(M) we define

χ∗ϕ(x) =

{
ϕ(χ−1(x)) , x ∈ χ(M),

0 , else.

In the same way we can construct a functor that associates to a manifold M the space
of test functions D(M)

.
= C∞

c (M). The morphisms of Loc are again mapped to pushfor-
wards (see picture 3.2). Now we introduce the structure that is crucial in the functional
approach to classical field theory. We want to identify the space which would contain
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the observables of our theory. It seems natural to define them simply as functionals
F : E(M) → R. They are required to be smooth in the sense of the calculus on locally
convex vector spaces (section 2.3). Moreover one can see that if F ∈ C∞(E(M)) is a
smooth functional, then for each n ∈ N and each ϕ ∈ E(M), the functional derivative
F (n)(ϕ) is a symmetric distribution with compact support on Mn. The spacetime sup-
port of a functional F is defined as the set of points x ∈M such that F depends on the
field configuration in any neighbourhood of x.

suppF
.
= {x ∈M |∀ neighbourhoods U of x ∃ϕ,ψ ∈ E(M), suppψ ⊂ U (3.1)

such that F (ϕ+ ψ) 6= F (ϕ)} .
Equivalently we can understand the support of a functional F as the closure of the sum
of all the supports of its derivatives:

suppF =
⋃

ϕ∈E(M)
n∈N

supp(F (n)(ϕ)) . (3.2)

We identify now a class of functionals, that are of particular interest in classical field
theory. Those are so called local functionals. According to the standard definition, a
functional F is called local if it is of the form:

F (ϕ) =

∫

M

dvolM(x)f(jx(ϕ)) ,

E(M)

M

E

O

χ
E

E(O)

χ∗

M

R

χ(O) O

χ

χ∗hh

Figure 3.1: Construction of the functor E.

Ec(M)

M

Ec

O

χ
Ec

Ec(O)

χ∗

M

R

χ(O) O

χ−1

hχ∗h

Figure 3.2: Construction of the functor Ec.
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E(M)

M

E

O

χ E

E(O)

χ∗

R

FFχF

χ∗hh

Figure 3.3: Definition of FχF .

where f is a function on the jet space over M and jx(ϕ) = (x, ϕ(x), ∂ϕ(x), . . . ) is the jet
of ϕ at the point x. It was already recognized in [56, 30, 31] in the context of perturbative
algebraic quantum field theory that the property of locality can be reformulated using
the notion of additivity of a functional. The concept itself dates back to the works of
Chacón and Friedman [35]. See also the survey of Rao [153]. We say that F is additive
if for all fields ϕ1, ϕ2, ϕ3 ∈ E(M) such that supp(ϕ1) ∩ supp(ϕ3) = ∅ we have:

F (ϕ1 + ϕ2 + ϕ3) = F (ϕ1 + ϕ2)− F (ϕ2) + F (ϕ2 + ϕ3) . (3.3)

One shows that a smooth compactly supported functional is local if it is additive and
the wave front sets of its derivatives are orthogonal to the tangent bundles of the thin
diagonals ∆k(M)

.
=
{
(x, . . . , x) ∈Mk : x ∈M

}
, considered as subsets of the tangent

bundles of Mk, i.e.: WF(F (k)(ϕ)) ⊥ T∆k(M). In particular F (1)(ϕ) is a smooth section
for each fixed ϕ.

The space of compactly supported smooth local functions F : E(M)→ R is denoted
by Floc(M). The algebraic completion of Floc(M) with respect to the pointwise product

F ·G(ϕ) = F (ϕ)G(ϕ) , (3.4)

is a commutative algebra F(M) consisting of sums of finite products of local functionals.
We call it the algebra of multilocal functionals. F becomes a (covariant) functor by setting
Fχ(F ) = F ◦ Eχ, i.e. Fχ(F )(ϕ) = F (ϕ ◦ χ) (see figure 3.3). In the context of quantum
field theory one needs to enlarge this algebra with more singular objects, since it doesn’t
contain for example the Wick polynomials. Besides, even in classical theory, F(M) is
not enough to build a Poisson algebra, because it turns out not to be closed under the
Poisson bracket. We shall come back to this issue in section 3.4.

3.2 Dynamics

Now we have the playground ready and we can start with something more physical.
All the nice kinematical structures from the previous section don’t describe any physics
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yet. A specific model is specified by introducing the dynamics. This can by done by
means of the generalized Lagrangian . As the name suggests the idea is motivated by
the Lagrange mechanics. Indeed, we can think of this formalism as a way to make
precise the variational calculus in field theory. Note that since we deal with globally
hyperbolic spacetimes, they are not compact. Moreover we cannot restrict ourselves
to compactly supported field configurations, since the nontrivial solutions of globally
hyperbolic equations don’t belong to this class. Therefore we cannot identify the action
with a function on E(M) obtained by integrating the Lagrangian density over the whole
manifold. Instead we follow [30] and define a Lagrangian L as a natural transformation
between the functor of test function spaces D and the functor Floc such that it satisfies
supp(LM (f)) ⊆ supp(f) and the additivity rule 1

LM (f + g + h) = LM (f + g)− LM (g) + LM (g + h) ,

for f, g, h ∈ D(M) and supp f ∩ supph = ∅. The action S(L) is now defined as an
equivalence class of Lagrangians [30], where two Lagrangians L1, L2 are called equivalent
L1 ∼ L2 if

supp(L1,M − L2,M )(f) ⊂ supp df , (3.5)

for all spacetimes M and all f ∈ D(M). This equivalence relation allows us to identify
Lagrangians differing by a total divergence.

The equations of motion are to be understood in the sense of [30]. Concretely, the
Euler-Lagrange derivative of S is a natural transformation S′ : E→ D′ defined as

〈
S′
M(ϕ), h

〉
=
〈
LM (f)(1)(ϕ), h

〉
, (3.6)

with f ≡ 1 on supph. The field equation is now a condition on ϕ:

S′
M (ϕ) = 0 . (3.7)

The space of solutions of (3.7) is a subspace of E(M) , denoted by ES(M). In the on-shell
setting of classical field theory one is interested in the space FS(M) of multilocal func-
tionals on ES(M). This space can be understood as the quotient FS(M) = F(M)/F0(M),
where F0(M) is the space of multilocal functionals that vanish on ES(M) (on-shell). This
observation will be crucial for the construction of the Koszul complex, performed in 4.2.

3.3 Axioms of locally covariant field theory

It is time to make a short stop in our journey and summarize what we already obtained
and what we are heading for. Since at the end we want to obtain a satisfactory conceptual
framework, it is important to formulate some guidelines and postulates which we want
to fulfill. If you start a long journey, looking for something you haven’t seen before, you
always take with you some travel guides or maps that will help you recognize the object
of your search. A set of axioms in mathematical physics plays a similar role. You want
to identify the object of your search and make it clear, that as soon as all the axioms are
fulfilled, you would know, that you reached the end of your journey. In previous sections
we made a lot of effort to prepare a convenient language to formulate the classical field
theory in a locally covariant way. Now it’s time to state what this theory really is. To
this end we formulate now a set of axioms.

1We do not require linearity since in quantum field theory the renormalization flow does not preserve
the linear structure; it respects, however, the additivity rule (see [30]).
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A local, generally covariant classical field theory is defined as a covariant functor A

between the category Loc of spacetimes and Obs of observables. The construction of
this functor can be seen as a generalization of the local net of observables [93]. The
covariance property reads:

Aψ′ ◦ Aψ = A(ψ′ ◦ ψ) , A(idM ) = idA(M,g) ,

for all morphisms ψ′ from HomLoc((M2, g2), (M3, g3)), ψ ∈ HomLoc((M1, g1), (M2, g2))
and all objects of Loc. Defining locally covariant field theory as a functor corresponds to
the axioms of locality, subsystems and covariance. The two remaining axioms (time-

slice axiom and causality) can be formulated as certain properties of the functor A.
The causality axiom is related to the tensorial structure of the underlying categories

[31, 78]. The tensorial structure of Loc is defined in terms of disjoint unions, namely the
objects in Loc⊗ are elements M that can be written as M1⊗. . .⊗MN :=M1

∐
. . .
∐
Mn.

The unit is provided by the empty set ∅. By admissible embeddings we mean maps
χ : M1

∐
. . .
∐
Mn → M such that each component is a morphism of Loc and all

images are spacelike to each other, i.e., χ(M1) ⊥ . . . ⊥ (Mn). Now we turn to the
tensorial structure of the category Obs. Since there is no unique tensor structure on
general locally convex vector spaces, one has to either restrict to nuclear spaces2 or make
a choice of the tensor structure based on some physical requirements. In the present
context we shall use the first of those possibilities, since the spaces we are working with
are nuclear. The functor A can be then extended to a functor A⊗ between the categories
Loc⊗ and Obs⊗. The requirement for A⊗ to be tensorial is a condition that

A⊗
(
M1

∐
M2

)
= A(M1)⊗ A(M2) , (3.8)

A⊗(χ⊗ χ′) = A⊗(χ)⊗A⊗(χ′) , (3.9)

A⊗(∅) = C . (3.10)

Now we show (see [78, 31]) that if A is a tensor functor, then the theory is causal. Consider
the natural embeddings ιi : Mi → M1

∐
M2, i = 1, 2 for which Aι1(A1) = A1 ⊗ 1,

Aι2(A2) = 1 ⊗ A2, Ai ∈ A(Mi). Now let χi : Mi → M be admissible embeddings such
that the images of χ1 and χ2 are causally disjoint in M . We define now an admissible
embedding χ :M1

∐
M2 →M as:

χ(x) =

{
χ1(x) , x ∈M1

χ2(x) , x ∈M2
(3.11)

Since A⊗ is a covariant tensor functor, it follows:

{Aχ1(A1),Aχ2(A2)} = Aχ{Aι1(A1),Aι2(A2)} = Aχ{A1 ⊗ 1,1⊗A2} = 0 (3.12)

This provides the notion of causality. It can be shown that also the opposite implication
holds, i.e. the causality axiom implies that the functor A is tensorial. The proof will be
provided in [31].

The time-slice axiom basically means that one can reconstruct the full algebra of
observables associated to a given region O knowing only the algebra of a causally convex
neighbourhood of a Cauchy surface contained in O. Precisely, if the morphism ψ ∈
HomLoc((M,g), (M ′, g′)) is such that ψ(M) contains a Cauchy-surface in (M ′, g′), then
Aψ is an isomorphism. For the classical field theory it amounts to the statement that the

2Details on the nuclear spaces and tensorial structure are given in the subsection 2.1.2.
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Cauchy problem is well defined for the field equations (in the sense of (3.7)). Since we
are always dealing with the hyperbolic (system of) equations, this is obviously satisfied.
In case of the anti-commuting fields the problem is less trivial and we shall come back
to it in section 3.6.

For the sake of completeness we recall here the precise definition of the algebra that we
can associate to the Cauchy surface [29, 26, 77, 39]. Let Σ ⊂M be a Cauchy surface. We
can associate to it a family of algebras {A(N)}N∈I indexed by the (admissibly embedded)
subspacetimes N of M , such that Σ ⊂ N . The inclusion of spacetimes provides an order
relation on the index set. For Ni, Nj ∈ I, such that Ni ⊂ Nj ∈ I we introduce a notation
Ni ≥ Nj . The Cauchy surface Σ is the upper limit with respect to ≥, so we obtain a
directed system of algebras ({A(N)}N∈I ,≥).

Let χij : Ni →֒ Nj be the canonical isometric embedding of Ni ≥ Nj. Using the
covariance property we obtain a morphism of algebras Aχji : A(Ni) →֒ A(Nj). Consider
a family of all such maps between the elements of the directed system ({A(N)}N∈I ,≥). It
can be easily checked that the family of mappings Aχij provides the transition morphisms
for this directed system and we can define the corresponding projective (inverse) limit:

A(Σ) := lim←−
N⊃Σ

A(N) =
{

germ of (a)I∈
∏

N∈I
A(N)

∣∣∣ aNi = Aχij(aNj ) ∀ Ni ≤ Nj

}
. (3.13)

Having defined the algebra associated to a Cauchy surface we can now provide a notion
of dynamics on the functorial level [26, 78]. This will be especially important in section
4.5 in the context of classical gravity, where we go beyond the fixed manifold and work
on the level of categories.

Consider natural embeddings of Cauchy surfaces Σ into M . The time-slice axiom
implies that αMΣ are isomorphisms. It follows that the propagation from Σ1 to Σ2 is
described by:

αMΣ1Σ2
:= α−1

MΣ1
αMΣ2 . (3.14)

This isomorphism is called the relative Cauchy evolution.

3.4 Poisson structure for the free scalar field

After formulating the general formalism we give now a concrete example of a construction
of the locally covariant classical field theory. We follow the approach of Peierls [150] (see
also the work of Marolf [133]), where the Poisson structure is defined in the Lagrangian
formalism, without the need to introduce a Hamiltonian. This definition of a Poisson
algebra was used also by deWitt in [188] and now is a basic tool in the functional approach
to classical field theory [57, 55, 53, 27, 154]. The main assumption for the existence
of the Peierls bracket is the hyperbolicity of the equations of motion. To avoid the
notational complications we take as an example the free minimally coupled scalar field.
The generalized Lagrangian is given by:

LM(f)(ϕ) =
1

2

∫

M

dvolM(∇µϕ∇µϕ−m2ϕ2)f (3.15)

The second variational derivative of this Lagrangian induces an operator E(M)→ E(M)
given by P = � + m2 (the Klein-Gordon operator). Clearly it is globally hyperbolic.
It was proved in [6] that for this class of operators on a generic globally hyperbolic
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Lorentzian manifold there exist retarded and advanced Green’s functions ∆R/A, i.e. the
inverses of P satisfying in addition:

supp(∆R) ⊂ {(x, y) ∈M2|y ∈ J−(x)} , (3.16)

supp(∆A) ⊂ {(x, y) ∈M2|y ∈ J+(x)} . (3.17)

The causal propagator is defined as ∆
.
= ∆R −∆A. The Poisson structure on the space

of functionals F(M) (off-shell!) can be defined as:

{F,G}S = −
〈
F (1),∆ ∗G(1)

〉
. (3.18)

From the wave front set properties of the elements of F(M) follows that the above
expression is well defined. It turns out however that the space of multilocal func-
tionals is not closed under {., .}S . Therefore, in order to obtain a Poisson algebra,
one has to extend F(M) with more singular objects. A natural choice is provided by
the space of microcausal functionals [28, 30, 31]. Let Ξn be an open come defined as
Ξn

.
= {(x1, ..., xn, k1, ...kn)|(k1, ...kn) /∈ (V

n
+ ∪ V

n
−)}. We denote by Fmc(M) the space of

smooth compactly supported functionals, such that their derivatives at each point are
distributions with wave front set contained in the open cone Ξn:

WF(F (n)(ϕ)) ⊂ Ξn, ∀n ∈ N, ∀ϕ ∈ E(M) . (3.19)

The space of such distributions, denoted by EΞn(M) can be equipped with the Hörmander
topology [108]. We recall now its definition. Let Cn ⊂ Ξn be a closed cone contained in
Ξn. We introduce (after [108, 5, 30]) the following family of seminorms on Γ′

Cn
(Mn):

pn,ϕ,C̃,k(u) = sup
ξ∈V
{(1 + |ξ|)k|ϕ̂u(ξ)|} ,

where the index set consists of (n,ϕ, C̃, k) such that k ∈ N0, ϕ ∈ D(U) and C̃ is a closed
cone in Rn with (supp(ϕ)×C̃)∩Cn = ∅. These seminorms, together with the seminorms
of the weak topology provide a defining system for a locally convex topology denoted by
τCn . To control the wave front set properties inside open cones, we take an inductive
limit. It can be shown that, to form this inductive limit one can choose a family of
closed cones contained inside Ξn to be countable. The resulting topology, denoted by
τΞn , doesn’t depend on the choice of this family. It was shown in [30] that the Hörmander
topology τCn can be equivalently defined as an initial topology with respect to the family
of maps:

u 7→ 〈u, f〉 , f ∈ Γ(M) , (3.20)

u 7→ Au ∈ Γ(M,V ) , (3.21)

where A is a pseudodifferential operator with characteristics containing Cn. This is a
family of linear maps into nuclear spaces that satisfies assumptions of corollary 2.1.18,
so we can conclude that the topology τCn is nuclear. According to 2.1.17 a countable
inductive limit of nuclear vector spaces is nuclear so it holds also for τΞn . We can now
equip Fmc(M) with the initial topology with respect to the mappings:

F(M) ∋ F 7→ F (n)(ϕ) ∈ E′
Ξn(M

n) n ≥ 0 , (3.22)

where ϕ runs through all elements of E(M). We denote this initial topology on Fmc(M)
by τΞ. Using again the result 2.1.18 we conclude that this topology is nuclear.

It can be shown that Fmc(M) is closed under the Poisson bracket (3.18) and the
assignment M 7→ (Fmc(M), {., .}) is a covariant functor from Loc to Obs. Moreover it
turns out that the space of microcausal functionals will be useful for the construction of
the quantum theory in section 5.2.1.
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3.5 Interlude: vector valued functions on E(M)

After introducing various definitions concerning the functionals this seems to be a good
moment to make some generalizations that will be useful later on. In the same way as
one defines local and microcausal functionals one can also introduce those notions for
functions on E(M) with values in more general locally convex vector spaces.

We start with the notion of locality. Consider functions on E(M) with values in a

locally convex vector space of distributional sections W(M) :=
∞∏
n=0

Γ′(Mn,Wn) (equipped

with the strong topology) for arbitrary finite dimensional vector spaces Wn. The k-th
functional derivative of an element F ∈ C∞(E(M),W(M)), at each point ϕ ∈ E(M) can
be identified with an element of:

F (k)(ϕ) ∈
∞∏

n=0

Γ′(Mk+n, V ⊗k ⊗Wn) .

We define a support of F as a closure of the sum of the supports of its derivatives (c.f.
(3.2)), i.e. suppF =

⋃
ϕ∈E(M)
n∈N

supp(F (n)(ϕ)).

We say that F is local if it is compactly supported and all the distributions
F (k)(ϕ) have their supports on the thin diagonal and their wavefront sets are or-
thogonal to the tangent bundles of the thin diagonals ∆n+k(M). The subspace of
C∞(E(M),W(M)) consisting of all the local functions is denoted by C∞

loc(E(M),W(M)).
The space of multilocal functions C∞

ml(E(M),W(M)) is again the algebraic completion
of C∞

loc(E(M),W(M)) as an C∞
loc(E(M),R)-module. We define microcausal vector valued

functionsl C∞
mc(E(M),W(M)), as the smooth compactly supported ones, for which the

functional derivatives at each point satisfy the condition (3.19), i.e.

F (k)(ϕ) ∈
∞∏

n=0

Γ′
Ξn+k

(Mn+k, V ⊗k ⊗Wn) .

Topologies τ and τΞ generalize to vector-valued functions on E(M) in a natural way and
multilocal functions C∞

ml(E(M),W(M)) are dense in C∞
mc(E(M),W(M)) with respect to

the topology τΞ.

3.6 Free fermionic fields

Up to now we discussed only fields that are commuting. We know however, that in the
quantum field theory also anicommuting ones appear. On may ask, if it is necessary to
consider the classical counterpart of fermionic fields, since physically they exist only in
the quantum context. There is however a good motivation to do it, since the quantization
scheme we use involves the deformation quantization. This means, that we start first with
some classical structure and then deform it to obtain the quantum algebra of observables.
Therefore it is necessary to give a meaning to the classical theory also in case of fermions.
Besides, we have to keep in mind that we aim for the locally covariant formulation of
the BV formalism and in this formalism anticommuting fields are intrinsically present.
Of course they are not to be understood as physical quantities, but rather as auxiliary
objects. Nevertheless a consistent formalism that treats both the fermionic and Bosonic
fields on an equal footing is in this context necessary.
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In this section we discuss the construction of the classical field theory of fermionic
fields in the functional approach. We work with the example of Dirac fields, but the
framework can be applied to arbitrary anticommuting variables, like for example the
ghost fields. To formulate the theory of Dirac fields in the locally covariant framework
we first need some geometrical preliminaries. For details we refer to [159]. By spin
structure on M we mean a pair (SM,π) , where SM is a principal Spin01,3-bundle over
M and π : SM → FM is the spin frame projection : a base-point preserving bundle
homomorphism of SM and the frame bundle, compatible with the universal covering
map. By the frame bundle FM we mean the bundle whose fibre at each point x ∈ M
consists of orthonormal bases of TxM in the metric g.

A spacetime endowed with the spin structure (SM,π) is called a spin spacetime.
Every globally hyperbolic spacetime admits a spin structure but it doesn’t have to
be unique [159]. We define the (standard) locally covariant spinor bundle of the spin
spacetime M to be the associated vector bundle DM = SM ×Spin0

1,3
C4 of SM .

The cospinor bundle is defined to be D∗M , the dual of DM . We take the Whit-
ney sum DM ⊕ D∗M and define the configuration space to be E(DM ⊕ D∗M), the
set of smooth sections. The kinematical space of the theory consists of antisymmet-
ric multilinear functionals on the exterior algebra of E(DM ⊕ D∗M) satisfying cer-
tain regularity conditions. Let (DM ⊕ D∗M)⊠n denote the exterior tensor product

of vector bundles. We define Floc(M)
.
=

∞∏
n=0

Fnloc(M), where Fnloc(M) consists of an-

tisymmetric distributions E′((DM ⊕ D∗M)⊠n) with wave front sets orthogonal to the
tangent bundles of the thin diagonals ∆n(M)

.
=
{
(x, . . . , x) ∈Mk : x ∈M

}
, consid-

ered as subsets of the tangent bundles of Mn. Similarly to the bosonic case we can
also define the multilocal functionals F(M) as products of such distributional sections.
The condition of “asymmetry” means that: ua1,...,ak,ak+1,...,ap(x1, ..., xk , xk+1, ..., xp) =
−ua1,...,ak+1,ak,...,ap(x1, ..., xk+1, xk, ..., xp). We define a support of a functional F ∈ F(M)

to be a sum of supports of all its components: supp(F ) :=
⋃
p
supp(F p).

The construction described above is in fact functorial. Let SLoc be defined as the
subcategory of the fiber bundle category which has spin spacetimes as objects and the
morphisms are bundle morhisms covering those of Loc, which are compatible with the
right action and projections. Since Dirac fields carry an additional geometrical infor-
mation concerning the spin structure, it is justified to choose as an underlying category
SLoc and distinguish between spacetimes carrying different spin structures. We fix the
Dirac structure to be the standard one, defined above. The details concerning the non-
uniqueness of this structure are discussed in [159]. The map assigning the configuration
space E(DM ⊕ D∗M) to a spin spacetime M can be made into a contravariant func-
tor E from SLoc to Vec. For future convenience we introduce one more functor which
assigns to M ∈ Obj(SLoc) the space Ep(M) = E((DM ⊕ D∗M)⊠p) of antisymmetric
configurations of degree p. The morphisms are mapped to pullbacks. The space of all

antisymmetric configurations is assigned by the functor C(M) =
∞⊕
p=0

Ep(M). Clearly

F(M) ⊂ C′(M).

We define also a covariant functor Ec : SLoc→ Vec that assigns to M ∈ Obj(SLoc)
the space of test sections D(DM ⊕D∗M) and to morphisms, their pushforwards, sim-
ilarly we define the functor of test sections D : SLoc → Vec. The assignment of the
space of antisymmetric functionals to a manifold is in a natural way a covariant functor
F : SLoc → Vec into the category of nuclear topological locally convex vector spaces.



38 Classical field theory in the locally covariant framework

Furthermore we introduce functors Fp : SLoc → Vec that assign to M ∈ Obj(SLoc)
the spaces of functionals of a fixed grade p.

The dynamics is introduced similarly to the scalar case by means of a generalized
Lagrangian. We already discussed in [154] that only in case of quadratic interaction we
can understand the equations of motion (eom’s) as a system of (differential) equations
on the configuration space E(M). In general we cannot define the “on-shell” functionals
as those on the solution space, but we can still keep the algebraic definition. The graded
(left) derivative of an antysymmetric functional F ∈ F(M) is defined as:

F (1)(u)[h] := F (h ∧ u) F ∈ Fp+1(M), u ∈ Ep(M), h ∈ E(M), p > 0 . (3.23)

It is clear that F (1) is a vector-valued distribution (see section 2.2.3), more precisely, an
element of E′(M)⊗̂F(M), where ⊗̂ is the completed tensor product3. The Euler-Lagrange
derivative of the action S provides on each M a distribution S′

M ∈ E′
c(M)⊗̂F(M) defined

by 〈S′
M (u), h〉 =

〈
LM (f)(1)(u), h

〉
, with f ≡ 1 on supph. To implement the dynamics

we define an ideal F0(M) ⊂ F(M) as the one generated (in the algebraic and topological
sense) by the set {〈S′

M(.), h〉}h∈Ec(M) ⊂ F(M). Then the on-shell algebra of functionals

is the quotient FS(M) := F(M)/F0(M). The assignment M → FS(M) is a covariant
functor from SLoc to Vec.

After this short introduction we discuss as an example the construction of locally
covariant classical theory of the free Dirac field. Like in the case of the scalar field we
have to extend the space of functionals by more singular objects, in order to obtain a
structure closed under the Peierls bracket. Therefore we weaken the condition on the
wave front sets of the distributional sections that constitute antisymmetric functionals.

We define the space of microcausal functionals as Fmc
.
=

∞∏
n=0

Fnmc, where Fnmc consists

of antisymmetric distributional sections E′
Ξn

((DM ⊕ D∗M)⊠n) with the wavefront set
contained in the open cone Ξn. Elements of F

p
mc(M) can be formally4 represented as

distributional kernels:

F (u)
formal
=

∫

M

dvolM f(x1, ..., xp, y1, ..., yq)Ψx1 ∧ ... ∧Ψxp ∧Ψy1 ∧ ... ∧Ψyp(u) =

=

∫

M

dvolM f(x1, ..., yq)u(x1, ..., yq), u ∈ Ep(M) ,

where Ψxi , Ψyj are evaluation functionals, dvolM is an invariant measure on M and the
spinor indices were suppressed. Consider the generalized Lagrangian of the free Dirac
field:

LM (f)(u) =

∫
dvolM(x) f(x)(Ψx ∧ (i∂/−m)Ψx)(u) f ∈ D(M) , (3.24)

The second derivative of the action possess retarded and advanced Green’s functions

∆
R/A
M . It is convenient to write S(1)(2)(x, y) as a block matrix in the basis (uA, u

Ȧ):

SM (1)(2)(x, y) = δ(x− y)
(

0 D∗T (x)
−D(x) 0

)
, (3.25)

3The completion is meant with respect to the weak topology on the space
∏∞
n=0 E

′((DM⊕D∗M)⊠n) ⊃
E′(M)⊗ F(M).

4See discussion in section 2.2.
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where T denotes the transpose of a matrix. We can construct the retarded and advanced

Green’s functions ∆
R/A
0 using the fact that DD∗ = D∗D = � + m2. Let GR/A be

retarded/advanced Green’s function for (�+m2). It can be shown that5:

∆R/A(x, y) =

(
0 −D∗(x)GR/A(x, y)

DT (x)GR/A(x, y) 0

)
.
=

(
0 K

R/A
∗

−KR/A 0

)
,

(3.26)
We define the causal propagator as ∆ = ∆R − ∆A. The free field theory is defined by
introducing on Fmc(M) the following graded Poisson structure:

{F,G}S = (−1)|F |+1
〈
F (1),∆ ∗G(1)

〉
. (3.27)

Let PgAlg denote the category of graded Poisson algebras. The assignment M 7→
(Fmc,S(M), {., .}S) defines a covariant functor A : SLoc→ PgAlg.

3.7 Interaction

Since the interaction is essentially introduced in the same way for the Bosonic and
fermionic fields, we treat both cases together and from now on by F(M) we mean a
space of graded functionals that can depend both on commuting and anticommuting
variables. We use the perturbative construction (see [55, 57]) similar to the methods
of the scattering theory in quantum mechanics. Let us fix the interaction Lagrangian,
i.e. the natural transformation F . We assume, that for all M ∈ Loc (or SLoc) and
f ∈ D(M), FM (f) is even and of degree higher than 2. Without the loss of generality,
in the fermionic case we can take F to be homogenous, i.e. FM (f) ∈ Fp(M), p > 2. Let
us now fix the spacetime M . Following the spirit of algebraic field theory we want to
construct a local net of algebras of interacting fields associated with the spacetime M .
To do it we first switch on the interaction only in a neighbourhood of a causally closed
region O and construct the local interacting algebra associated to O. Let g be a test
function supported in some causally closed neighborhood of O. It will play a role of a
coupling constant and a cut-off function for the interaction. Consider a functional of the
form: Lint,M(f) = LM (f) + FM (fg), where L is the generalized Lagrangian (3.24). The
interacting equation of motion on M is given by:

〈
LM (f)(1) + FM (fg)(1), h

〉
, f ≡ 1 on

supph, h ∈ Ec(M). At this point there is again a difference between the Bosonic and
fermionic fields. In the first case one can understand the equations of motion as equations
for the C-valued functions. Then one can directly define the on-shell functionals as func-
tions on the solution space ES+F (g)(M). A recent result of R. Brunetti, K. Fredenhagen
and P. Lauridsen Ribeiro announced in [130] (to be published in [31]) shows that a map
from the free solutions ES(M) to the interacting ones ES+F (g)(M) can be constructed
non-perturbatively by means of the Nash-Moser-Hörmander theorem. Then there arises
an interesting question: for which theories the ideal of on-shell functionals is generated
only by the elements of the form

〈
LM (f)(1) + FM (fg)(1), h

〉
? Until now the problem is

not solved in a full generality, but one can check this property in specific examples.
In case of the fermionic fields the notion of on-shell functionals is defined as an

algebraic quotient, so the question doesn’t arise. Since the anticommuting case will
not be discussed in [31], we shall provide it here. Let now F(M) be the space of an-
tisymmetric functionals. Note that the variation of LM (f) + FM (fg) defines a dis-
tribution in E′

c(M)⊗̂F(M) which we denote by
〈
LM (1)(1) + FM (g)(1), .

〉
. The ideal

5We drop the subscript M whenever it is clear from the context, in which spacetime we are working
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Fg,0(M) is generated by elements of the form:
〈
LM (1)(1) + FM (g)(1), h

〉
, h ∈ Ec(M).

The interacting algebra corresponding to the interaction FM (g) is defined as the quo-
tient: Fg(M) := F(M)/Fg,0(M). Following [57, 154] we can now define the Møller map
rF (g) ≡ rS+F (g),S : Fg(M) → FS(M) intertwining the interacting algebra with the free
one.

rF (g)(G) =
∞∑

k=0

λk

k!
RS,k(F (g)

⊗k, G) , (3.28)

where RS,0 = id, the first order term is just the retarded product with the free field
Green’s function ∆R,

RS,1(F (g), G) = −
〈
F (g)(1),∆R ∗G(1)

〉
,

and for higher order terms there is a recursive formula:

RS,n+1(F
⊗n
1 ⊗F2, G) = −

n∑

l=0

(
n

l

)
RS,l

(
F⊗l
1 , (−1)|F2|+1

〈
F

(1)
2 ,∆

A (n−l)
S+F1

∗G(1)
〉)
, (3.29)

with F1, F2 ∈ F+(M) and ∆
A (k)
S+F1

defined as:

∆
A (k)
S+F1

.
=

dk

dλk

∣∣∣
λ=0

∆A
S+λF1

= (−1)kk!∆A ∗ F (2)
1 ∗∆A ∗ . . . ∗ F (2)

1 ∗∆A . (3.30)

The map rF (g) is invertible in the sense of a formal power series, so we can construct the
interacting fields from the free ones. An important property of the retarded Møller maps
is the causality: rF (g)G = G, if supp(G) ∩ (supp(g) + V +) = ∅. The Poisson structure
on Fg(M) can be introduced in the similar way as for the free case, since the inverses of
LM (1)(2) + FM (g)(2) can be constructed from ∆R/A by means of a formal power series.
We denote this Poisson structure by {., .}F (g). It is related to {., .}S by:

{rF (g)(H), rF (g)(G)}S = rF (g)({H,G}F (g)) . (3.31)

The same definitions can be applied in the case of bosonic fields, but then the formal
power series is not enough and one has to prove the convergence. The proof was an-
nounced in [130] and will be published in [31].

To summarize, we have now defined the algebra Fg(M) of interacting on-shell func-
tionals. Let O be a causally convex region. In both bosonic and fermionc case we associate
to O the subspace of Fg(O), consisting of the interacting fields supported inside O. We
equip it with the Poisson bracket {., .}F (g) and denote the resulting local algebra by
Ag(O). The next proposition shows that this structure doesn’t depend on the behavior
of g outside of O.

Proposition 3.7.1. Let O be a relatively compact causally convex region of spacetime
M and f ∈ D(M) a test function with supp(f)∩O = ∅. Then the ideal Fg,0(O) is equal
to Fg+f,0(O) and the Poisson structure induced by F (g + f) on Fg(O) concides with the
one induced by F (g)

Proof. The ideal Fg+f,0(O) is generated by elements of the form

〈
LM(1)(1) + FM (g + f)(1), h

〉
, h ∈ Ec(O) .

We can decompose g into g1 and g2 such that suppg1 ∩ supp(f) = ∅ and g1 + g2 = g.
From the additivity of F follows now that FM (g + f) = FM (g2 + f) + FM (g)− FM (g2).
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Since 〈FM (g2 + f)− FM (g2), .〉
∣∣
O
≡ 0, we have:

〈
LM (1)(1) + FM (g + f)(1), h

〉
=〈

LM (1)(1) + FM (g)(1), h
〉
, h ∈ Ec(O). A similar reasoning can be now applied to

LM (1)(2) + FM (g + f)(2), by using the formula for the formal inverse [55, 154].

Now we can construct the local net of algebras following the prescription of [25] (se
also [53]). Let Θ(O) be the set of all functions g ∈ D(M) which are identically equal to
1 in a causally convex open neighbourhood of O and consider the bundle

⋃

g∈Θ(O)

{g} × Ag(O). (3.32)

Now let A ∈ F(O). For a given test function g ∈ Θ(O) and an element A ∈ F(O) we can
consider the equivalence class [A]g ∈ Fg(O) = F(O)/Fg,0(O) and the interacting algebra
AS+F (O) is defined as the algebra of sections of (3.32) that are of the form:

AS+F (O) ∋ ([A]g)g∈Θ(O) [A]g ∈ Fg(O) (3.33)

and the Poisson structure is the one discussed in proposition 3.7.1. The sections are
covariantly constant in the sense, that the identity map on F(O) induces a canonical
map αid : Fg(O) → Fg′(O) and it holds αid([A]g) = [A]g′ , where g, g′ ∈ Θ(O). The
embeddings ι21 : AS+F (O1) →֒ AS+F (O2) for O1 ⊂ O2 are defined by restricting the
sections, since Θ(O2) ⊂ Θ(O1). They satisfy the compatibility relation i12 ◦ i23 = i13 for
O3 ⊂ O2 ⊂ O1 and define therefore an inductive system. The global interacting algebra
is defined as the inductive limit of local algebras

AS+F (M) :=
⋃

O⊂M
AS+F (O). (3.34)

This assignment defines a covariant functor AS+F between categories Loc (or SLoc) and
Obs.





CHAPTER 4

BATALIN-VILKOVISKY FORMALISM

Und wenn Natur dich unterweist,
Dann geht die Seelenkraft dir auf,

Wie spricht ein Geist zum andern Geist.
(...)

Ihr schwebt, ihr Geister, neben mir;
Antwortet mir, wenn ihr mich hört!

J.W. Goethe, Faust

4.1 Historical remarks

The story of the BV formalism began already in 1962 with R.P. Feynman at the con-
ference held in Warszawa-Jabłonna 25-31 July. This event, orgnized by Leopold Infeld,
gathered together many of the most admired scientists of that time, including Paul Dirac,
John Wheeler, Herman Bondi, Vitalij Ginzburg, Vladimir Fock and Subramanyan Chan-
drasekhar. The conference was concerned with gravity and Feynman gave a talk there
entitled Quantum theory of gravitation. Notes from this lecture, taken by Marek Demi-
ański (at that time a student) and John Stachel, were published later in Acta Physica

Polonica [61]. This seems to be the first mention of the problem present in Yang-Mills
theories and gravity, known today as gauge invariance. Feynman goes around this dif-
ficulty using some heuristic arguments and tricks. He proposes a method to modify the
rules for calculating the one loop diagrams, which eventually gives the desired results.
Only four years later those modified rules were understood in a more fundamental way,
using the path integral approach. This was done by L. D. Faddeev and V. N. Popov [60]
and auxiliary fields they were using in their construction are now called Fadeev-Popov
ghosts. The gauge invariance started to be an important topic of investigation. Condi-
tions for the gauge invariance of observables, given as certain relations between Green’s
functions were formulated between 1971 and 1972 in independent works of A.A. Slavnov
[165] and J.C. Taylor [175] and are known today as Slavnov-Taylor identities. Based
on these identities, Zinn-Justin together with Lee proved renormalizability of Yang-Mills
theories in 1972 [131]. A proof based on Feynman rules was presented in paralel by ’t
Hooft and Veltman.

This was the general state of knowledge, when the seminal paper of Becchi, Rouet
and Stora [17] was published in 1974. It was recognized that a gauge symmetry can
be replaced by a more general one, involving also the ghosts and auxiliary fields and
this symmetry is not broken by the quantization. This paper and a following one [18],
published in 1975 were concerned with the quantization of the Higgs-Kibble model. The
result on Yang-Mills theories appeared one year later in [19]. At approximately the same
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time similar ideas appeared independently in the work of Tyutin [179]. The new sym-
metry, called today the BRST symmetry was implemented on the infinitesimal level by
the BRST operator. The invariance of the quantum action under the BRST was used to
derive the Slavnov-Taylor identities which govern unitarity and the gauge-independence
of the S-matrix. The discovery of BRST symmetry also led to a general proof of renor-
malizability of non-abelian gauge theories by Zinn-Justin [191]. This was also the first
time when the so called antifields appeared in the literature. In the paper of Zinn-Justin
they were just sources conjugate to the BRST variations.

Parallel to the developments in Lagrangian formalism, also the Hamiltonian approach
gained a lot from the discovery of the BRST symmetry. A group at Lebedev, includ-
ing I.A. Batalin, E.S. Fradkin and G.A. Vilkovisky was working at that time on the
phase space integral quantization of gauge theories. In 1977 the problem was solved [12]
for the so called closed algebras. More general systems with symmetries associated to
open algebras were treated later in a work of Fradkin and Fradkina [71]. We discuss
our interpretation of the notions of open and closed algebras in section 4.3.5. The com-
plete construction of the BRST operator for general irreducible I class constraints in the
Hamiltonian formalism was done in 1985 by Henneaux in [96]. Reducible constraints
were treated by [67] four years later.

Coming back to the Lagrangian formulation we finally reach the moment when the
Batalin-Vilkovisky formalism was born. In the seminal series of papers [13, 14, 15]
between 1981 and 1983 Batalin and Vilkovinski extended methods of BRST to Lagrangian
formalism. This is where the antibracket , antifields and the master equation were for the
first time presented in a complete formulation.

Parallel to the development in physics also mathematicians started to be interested in
the BRST symmetry. The geometrical interpretation of the ghosts was already suggested
in the original paper of Becchi, Rouet and Stora and was further developped in 1983 by
Bonora and Cotta-Ramusino [21]. In this paper ghost fields are understood as Maurer-
Cartan forms on the gauge group. The first recognition of the cohomological aspects
of the BRST formalism was put forward a year later in a paper of McMullan [134],
which appeared only as an Imperial College preprint. In 1985, those aspects were again
stressed in the already mentioned report of Henneaux [96]. It was shown that results of
the Fradkin group can be formulated in the language of homology. Henneaux was making
use of the acyclicity of a certain complex. McMullan and Browning [24] showed later
(1987) that it was the Koszul complex , a construction well known in homological algebra
since the seminal work of Koszul [124] from 1950. Its generalization, the Koszul-Tate
complex was proposed by Tate [174] in 1957.

Also in 1987 McMullan published a paper on Yang-Mills theories [135]. The coho-
mological aspects of Batalin-Vilkovisky formalism started to become apparent at that
time and mathematicians were trying to understand the underlying structure using sim-
ple models. By replacing the infinite dimensional phase space with a finite dimensional
symplectic manifold one can understand the Batalin-Fradkin-Vilkovisky formalism using
purely geometrical considerations. First attempts in this direction were done by Stasheff
[171, 172] and Kostant, Starnberg [123]. The first comprehensive treatment of the BRST
cohomology was published in 1987 by Dubois-Violette [51]. Similar ideas were presented
independently by Figueroa-O’Frarril and Kimura [65] in 1988. All those results are rigor-
ous but concern only finite dimensional systems, which doesn’t really reflect the physical
situation in field theories, where we have infinitely many degrees of freedom.

Coming back to the physical side, the development of homological techniques opened
new perspectives for the applications of the BV and the BRST formalism. The appli-
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cation of homological perturbation theory was first put forward by Henneaux and Fisch
in a paper [66] form 1990. Also the algebraic structure of the antifield formalism was
thoroughly discussed. It was recognized that the Koszul (and Koszul-Tate) complex
plays an important role in understanding the structure of both classical and quantum
field theories. A cohomological point of view on the antifield formalism was presented
by Henneaux in the lecture notes from 1989 [98]. A very comprehensive monography on
BRST formalism in the Hamiltonian and antifield approach was published By Henneaux
and Teitelboim in 1992 [97], with the title Quantization of gauge systems. A year later
another monograph appeared, authored this time by J. Gomis, J. París and S. Samuel
[87].

The BRST method was also used in a more axiomatic framework. The first complete
treatment of the operator covariant quantization of Yang-Mills theories with the use of
BRST was due to Kugo and Ojima [128, 129], although there were also some earlier
attempts by G. Curci and R. Ferrari [43]. In [128, 129] authors investigated the BRST
quantization of Yang-Mills theory from the operator algebraic view point. They defined
the physical Hilbert space of the theory as the cohomology of the BRST charge. A similar
approach was also applied later to gravity and appeared in the book of N. Nakanishi and
I. Ojima Covariant operator formalism of gauge theories and quantum gravity [142].

Nowadays the cohomological methods of the BRST and BV formalism are commonly
used in classical and quantum field theories. Nevertheless we think that there are still
some issues that remain open. For example the infinite dimensional character of the
configuration space was up to now neglected in the mathematical literature concerning
BV formalism. It is particularly important in the context of quantum field theory. As we
know, quantum observables cannot be described with local functionals only (for example
the Wick powers [28]). In this case, the description in the jet space language [160, 161, 83]
is less natural and quite complicated. On the other hand, the infinite dimensional ap-
proach allows to treat a very general class of functionals. Moreover the topological and
functional analytic aspects arise in a natural way in this formulation. Another important
point is the issue of compact and noncompact support. Since globally hyperbolic space-
times are non-compact, one has to be careful with distinguishing between compactly and
noncompactly supported configurations. For example, a normally hyperbolic system of
equations doesn’t have any compactly supported solutions. There are also some subtle
points when one distinguishes between large and small gauge transformations. We dis-
cuss it in section 4.4.2. We show that the conscious application of infinite dimensional
calculus makes may of the constructions in BV formalism clear and better motivated.
We believe that the mathematical structures in physics should be made as conceptually
simple as possible. Clearly infinite dimensional calculus is relatively new branch of math-
ematics and it takes time to get acquainted with its techniques. Nevertheless, the gain
we are obtaining is worth the effort.

We argue in this thesis that the infinite dimensional viewpoint on the BV formalism
solves many conceptual problems and can be seen as a natural generalization of the fi-
nite dimensional structure. Very clear and mathematically appealing presentation of the
finite dimensional case can be found for example in [2, 189, 51]. While reading these
papers, one has an overwhelming feeling that the structure is really simple and beautiful.
It is somehow disappointing to find out that this treatment cannot be generalized to the
infinite dimensional case, especially in the context of quantization (due mainly to the
fact that the path integral is ill defined). This was one of the motivations to look more
closely at the structures appearing in the BV formalism and try to find a conceptually
satisfactory setting. We argue that the infinite dimensional differential geometry pro-



46 Batalin-Vilkovisky formalism

vides such a language. Moreover in this formalism one sees a clear way to perform the
quantization in a mathematically precise way. While looking back on the rich history of
the BV formalism it is a pleasure to be able to add one more page to this fascinating
book.

4.2 Koszul complex

We start our discussion of the BV formalism with describing the Koszul complex . In
homological algebra this was introduced in [124] in the context of finite dimensional
vector spaces to define a cohomology theory for Lie algebras. Since then it has become a
standard tool in homological algebra (see [185, 99, 58] for a systematic introduction into
these concepts). From the physical point of view this structure turns out to be useful
in the off-shell formulation of field theory since it allows one to have a control of the
“off-shell” quantities. Here we give a geometrical interpretation of this structure along
the lines of [77].

The goal of the Koszul construction is to find a homological interpretation for the
space of on-shell functionals FS(M), for a given action S. We already mentioned in
section 3.2 that this space can be written as a quotient FS(M) = F(M)/F0(M), where
F0(M) is the space of functionals that vanish on-shell.

4.2.1 Vector fields on a configuration space

In the first step of the construction we want to find a characterization of F0. In order
to do this we introduce first one more geometrical structure on E(M). In section 2.3 we
gave a definition of vector fields on a locally convex manifold. Since E(M) is in particular
a trivial manifold, smooth vector fields on this space can be identified with smooth maps
from E(M) to itself. As in the finite dimensional case, vector fields act on the space of
smooth functionals C∞(E(M)) as derivations,

∂XF (ϕ) := 〈F (1)(ϕ),X(ϕ)〉 . (4.1)

The spacetime support of a vector field X is defined as follows:

suppX = {x ∈M |∀ neigh. U of x ∃F ∈ C∞
c (E(M)), suppF ⊂ U such that ∂XF 6= 0

or ∃ ϕ,ψ ∈ E(M), suppψ ⊂ U such that X(ϕ+ ψ) 6= X(ϕ)} .
(4.2)

Equivalently we can think of a vector field X as a E(M)-valued function on E(M) and
define its support using (3.2) (see the discussion in 3.5). Note that the definition (4.2)
has two parts. First part characterizes the support of X understood as a derivation, i.e.
a map from F(M) to F(M). The second part concerns the support of X as a map from
E(M) to E(M). Those two notions are not equivalent and the requirement of compact
support concerns both of them. The definition we adopted takes into account both roles
played by vector fields. It agrees with the idea to understand the spacetime support
as the subset of spacetime where the presence of a given vector field is “not felt” this
definition agrees with a more general one given in 3.5, which can be applied to a wider
class of vector-valued functions on E(M).

After this short explanation we can come back to the main thread of our discussion.
Going a little bit ahead we can already reveal that vector fields will serve as infinitesimal
transformations of the configuration space. Since we are interested in the local structure,
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we consider only compactly supported vector fields. We can require them to be local,
i.e. X(ϕ)(x) would depend only on the jet of ϕ at the point x. This is equivalent to
the notion of locality for vector-valued functions, that we introduced in section 3.5 if
we consider X as an element of C∞(E(M),E(M))1 . Clearly the space of local vector
fields is not an F(M)-module, so we have to take its algebraic completion. We call the
elements of this completion multilocal vector fields. To make the assignment of the space
of the vector fields functorial one needs to make a further restriction on the space of
vector fields. The functoriality is of course desirable if we use the local covariance as our
guiding principle. We define V(M) to be a subspace of Γc(TE(M)) consisting of vector
fields that can be considered as maps C∞

ml(E(M),Ec(M)). In other words, the restriction
concerns the image and allows now to do push-forwards. We define a covariant functor
V : Loc → Vec which assigns to a manifold M the space C∞

ml(E(M),Ec(M)) and maps
morphisms χ :M → N to

Vχ(X) = Ecχ ◦X ◦ Eχ . (4.3)

The action of vector fields on functions and the Lie bracket of vector fields can be extended
to a graded bracket (called the Schouten bracket) on the space of alternating multi-
vector fields. In our case these are smooth, compactly supported maps from E(M) into
Λ(Ec(M)), with

Λ(Ec(M)) =
⊕

Λn(Ec(M)) ,

where Λn(Ec(M)) is the space of compactly supported sections on Mn which are totally
antisymmetric under permutations of arguments (with Λ0(Ec(M)) = R). The alter-
nating multi-vector fields with the regularity properties discussed above form a graded
commutative algebra ΛV(M) with respect to the product

(X ∧ Y )(ϕ)
.
= X(ϕ) ∧ Y (ϕ) , (4.4)

The Schouten bracket is an odd graded Poisson bracket on this algebra with the following
properties:

1. it is a map {·, ·} : ΛnV(M)× ΛmV(M)→ Λn+m−1V(M),

2. is graded antisymmetric:

{Y,X} = −(−1)(n−1)(m−1){X,Y } ,

3. it satisfies the graded Leibniz rule

{X,Y ∧ Z} = {X,Y } ∧ Z + (−1)nm{X,Z} ∧ Y , (4.5)

where n is the degree of Y and m the degree of Z.

4. for X ∈ Λ1V(M) ≡ V(M) and F ∈ Λ0V(M) ≡ F(M) it coincides with the action
of X as a derivation

{X,F} = ∂XF ,

5. for X,Y ∈ Λ1V(M) it coincides with the Lie bracket

∂{X,Y } = ∂X∂Y − ∂Y ∂X .

6. it satisfies the graded Jacobi rule

{X, {Y,Z}}−(−1)(n−1)(m−1){Y, {X,Z}} = {{X,Y }, Z} , n = deg(X),m = deg(Y ) .
(4.6)

1Precisely speaking, one has X(k)(ϕ) ∈ Γ′(Mk, V ⊗k)⊗̂E(M) ⊂ Γ′
c(M

k+1, V ⊗k+1)
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4.2.2 Ideal “generated by the equations of motion”

Using the vector fields on E(M) one can now characterize elements of F0(M). Indeed, it
is easy to see that this space includes elements of the form

ϕ 7→
〈
S′
M (ϕ),X(ϕ)

〉
=: δS(X)(ϕ) ,

where S′
M is the Euler-Lagrange derivative of the action, defined in (3.6). The notation

introduced above stresses the point that one can associate with the action S a map
δS : V(M) → F(M). Clearly this map is a differential and its image is contained in
F0(M). It was already mentioned in section 3.7 that the opposite inclusion doesn’t hold
in general. Indeed, we can give a simple example of a finite dimensional model where it
is not the case.

Example 4.2.1. Let the configuration space be simply R. The action is in this case just
a function S ∈ C∞(R) and vector fields are also identified with elements of C∞(R). In
particular we can take S = x4. The equation of motion reads x3 = 0, so the solution
space is one point x = 0. Now we see that the function f = x2 vanishes on-shell and since
the vector fields can be written as X(x)∂x, one obtains: X(x)∂xS = x2 and therefore
X(x) = 1

4x . Clearly this function doesn’t belong to C∞(R), so there is no vector field
that can allow us to write f as δS(X). N

This shows that one has to be extremely careful with this characterization of the ideal
F0(M). If it indeed holds that F0(M) = δS(V(M)) we say that F0(M) is generated by
equations of motion (eom’s). To prove this property one needs some regularity conditions
imposed on the action. In the absence of symmetries these conditions can be in principle
reduced to the requirement that S′′

M is a normally hyperbolic operator. For the
free scalar field it is easy to see that this condition is sufficient to show that F0(M) is
generated by eom’s. We will show it in example 4.2.2 and at the end of this section we
outline the idea how this method can be generalized to the case when symmetries are
present. Again it turns out that F0(M) is generated by eom’s if S′′

M is a normally

hyperbolic operator after the gauge fixing .

From a more practical point of view one can show (see for example [97, 11]) that
F0(M) is generated by the eom’s in a wide range of physical models, including Yang-
Mills and gravity by applying the jet space methods. This reduces the problem to the
finite dimensional one. The key idea behind this approach is the use of locality. Since
F(M) is generated by finite products of local functionals, it suffices to characterize the
local functionals that vanish on-shell. They, in turn, can be written as an integration∫
M

dvolM(j∞x )∗(ϕ)f(x) of a function on the jet space, that depends only on a finite number

of derivatives jkx(ϕ) of configuration fields ϕ ∈ E(M) at a given point x ∈M . Therefore
locally the problem reduces to a finite dimensional one. More singular functionals can
be characterized using the continuity arguments. Nevertheless, from the point of view of
the general structure, it is worth to look at the problem also from the point of view of
infinite dimensional analysis. We undertake this task in the present section. Before we
state a general result we want to give one more example which can be thought of as a
guideline in the construction that follows.

Example 4.2.2 (Free scalar field). For the free scalar field the equations of motion read:
Pϕ = 0, where P = �+m2 is the Klein-Gordon operator. For an arbitrary configuration
ϕ ∈ E(M) we can can use the (for example retarded) inverse of P to solve the equation
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Pϕ = ψ, i.e.: ϕ = ∆Rψ. Now let F ∈ F0. We can write it as: F (ϕ(ψ)). Therefore it
induces a functional F̃ (ψ) and the condition F ∈ F0 can be reformulated as:

F̃ (0) = 0 .

Using the fundamental theorem of analysis for calculus in locally convex vector spaces,
we can write F̃ as:

F̃ (ψ) =

1∫

0

dF̃ (tψ)[ψ]dt =

1∫

0

δF̃

δψ
(tψ)[ψ]dt .

Setting f̃(ψ) =
1∫
0

δF̃
δψ (tψ)[•]dt (where the integral is understood in a weak sense) we

obtain: F̃ (ψ) =
〈
f̃(ψ), ψ

〉
. Rewriting it again in terms of variables ϕ gives a vector field

X(ϕ)
.
= f̃(Pϕ) and since δS(X)(ϕ) =

〈
f̃(Pϕ), Pϕ

〉
= F (ϕ), it follows that F0(M) is

indeed generated by equations of motion. N

On this simple example we see that one can characterize F0(M) as generated by
eom’s if the action is quadratic and the Euler-Lagrange derivative can be considered as
a map S′

M : E(M) → E(M) (in general it maps into E′
c(M)). This can be generalized

also to the nonlinear case, with the use of the Møller operators discussed in 3.7.

Proposition 4.2.3. Let S = S0 + λF (g) be an action functional such that S′
M , S0

′
M :

E(M) → E(M), S0 is quadratic and S′′
M is a normally hyperbolic operator. If the in-

tertwining Møller map rS0+λF (g),S0
: E(M) → E(M) exists2 in every open neighborhood

of the solution space ES(M), then the ideal F0(M) for the action S is generated by the
eom’s.

Proof. From the properties of the Møller operator we obtain

S′
M ◦ rS0+λF (g),S0

= S0
′
M .

Now let ∆R be the fundamental solution for the free action. Since

S′
M (rS0+λF (g),S0

◦∆R) = S0
′
M ◦∆R = id ,

it follows that rS0+λF (g),S0
◦ ∆R is an inverse of S′

M and we can solve the equation
S′
Mϕ = ψ for ψ. Now we rewrite a functional F ∈ F0(M) in the new variables ψ and the

condition F ∈ F0 can be again reformulated as F̃ (0) = 0. The rest follows exactly along
the lines of 4.2.2.

Let us now assume that we are given an action S such that F0(M) = δS(V(M))
holds. Then we have:

FS(M) = F(M)/F0(M) = F(M)/ImδS .

2There are indications that the existence of rS0+λF (g),S0
can be actually proved in this case under

some technical assumptions on F . The proof was announced in [130] and will be published in [31]. The
argument uses the a priori estimates on the inverse ∆R of S′′

M to apply the Nash-Moser theorem [95].
We don’t discuss the details here since this problem doesn’t lie in the scope of the present work.
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This can be easily translated into the language of homological algebra. Consider a chain
complex:

0 −→ V(M)
δS−→ F(M) → 0

1 0
(4.7)

The numbers below indicate the chain degrees. The 0-order homology of this complex is
equal to: F(M)/F0(M) = FS(M). This completes the first step in finding the homological
interpretation of FS(M). Next we construct a resolution of FS(M).

Definition 4.2.4. In homological algebra a resolution of an algebra A is a differential
graded algebra (A, δ), such that H0(δ) = A and Hn(δ) = 0 for n > 0.

We can start constructing the resolution of FS(M) from the chain complex (4.7). We
said before that the space of multivector fields ΛV(M) is a graded commutative algebra
with respect to the product (4.4). Moreover it is equipped with the natural bracket {., .}.
Since δS(X) is just {X,LM (f)} for f ≡ 1 on suppX, X ∈ V(M), we can extend δS to
ΛV(M) by means of this graded bracket and obtain the complex:

. . . → Λ2V(M)
δS−→ V(M)

δS−→ F(M) → 0
2 1 0

, (4.8)

where δS is called the Koszul map. Now we want to calculate H1(ΛV(M), δS). First
we identify the elements of Ker(δS)V(M)→F(M). In the BV formalism they are called
symmetries. We discuss them in detail in section 4.3.

4.2.3 Antifields and antibracket

To end this section we want to add a remark on the relation to the standard approach to
the BV formalism. Vector fields V(M) correspond to objects called in physics literature:
functionals of the antifields. Originally they were interpreted only as formal generators of
some graded algebra. A geometrical interpretation was first given in [189], but it applies
only to the case where the configuration space is finite dimensional. We generalized these
ideas to the field-theoretic context and also simplified the structure. To understand the
relation to the traditional approach we write formally the action of a vector field on a
functional in the “integral” notation:

∂XF (ϕ) =
〈
F (1)(ϕ),X(ϕ)

〉
formal
=

∫

M
dvolMX(ϕ)(x)

δF (ϕ)

δϕ(x)
.

In this sense we can identify the functional derivatives δ
δϕ(x) with the antifields ϕ‡(x) and

write elements of V(M) as:

X(ϕ)
formal
=

∫

M
dvolMX(ϕ)(x)

δ

δϕ(x)
≡
∫

M
dvolMX(ϕ)(x)ϕ‡(x) .

The algebra of alternating multivector fields is then the algebra “generated” by fields and
antifields, and the antibracket used in the physics literature is in our interpretation just
the Schouten bracket on the space of multivector fields. To fix the sign convention we
can write the antibracket in a slightly formal notation used commonly in the literature:

{X,Y } = −
∫
dx

(
δX

δϕ(x)

δY

δϕ‡(x)
+ (−1)|X| δX

δϕ‡(x)
δY

δϕ(x)

)
. (4.9)

The derivative with respect to the antifield has to be understood as the left derivative
(see section 3.6). The extra “-” sign comes from the fact that in the literature one also
introduces the right derivative.
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4.3 Symmetries

Now it’s time for symmetries! As we already mentioned, they should characterize the
kernel of δS at the 1st order of (4.7). Therefore the proper understanding of symmetries
is the very heart and essence of the BV formalism. In our formulation we define them
as certain vector fields on E(M), that describe directions in the configuration space in
which the action S is constant. This can be expressed as the condition that

0 = δSX(ϕ) =
〈
S′
M (ϕ),X(ϕ)

〉
=: ∂X(SM )(ϕ) , (4.10)

for all ϕ ∈ E(M) (see also [166, 77]). A symmetry X is called trivial if it vanishes
on-shell, i.e. X(ϕ) = 0 for all ϕ ∈ ES(M). It was recognized in [97] that the trivial
symmetries play an important role in the BV construction. This issue appeared in the
discussion of the so called open symmetry algebras. We explain what this notion means in
our formalism in section 4.3.5. The Lie subalgebra of V(M) consisting of all symmetries
would be denoted by s(M). The trivial ones are the elements of s0(M). Now we show
that the assignment of these spaces is indeed functorial.

Proposition 4.3.1. Let S be fixed. The map which assigns to every M ∈ Loc the
corresponding algebra of symmetries s(M) and to each morphism χ, a morphism sχ = Vχ
is a contravariant functor Loc→ Vec.

Proof. We have to show that sχ = Vχmaps symmetries into symmetries. Let X ∈ s(M),
then ∀f ∈ D(M) with supp(X) ⊂ f−1(1), ϕ ∈ E(N) we have

〈
LN (χ∗f)

(1)(ϕ), (VχX)(ϕ)
〉
=
〈
χ∗(LM (f)(1)(χ∗ϕ)), χ∗(X(χ∗ϕ))

〉
=

=
〈
LM (f)(1)(χ∗ϕ),X(χ∗ϕ)

〉
= 0 .

The trivial symmetries form a subalgebra s0(M) ⊂ s(M). Alternatively we can
characterize them as:

s0(M)
.
= {X ∈ s(M)| ∂XF ∈ F0(M) ∀F ∈ F(M)} , (4.11)

The space of nontrivial symmetries is defined as the quotient:

sph(M)
.
= s(M)/s0(M) ,

so it is a set of equivalence classes of vector fields on E(M), where the equivalence relation
is given by:

X ∼ Y if X − Y vanishes on-shell (4.12)

The algebra of symmetries s(M) has a natural action on F(M) by derivations: s(M) ∋
X : F 7→ ∂XF . Its quotient sph(M) acts faithfully on FS(M).

The aim of the BV formalism is to analyze the structure of the spaces s(M) and
sph(M). One can show that trivial symmetries are contained in the image of δS ,
(ImδS)Λ2V(M)→V(M), so they don’t contribute to H1(ΛV(M), δS). We conclude that
the first homology of the Koszul complex (4.8) is trivial if the action S doesn’t possess
any nontrivial local symmetries. This condition can be formulated as follows [77]:

X(ϕ) ⊥ S′
M (ϕ) ∀ϕ ∈ E(M)⇒ X(ϕ) = 0 ∀ϕ ∈ ES(M) . (4.13)
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From (4.13) follows a sufficient condition for an action S to be free of nontrivial symme-
tries. Let 〈S′

M (ϕ),X(ϕ)〉 = 0 then differentiating with respect to ϕ results in

〈S′′
M (ϕ),X(ϕ) ⊗ ψ〉+ 〈S′(ϕ),X(1)(ϕ)ψ〉 = 0 . (4.14)

where the second derivative S′′ of an action S ≡ S(L) is a natural transformation E →
E′
c ⊗ E′

c defined by
S′′
M = LM (f)(2) on Ec(K)⊗ Ec(K)

with any compact subset K ⊂M and with f ≡ 1 on K. From the locality it follows that
S′′
M (ϕ) induces a differential operator E(M) → E′

c(M), defining the linearized equation
of motion around the field configuration ϕ. Now for ϕ ∈ ES(M) the second term in
(4.14) vanishes, hence

〈S′′
M (ϕ),X(ϕ) ⊗ ψ〉 = 0 ∀ψ ∈ Ec(M) .

This means that for all ϕ ∈ ES(M), X(ϕ) has to be a solution of the linearized equation
of motion. Since X(ϕ) ∈ Ec(M), the action S possesses no nontrivial symmetries if the
linearized equation of motion doesn’t have any nontrivial compactly supported solutions.
In particular this is the case when S′′

M(ϕ) is a normally hyperbolic differential operator.
If an action doesn’t possess any nontrivial symmetries, then H1(ΛV(M), δS) = 0 and we
get

H0 (ΛV(M), δS) = FS(M) ,

Hk (ΛV(M), δS) = 0, k > 0 .

In this case the complex (ΛV(M), δS) is a resolution of FS(M), called the Koszul reso-
lution.

It was already stressed in [77], that in the present setting, where the configurations
are not compactly supported and the manifold M is non-compact, the operator δS is
not an inner derivation with respect to the antibracket. This is a major difference with
respect to other approaches. A reason for this is the fact that the action itself is not an
element of Floc(M), but rather an equivalence class of natural transformation between the
functors D and Floc. Nevertheless, locally δS can be written in terms of inner derivations,
since δS(L)X = {X,LM (f)(1)} for f ≡ 1 on suppX, X ∈ V(M).

To end this section we provide a simple finite dimensional example, which demon-
strates the interplay between the trivial and non trivial symmetries.

Example 4.3.2 (Finite dimensional system with symmetries). Let the configuration
space E be a finite dimensional manifold. An action S ∈ C∞(E,R) is a functional on E.
Let d be the exterior derivative. Let ES be the set of all critical points of S, i.e.

ES = {x ∈ P | dS(x) ≡ 0}. (4.15)

The condition dS(x) = 0 can be written in local coordinates (with respect to a chart
(Uα, ϕα) as a system of n equations for n variables: σi((ϕ

−1
α )1(x), . . . , (ϕ−1

α )n(x)) = 0, i =
1, . . . n. These correspond to “equations of motion”. The set ES corresponds to the space
of solutions. A critical point is called nondegenerate if at this point the (local) Hessian
matrix HS(ϕ

−1
α (x)) is nondegenerate. In this case we have a system of independent

equations. This is a case with no nontrivial symmetries. Trivial ones can be written in
local coordinates (in the following we denote the local coordinates by x1

.
= (ϕ−1

α )1(x) and
we keep the local chart implicit) as X(x)j = σiM

ij(x), for some antisymmetric matrix
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M . In general only k < n of the equations are independent. This is the case of a system
with symmetries. As an example we take E = R3 and we choose the action S to be:

S(x, y, z) = z
N∏

k=1

(x2 + y2 − k2) (4.16)

The corresponding equations of motion take the form:

σ1(x, y, z) = 2xz

N∑

k=1

N∏

l=1
l 6=k

(x2 + y2 − k2) (4.17)

σ2(x, y, z) = 2yz

N∑

k=1

N∏

l=1
l 6=k

(x2 + y2 − k2) (4.18)

σ3(x, y, z) =
N∏

k=1

(x2 + y2 − k2) (4.19)

It is easy to check, that the solution space ES is the disjoint union of concentric circles
of radii 1 . . . N , lying in the z = 0 plane. The functional S is invariant under the action

1 2 N. . .

...

−2
−1

1

2

N

x

y

Figure 4.1: Solution space for the action functional S(x, y, z) = z
N∏
k=1

(x2 + y2 − k2)

of group G = C∞(R3, SO(2)). W can represent elements of G by matrices acting on R3

by matrix multiplication:

αθ(x, y, z) =




cos(θ(x, y, z)) sin(θ(x, y, z)) 0
− sin(θ(x, y, z)) cos(θ(x, y, z)) 0

0 0 1


 , (4.20)

where θ ∈ C∞(R3). The group of trivial transformations G0 consists of those elements
of G for which θ vanishes on ES :

G0 = {αθ ∈ G|θ(x, y, z) = 0 ∀(x, y, z) ∈ ES} (4.21)
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An example of such element can be αθ, for θ(x, y, z) = z
N∏
k=1

(x2 + y2− k2). The group of

physical transformations Gph is in this case:

Gph = G/G0 = {αθ ∈ G|θ ∈ C∞(ES)} (4.22)

There are N gauge orbits on ES . A single gauge orbit is a circle with radius 1, . . . , N .
Gauge invariant functions on ES have to be constant on each of the circles so we find
that:

C∞
inv(ES)

∼= RN (4.23)

The algebra of on-shell symmetries is just

sph = so(2)⊗ C∞(ES) (4.24)

It can be parametrized by:

Xθ(x, y, z) = θ(x, y, z)

(
0 1
−1 0

)
, θ ∈ C∞(ES) (4.25)

Action of sph on C∞(ES) can be written as:

C∞(ES) ∋ f 7→ Xθf(x, y, z) = θ(x, y, z)(y∂x − x∂y)f(x, y, z) (4.26)

N

4.3.1 General theories with symmetries

In this section we provide a general discussion of theories possessing nontrivial local
symmetries. The first issue that arises is the formulation of the regularity conditions
on the action, that allow us to characterize F0(M) as the image of the Koszul map δS .
Clearly S′′

M (ϕ) is not an invertible operator and therefore the argument from the example
4.2.2 will not work. We need a weaker notion of “invertability” of S′′

M . Before we put it
in mathematical terms let us discuss the underlying physical intuition. If the symmetries
of S arise from a Lie group action, then S′

M is a well defined, nondegenerate map on the
space of gauge orbits. Unfortunately in general this space is not a vector space and not
even a manifold [157, 1, 121, 122]. The way out is to parametrize it locally by choosing
representants of the gauge equivalence classes. This amounts to performing local gauge
fixing. It was shown by Singer for the case of Yang-Mills theories that this cannot be done
globally [163, 164], see also [157, 1, 121, 122] for a detailed description of the structure of
the gauge orbit space. This problem is related to the so called Gribov ambiguities [89].
In our setting this choice of parametrization will be made by defining a projection R in
each open neighborhood of ES(M). This formulation applies also to the situation, where
the symmetries don’t necessarily arise from a Lie-group action.

Let {Oα} be an open covering of the solution space ES(M) ⊂ E(M). We say that
the action doesn’t have nontrivial local symmetries after the gauge fixing if for each Oα

there exists an operator Rα : Oα →M such that R2
α = Rα, Rα(Oα) and (1−Rα)Oα are

linearly independent and it holds:

X(ϕ) ⊥ S′
M (ϕ) ∀ϕ ∈ Rα(Oα)⇒ X(ϕ) = 0 ∀ϕ ∈ Rα(Oα) , (4.27)

where X is a multilocal vector field on Rα(Oα) (i.e. X ∈ Γ(TRα(Oα))) with image in the
compactly supported sections. We also require the operators Rα, Rα′ to be compatible
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on the intersection of Oα and Oα′ . In other words Rα projects locally to a subset of E(M)
such that there are no symmetries tangent to it. It follows now that S′′

M is invertible on
the tangent space of Rα(Oα) in the sense that for ϕ ∈ Rα(Oα) ∩ ES(M)

〈S′′
M (ϕ),X(ϕ) ⊗ ψ〉 = 0 ∀ψ ∈ Ec(M)⇒ X(ϕ) = 0 ,

where X is a vector field as in (4.27). Reversing this reasoning results in a sufficient
condition for an action to be free of nontrivial local symmetries after the gauge fixing.
We phrase it in the following way:

Assumption 1 (Regularity condition). Assume that there exists an open covering {Oα}
of ES(M) and a family of operators Rα, such that the linearized equations of motion S′′

M

don’t have nontrivial compactly supported solutions in Tϕ(Rα(Oα)), ϕ ∈ Rα(Oα).

Under this assumption, (4.27) holds and if the gauge-fixed S′′
M is normally hyperbolic,

one can show that the ideal F0(M) is generated by the eom’s. The above condition basi-
cally means that we can divide the equations of motion into dependent and independent
ones and the independent can be chosen as new variables. Indeed, let us first consider
the case when S is quadratic. Let ϕ ∈ Oα and ψ = Rα ◦ S′′

Mϕ + (1 − Rα)ϕ. Assuming
that S′′

M is hyperbolic as an operator acting on Rα(Oα), we obtain the retarded solution
∆R, that fulfills

Rα ◦ S′′
M ◦Rα ◦∆R ◦Rα = Rα .

It follows that ϕ = Rα◦∆R◦Rαψ+(1−Rα)ψ and we can write a functional F ∈ F(Oα) in
terms of the new variables as: F (ϕ) = F (Rα◦∆◦Rαψ+(1−Rα)ψ) = F̃ (Rαψ, (1−Rα)ψ).
On-shell we have Rαψ = Rα ◦ S′′

Mϕ = 0 and (1− Rα)ψ = (1 −Rα)ϕ. So if F ∈ F0(M),
then

F̃ (0, (1 −Rα)ψ) = 0

Denoting ψ1
.
= Rαψ, ψ2

.
= (1−Rα)ψ we can write F̃ as:

F̃ (ψ1, ψ2) =

1∫

0

dF̃ (tψ1, ψ2)[ψ1]dt =

1∫

0

δF̃

δψ1
(tψ1, ψ2)[ψ1]dt .

Setting f̃(ψ1, ψ2) =
1∫
0

δF̃
δψ1

(tψ1, ψ2)[•]dt we obtain: F̃ (ψ) =
〈
f̃(ψ1, ψ2), ψ1

〉
. Rewriting it

again in terms of ϕ ∈ Oα results in
〈
f̃(Rα ◦ S′′

Mϕ, (1 −Rα)ϕ), Rα ◦ S′′
Mϕ
〉
= F (ϕ). We

can repeat it for all Oα from the open cover and it follows that F0(M) is indeed generated
by equations of motion in the open neighborhood of ES(M).

The above result provides a description of F0(M) in the open neighborhood of ES(M).
A global argument can be obtained using the fact, that the configuration space E(M) is
a Montel space and therefore paracompact [112, 125, 22]. The following proposition is
an infinite dimensional version of a formal argument provided in appendix 1.A of [97].

Proposition 4.3.3. Let S be a generalized action fulfilling regularity conditions formu-
lated above. Then each element of F0 can be written as

F (ϕ) =
〈
f(ϕ), S′′

Mϕ
〉
, ϕ ∈ E(M) .
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Proof. Let {Oρ} be the open covering of ES(M) constructed above. We complete it to
the open covering of E(M) by choosing the family of open sets {Vα} that don’t intersect
ES(M) such that {Wτ} .= {Oρ} ∪ {Vα} covers E(M) and for each index α

S′′
M (ϕ) 6= 0, ∀ϕ ∈ Vα .

Now we can write each F ∈ F0(M) in the form F (ϕ) = 〈fα(ϕ), S′′
M (ϕ)〉 for ϕ ∈ Vα,

where fα(ϕ)
.
= hF (ϕ)/S′′

M (ϕ) and h ∈ D(M) is an arbitrary test function such that∫
M

dvolMh(x)dx = 1. Together with the result proved before we obtain for each Wτ an

expression: F (ϕ) = 〈fτ (ϕ), S′′
M (ϕ)〉, ϕ ∈ Wτ . Coefficients fτ are defined only locally,

but the global ones can be constructed using the partition of unity. Since E(M) is
paracompact, we can choose a partition of unity

∑
τ
χτ = 1 such that suppχτ ⊂Wτ and at

each point ϕ ∈ E(M) only finitely many functions χτ don’t vanish. The global coefficients
can be defined by f(ϕ)

.
=
∑
τ
χτfτ (ϕ). There is no problem with the convergence, since

at each configuration ϕ the sum has only finitely many nonvanishing terms.

The case of a nonlinear action can be handled in a similar way as in the case without
the symmetries, provided that the projections Rα can be chosen to be the same in the
free and interacting case. We illustrate the general construction presented above on
two examples. First we give a finite dimensional one, and next we describe the case of
Yang-Mills theories.

Example 4.3.4 (Finite dimensional system with symmetries). We continue analysing
the example 4.3.2. The regularity conditions imposed on S in the finite dimensional
case take the form: for each point x ∈ ES there exists an open neighborhood with the
corresponding chart (Uα, ϕα) such that σi((ϕ

−1
α )1(x), . . . , (ϕ−1

α )k(x)) = 0, i = 1, . . . k are
independent, i.e. the Hessian matrix H(ϕ−1

α (x)) is of rank k for all x ∈ ES . Under
this regularity condition we can choose (σ1 . . . σk, xk+1, . . . , xn) as new local coordinates
in the neighbourhood Uα of each point of ES. The projection Rα can be explicitly
written as Rα(x)(σ1(x), ..., σk(x), 0, ...0) and (1 − Rα)(x) = (0, ..., 0, xk+1, ..., xn). For
the Lagrangian from example 4.3.2 the Hessian matrix on the solution space has the
form:

H(x, y, z) = 2
N∑

k=1

N∏

l=1
l 6=k

(x2 + y2 − k2)




0 0 x
0 0 y
x y 0


 (4.28)

The rank of H(x) is equal to 2 for x ∈ ES . We can choose σ2 and σ3 as independent
equations. The local projections Rα are best written in cylindric coordinates. As an
example we take the open neighborhood O1 (see figure 4.2). The corresponding projection
takes the form: R1(ϕ, r, z) = (0, σ2/(r sin(ϕ)), σ3) =: (0, u, v), (1−R1)(ϕ, r, z) = (ϕ, 0, 0).
This change of coordinates can be inverted on O1, resulting in z = u, r =

√
v + 1, so each

functional F (ϕ, r, z) on O1 induces a functional F̃ (ϕ, σ2, σ3) = F (ϕ,
√
σ3 + 1, σ2

sin(ϕ)
√
σ3+1

)

and the condition of vanishing on-shell can be expressed as F̃ (ϕ, 0, 0) = 0.

Note that the gauge orbits are closed and the change of variables we performed works
only locally. A similar problem arises in the infinite dimensional case, when the gauge
fixing cannot be done globally. This is a toy model for the so called Gribov problem
[89]. N
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ϕ
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Figure 4.2: Local choice of coordinates for the action functional S(x, y, z) = z
N∏
k=1

(x2 +

y2 − k2).

Example 4.3.5 (Yang-Mills theory). After a simple finite-dimensional example we can
now move to a more physical one. Consider the Yang-Mills theory with the Lagrangian:

LM (f)(A) = −1

2

∫

M
ftr(F ∧ ∗F ) ,

where F = dA + [A,A] is the field strength corresponding to the gauge potential A ∈
E(M) = Ω1(M,g), g is a finite dimensional Lie group and ∗ is the Hodge operator. The
equations of motion are: ∗−1D∗DA = 0, where D is the covariant derivative (the geometry
of Yang-Mills theories will be discussed in details in section 4.4.1). A choice of a gauge
fixing defines a surface in E(M) and local projections Rα are projections to this surface.
One can also see it as providing a split in the space of gauge equivalence classes. In the
literature concerning the structure of gauge orbit space [157, 1, 121, 122] it is referred to
as the choice of the gauge slice . N

4.3.2 Koszul-Tate resolution

From now on, we shall assume that we are given an action S such that S′′
M is invertible

after the gauge fixing. The Koszul complex is modified to the Koszul-Tate complex [174].
Its underlying graded module is just s(M)⊕V(M)⊕F(M) and the differential is defined
as δ

.
= ι ⊕ δS ⊕ 0, where ι is the natural inclusion map. We obtain the following short

exact sequence:

0→ s(M)
ι−֒→ V(M)

δS−→ F(M)→ 0 .

The space of on-shell functionals is characterized as FS(M) = H0(δ). Like in the case
without nontrivial symmetries, we can construct from the graded module s(M)⊕V(M)⊕
F(M) a graded algebra by extending it with graded-symmetric tensor powers. The
resulting structure is:

KT(M)
.
= S•

F(M) s(M) ⊗
F(M)

∧

F(M)

V(M) . (4.29)

The differential δ is extended to KT(M) by requiring the graded Leibniz rule. The
resulting structure is called the Koszul-Tate resolution.
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We discuss now in detail the structure of the space of symmetries. The space of
all the diffeomorphisms of E(M) is C∞(E(M),E(M)). This space is “badly” infinite
dimensional and introducing a Lie group structure on it is not possible. The space of
diffeomorphisms that leave the action invariant can be too big as well. This, however,
doesn’t pose a problem for the application in physics, since we are interested only in the
“infinitesimal symmetries”, i.e. vector fields on E(M).

4.3.3 Chevalley-Eilenberg cohomology

It is well known in homological algebra [185, 99, 58] that with the Lie-algebra action
one can associate in a canonical way a co-chain complex, called the Chevalley-Eilenberg
complex. It turns out however, that in our case a slightly different structure would be
more appropriate. From the definition, s(M) is the subalgebra of the algebra of vector
fields V(M). This in turn is in a trivial way a so called Lie algebroid. In section 4.3.6 we
describe it in more detail. Essentially this is a generalization of a Lie algebra. From this
point of view it is more natural to use the algebroid Chevalley-Eilenberg construction
for the action of s(M) on F(M). In section 4.3.6 we discuss in details how it covers
many of the physical examples and how it relates to the Lie algebra picture. For now the
only consequence of this interpretation is the use of a following definition of the algebraic

Chevalley-Eilenberg complex:
(∧

F(M)
s∗(M), γ

)
, where now the tensor products are over

the ring F(M). The space s∗(M) is defined as s∗(M)
.
= C∞(E(M),E′(M))/J, where

J ⊂ C∞(E(M),E′(M)) is the ideal consisting of forms that vanish on s(M) and the
duality between s∗(M) and s(M) is given by:

〈ω, ξ〉 (ϕ) .= 〈ω(ϕ), ξ(ϕ)〉 ω ∈ s∗(M), ξ ∈ s(M) .

The assignment of s∗(M) to a spacetime can be made into a covariant functor. Morphisms
M → N are mapped to s∗χ, defined as:

(s∗χ)(ω)
.
= E′χ ◦ ω ◦ Eχ .

The grading of
∧

F(M)
s∗(M) is called the pure ghost number and we denote it by #pg.

The differential γ is given by the formula:

γ :

q∧

F(M)

s∗(M)→
q+1∧

F(M)

s∗(M) ,

(γω)(ξ0, . . . , ξq)
.
=

q∑

i=0

(−1)i∂ξi(ω(ξ0, . . . , ξ̂i, . . . , ξq))+

+
∑

i<j

(−1)i+jω
(
[ξi, ξj ], . . . , ξ̂i, . . . , ξ̂j, . . . , ξq

)
, (4.30)

Note that if F ∈ Finv
S (M) is an on-shell functional invariant under the action of s(M),

then γF ≡ 0. Therefore the 0-order cohomology of the Chevalley-Eilenberg complex
characterizes the gauge invariant on-shell functionals.

The Chevalley-Eilenberg complex can be assigned to a spacetime in a functorial way.
Let dgA be the category with differential graded algebras as objects and differential
graded algebra homomorphisms as morphisms. We define a covariant functor CE from
Loc to dgA, by setting CE(M)

.
=
∧

F(M)

s(M)∗ for objects. Morphisms are mapped in the

way discussed above. Similarly we define CES(M)
.
=
∧

F(M)

s(M)∗ ⊗
F(M)

FS(M).
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4.3.4 Going off-shell

The Chevalley-Eilenberg complex constructed in the previous subsection allows us to
characterize the gauge invariant functionals as a certain cohomology but we still have to
work on-shell. We would like to avoid it, since the functional approach to field theory is
based on the off-shell setting. One would be tempted to simply take the full symmetry

algebra s(M), construct the Chevalley-Eilenberg complex
(∧

F(M)
s∗(M), γ

)
correspond-

ing to its action on F(M), calculate the 0-cohomology and go on-shell at the end. This,
however, is not the optimal solution, since the corresponding cohomology doesn’t capture
really the gauge invariant on-shell functionals. This can be seen on a simple example

Example 4.3.6. Consider the finite dimensional system from 4.3.2. An example trivial
symmetry is given by:

X(p) = σ3(p)∂x − σ1(p)∂z .
We already showed in that the gauge invariant on-shell functionals are those constant on
the concentric circles. Let F (r) be such a functional. Acting on it with X we obtain:

∂XF (p) = 2r cos(ϕ)σ3(p)F
′(r) ,

therefore F is invariant under X only if F is constant, so the Chevalley-Eilenberg co-
homology corresponding to the action of s(M) on F(M) is just R, whereas the space of
gauge-invariant on shell functionals is characterized by RN . N

From this example and the discussion of the previous subsection we see that what we

need is not the cohomology of
(∧

F(M)
s∗(M), γ

)
, but of

(∧
F(M)

s∗(M) ⊗
F(M)

FS(M), γ

)
.

To go off-shell we have to replace FS(M) by its Koszul-Tate resolution (4.29). We obtain
the algebra:

BV(M)
.
=
∧

F(M)

s(M)∗ ⊗
F(M)

S•
F(M) s(M) ⊗

F(M)

∧

F(M)

V(M) , (4.31)

with a differential δ acting on
∧

F(M)
s∗(M) as the identity. We extend the grading #pg

of CE(M) to a grading #gh (called total ghost number) on BV(M) by

#gh = #pg−#af .

The antifield number #af = 1 is assigned to the vector fields, the antifield number
#af = 2 to the elements of s(M), whereas elements of

∧
F(M)

s∗(M) have #af = 0. The
Chevalley-Eilenberg differential acts on H0(δ) =

∧
F(M)

s∗(M) ⊗
F(M)

FS(M) and we have:

H0(H0(δ), γ) = Finv
S (M) .

The differential γ can be in a natural way extended to vector fields V(M). Note that
s(M) has a natural Lie algebroid action on V(M) via the commutator, so γ on V(M)
is just the Chevalley-Eilenberg differential constructed for this action. Explicitly we can
write it as:

γ :

q∧

F(M)

s∗(M) ⊗
F(M)

V(M)→
q+1∧

F(M)

s∗(M) ⊗
F(M)

V(M) ,

(γω)(ξ0, . . . , ξq)
.
=

q∑

i=0

(−1)i[ξ, ω(ξ0, . . . , ξ̂i, . . . , ξq)]+

+
∑

i<j

(−1)i+jω
(
[ξi, ξj], . . . , ξ̂i, . . . , ξ̂j , . . . , ξq

)
, (4.32)
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A similar reasoning applies to the action of s(M) on itself. By requiring the graded
Leibniz rule we extend γ to the full graded algebra BV(M). This way we obtain a
double complex (BV(M), δ, γ). We can picture this on a diagram3:

0 0 0

...
2∧
F

V⊕ s V F 0

...
1∧
F

s∗ ⊗
F

V
1∧
F

s∗ 0

. . .

δS ⊕ ι δS

δS

γ γγ

γ

(4.33)

The full BV differential is defined as s = δ + γ. Since (BV(M), δ) is a resolution, one
can use the main theorem of homological perturbation theory4 to conclude that

H0(BV(M), s) = H0(H0(BV(M), δ), γ) .

The right hand side of the above relation is called the cohomology of γ modulo δ and
is denoted by H∗(γ|H∗(δ)). We can identify the gauge invariant functionals with the
0-cohomology of s, i.e. FSinv(M) = H0(BV(M), s). This is the most general situation
in the BV formalism. Although we already obtained the homological interpretation of
FSinv(M), from the practical point of view it is worth to work on this structure a little bit
more, in order to find more explicit formulas for the objects involved.

4.3.5 Open and closed algebras

Up to this point we haven’t made any assumptions on the general structure of sph(M).
Before turning to concrete examples, it is interesting to analyze it in more detail. We want
to make contact with the standard approach [13, 14, 15] and show how the structures
we are using relate to those used in the literature. Therefore, we shall now discuss
the interpretation of open and closed algebras. In section 4.3.4, we showed that one can
interpret FSinv(M) as a cohomology of γ modulo δ, where the Chevalley Eilenberg complex
was constructed for the full symmetry algebra s(M). This algebra is “much bigger” than
sph(M) since it contains all the trivial symmetries. In praxis one wants to work with
a smaller space. For concrete examples this can be done, but involves a great deal of
arbitrary choices. Nevertheless, we think it is worth to follow the underlying reasoning
to see at which points the choices have to be made.

The goal is to find a resolution of the graded differential algebra CES(M). The diffi-
culty is that one has to bring off-shell not only the observables, but also the symmetries.
This is a little bit problematic from a conceptual point of view, since in a general case the
physical symmetries sph(M) are an intrinsic property of the solution subspace ES(M).
Their extension to E(M) is in principle an extension problem for vector fields defined on
a submanifold and need not be possible in general. Nevertheless in a wide class of exam-
ples one can find a subset sr(M) ⊂ s(M) such that we can write each element X ∈ s(M)

3Since all the constructions are functorial, for the simplicity of notation we don’t write the dependance
on M explicitly.

4See [66, 97].
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in a form: X = Y + I, where Y ∈ sr(M) and I ∈ s0(M) is a trivial symmetry. The space
sr(M) is in general not a Lie subalgebra of s(M). We shall call it the reduced space of
symmetries. This leads to a classification usually used in physics:

• The space of reduced symmetries sr(M) is a subalgebra of s(M). In physics termi-
nology this situation corresponds to a closed algebra.

• The space of reduced symmetries sr(M) is not a subalgebra of s(M). We deal with
a open algebra situation.

It was already stressed in [97] that this terminology doesn’t really concern the algebra
of symmetries s(M), which is always a Lie algebra, but rather a specific parametrization
of it. In the book [97] this parametrization is related to the choice of generating sets,
whereas in our setting it corresponds to the choice of a split (as a vector space not as a
Lie algebra) of the quotient sph(M). Although sr(M) is not a Lie-subalgebra of s(M),
we can still define a graded algebra CE(M)

.
=
∧

F(M)
sr(M)∗ and a derivation γ on it is

given by (4.32). In general it is not a differential on CE(M), since it is not nilpotent of
degree 2, but becomes a differential on-shell. In homological algebra this notion has a
precise meaning as:

Definition 4.3.7. Let δ ∈ Der(A) be a differential of degree 1 on the graded algebra A.
We consider its homology H∗(δ). Let d be a derivation also with degree 1, satisfying:
dδ + δd = 0 and d2 is δ-exact, i.e., there is a derivation D such that d2 = [D, δ]. Then
d induces a differential (which we still call d) on H∗(δ). We denote the cohomology of d
on H∗(δ) by H∗(d|H∗(δ)) and call d a differential modulo δ.

In case of an “open algebra” γ can be defined as a differential modulo δ and the
main theorem of homological perturbation theory can be again applied to conclude, that
FSinv(M) = H0(γ|H0(δ)).

4.3.6 Appendix: Interpretation in terms of category theory

In this section we want to provide a motivation for the definition of the Chevalley-Eilenber
complex given in 4.3.3. First we introduce some definitions from category theory [132].

Definition 4.3.8. A Lie algebroid a is a triple (E, [·, ·], ρ) consisting of a vector bundle
E over a manifold M, together with a Lie bracket [·, ·] on its module of sections Γ(E)
and a morphism of vector bundles ρ : E → TM called the anchor. The anchor and the
bracket are to satisfy the Leibniz rule:

[X, fY ] = ρ(X)f · Y + f [X,Y ]

where X,Y ∈ Γ(E), f ∈ C∞(M) and ρ(X)f is the derivative of f along the vector field
ρ(X). It follows that:

ρ([X,Y ]) = [ρ(X), ρ(Y )]

for all X,Y ∈ Γ(E).

The corresponding Chevalley-Eilenberg algebra is defined as
(∧

C∞(M) Γ(E)∗, γ
)
,

where the tensor products and the dualization are over the ring C∞(M) and the dif-
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ferential γ is given by:

(γω)(ξ0, . . . , ξq)
.
=

q∑

i=0

(−1)iρ(ξi)(ω(ξ0, ..., ξ̂i, ..., ξq))+

+
∑

i<j

(−1)i+jω
(
[ξi, ξj ], ..., ξ̂i, ..., ξ̂j , ..., ξq

)
.

An “integrated” version of Lie algebroids are Lie groupoids. They play a role similar as
the Lie groups play to Lie algebras.

Definition 4.3.9. A groupoid is a small category in which every morphism is an iso-
morphism.

In other words a groupoid G ⇒ B consists of a set B of objects (usually called
the base), and a set G of morphisms, usually called the arrows. Each arrow has an
associated source object and an associated target object. This means that there are
two maps s, t : G ⇒ B called the source and target, respectively. A Lie groupoid is a
groupoid where the set B of objects and the set G of morphisms are both manifolds,
the source and target operations are submersions, and all the category operations are
smooth. More explicitly a Lie groupoid is given by a following data:

• two smooth manifolds G (arrows) and B (objects),

• two smooth maps (source and target): s, t : G⇒ B,

• a smooth embedding ι : B → G (the identities or constant arrows),

• a smooth involution I : G→ G, also denoted x 7→ x−1,

• a multiplication m : G2 → G, (x, y) 7→ x · y, where G2 = Gs ×t G = {(x, y) ∈ G×
G|s(x) = t(y)}, such that the source map and target map are surjective submersions
(hence G2 is a smooth manifold), the multiplication is smooth and

– s(x · y) = s(y), t(x · y) = t(x),

– x · (y · z) = (x · y) · z,
– ι(t(x)) · x = x · ι(s(x)),
– s(x−1) = t(x), t(x−1) = s(x),

– x · x−1 = ι(t(x)), x−1 · x = ι(s(x)),

whenever (x, y) and (y, z) are in G2.

In particular with a left action of a Lie group G on a manifold M one can associate a
groupoid called the action groupoid in a following way:

• G×M is the set of morphisms,

• an object is an element of M,

• a morphism from x ∈M to y ∈M is a group element g ∈ G with gx = y. A general
morphism is a pair (g, x) : x→ gx.

• The multiplication of (g, x) : x→ gx = y and (h, y) : x→ hy is (hg, x) : x→ hgx.
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• s(g, x) = g−1x,

• t(g, x) = x,

• I(g, x) = (g−1, g−1x),

• ι(x) = (e, x), where e is the unit of G.

As we mentioned before one can associate to a Lie groupoid a Lie algebroid in a canonical
way. In case of the action groupoid we obtain the action algebroid. Explicitely it is given
by the Lie algebra g of G acting on the manifold M. This induces a morphism of Lie
algebras g→ Γ(TM), ξ 7→ Xξ. Consider now a = g×M a trivial vector bundle over M.
We identify sections of a with maps M→ g and define a bracket on sections by:

[a, b](x) = [a(x), b(x)] + ∂Xb(x)a− ∂Xa(x)b .

The anchor map ρ : a→ TM is defined by:

(ξ, x) 7→ Xξ(x) .

Coming back to the BV formalism we see that the action of a Lie group on the config-
uration space E(M) (considered as a trivial manifold) in a natural way provides us a
Lie algebra C∞(E(M), g) and a morphism ρ. We can identify C∞(E(M), g) with the re-
duced symmetry algebra sr(M) and the Chevalley-Eilenberg complex of the Lie algebroid
(sr(M), [., .], ρ) is exactly the complex we defined in section 4.3.3.

4.4 Yang-Mills theories

In the previous section, we discussed the general structure of the BV construction. Now
we turn to a particular example, where it can be applied, namely to Yang-Mills theory. In
this case one has a simple characterization of symmetries as being induced by the action
of a Lie group on the configuration space. We start this section with some geometrical
preliminaries concerning the structure of gauge theories. Next we construct the Batalin-
Vilkovisky complex and perform the gauge fixing. We end this section with providing a
construction of the Poisson algebra of classical Yang-Mills theories.

4.4.1 Geometrical preliminaries

To put gauge theories into the category theory setting we recall first some basic definitions
concerning principal bundles (see for example [119, 82, 118, 140]). First, we introduce a
category of fibered manifolds Fm. A fibered manifold is defined as:

Definition 4.4.1. A triple (N,π,M), where π : N → M is a surjective submersion, is
called a fibered manifold. N is called the total space, M is called the base.

In this definition one point needs few words of comment. A mapping f : N → M
between manifolds is called a submersion at x ∈ N , if the rank of Txf : TxN → Tf(x)M
equals dim M . The mapping f is said to be a submersion, if it is a submersion at each
x ∈ N .

To have a category, beside objects, we still need morphisms. In case of fibered man-
ifolds they are defined in quite a straightforward way. Given another fibered manifold
(N ′, π′,M ′), a morphism (N,π,M) → (N ′, π′,M ′) means a smooth map f : N → N ′
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transforming each fiber Nx
.
= π−1(x) of N into a fiber of N ′. The relation f(Nx) ⊂ N ′

x′

defines a map f : M → M ′, which is characterized by the property: π′ ◦ f = f ◦ π. We
say that f covers f . Using this definitions one can introduce a following category:

Fm Obj(Fm): fibered manifolds over Obj(Loc)

Morphisms: fibered manifolds’ morphisms that cover those of Loc

There is an important functor from Fm into the category of spacetimes Loc. It gener-
alizes the notion of a base space to the level of categories.

Definition 4.4.2. A base functor is a functor Ba : Fm → Loc which assigns to
every fibered manifold (M,π,N) its base N and to every fibered manifold morphism
f : (N,π,M)→ (N ′, π′,M ′) the induced map f :M →M ′.

A special case of a fibered manifold is a principal bundle. This structure is of par-
ticular interest in the present work, since we want to consider the example of Yang-Mills
theories. In the rest of this mathematical warm-up we want to revise some basic facts
concerning principal bundles, but we will do it already in the more abstract language.
At the same time we want to show the relation to more standard definitions used in the
physics literature. One can consider this section as a dictionary, which makes it easier to
jump from very abstract concepts to practical calculations. We start with recalling the
definition of the G-bundle structure. This is the first step on the way to define principal
bundles. Let G be a fixed finite dimensional Lie group and g it’s Lie algebra.

Definition 4.4.3 ([118], 10.1.). Let (N,π,M) be a fiber bundle with a standard fiber S.
A G-bundle structure on the fiber bundle consists of the following data:

1. A left action: ℓ : G× S → S of the Lie group on the standard fiber.

2. A fiber bundle atlas (Uα, ψα) whose transition functions ψαβ act on S via the G-
action: There is a family of smooth mappings (ϕαβ : Uαβ → G) which satisfies the
cocycle condition ϕαβ(x)ϕβγ(x) = ϕαγ(x) for x ∈ Uαβγ and ϕαα(x) = e, the unit
in the group, such that ψαβ(x, s) = ℓ(ϕαβ(x), s) = ϕαβ(x).s. A fiber bundle with a
G-bundle structure is called a G-bundle.

To summarize, a G-bundle is a fiber bundle equipped with a left action of the Lie
group G on the standard fiber. This action has to be of course compatible with the
bundle structure. A special case of a G-bundle is a fibered manifold, where the group G
itself is the standard fiber. This structure is called a principal bundle.

Definition 4.4.4 ([118], 10.2.). A principal (fiber) bundle P (G,M, π) over the base M
is a G-bundle with typical fiber a Lie group G, where the left action of G on G is just the
left translation.

Group G is called the structure group. Each principal bundle admits a unique right
action r : P ×G→ P , called the principal right action, given by

ϕ(r(ϕ−1(x, a), g)) = (x, ag) .

In order to define a category of principal bindles we have to specify the morphisms. Let
P (G,M, π) and P ′(G,M ′, π′) be principal bundles over manifolds M and M ′ respectively
with π and π′ being projections to the base. A pair (χ, χ), χ : P → P ′, χ : M → M ′

is called a bundle mapping of principal bundles P (G,M, π) and P ′(G,M ′, π) if χ, χ are
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smooth, χ(p · g) = χ(p) · g holds for all p ∈ P , g ∈ G (equivariance) and we have a
following diagram:

P (G,M)
χ−−−−→ P (G′,M ′)

π

y
yπ′

M
χ

−−−−→ M ′

Given χ, the map χ is uniquely determined by the requirement, that the above diagram
commutes. If this is an identity map, χ is a bundle isomorphism. We define the following
category:

Pb(G) Obj(Pb(G)): principal G-bundles over manifods M ∈ Loc.

Morphisms: bundle mappings χ

With those definitions we can now describe quantities that are of importance in gauge
theories, namely the connections. We start with a more general geometrical definition
and at the end we make contact with the more practical approach, used in the physics
literature.

Consider the tangent bundle TP of the principal bundle P . One defines the vertical
bundle V that consists of all vectors which are tangent to the fibers as V = Ker(dπ),
where dπ : TP → π∗TM and π∗TM is the pullback bundle. An Ehresmann connec-

tion on E is a smooth subbundle H of TP , called the horizontal bundle of the connection,
which is complementary to V , i.e. TP = H ⊕ V . It is a principal connection if it
is additionaly G-equivariant in the sense that drg(H) = H, where g ∈ G and r is the
principal right action.

A connection allows us to decompose each vector X ∈ TpP, p ∈ P into horizontal
and vertical part: X = XH +XV . Now let φ ∈ Ωm(P )⊗ V be a vector-valued m-form
on P (V is a k-dimensional vector space with basis {ea}). A connection provides the
covariant derivative , defined as:

Dφ(X1, . . . ,Xm+1)
.
= dPφ(X

H
1 , . . . ,X

H
m+1) ,

where dPφ
.
= dPφ

a ⊗ ea, φ =
k∑
a=1

φ⊗ ea and dP is the exterior derivative.

Connections on principal bundles are uniquely defined by the so called connection

1-forms. This notion is especially important in the physics context.

Definition 4.4.5. A (gauge) connection 1-form on P (G,M, π) is a g-valued form α ∈
Ω1(P, g) such that:

1. α(Zξ) = ξ, for Zξ the fundamental vector field generated by ξ ∈ g,

2. R∗
gα = adg−1α, where Rg is the right action of G on itself, ad is the adjoint repre-

sentation of G on g.

For the completeness we recall that the fundamental vector field Zξ ∈ Γ(TP ) is
defined by the relation Zξ(x)

.
= d

dt(e
tξ .x)

∣∣
t=0

= Te(l
x).ξ, where lx is the map G → P

given by lx(a) = l(a, x) = a.x, a ∈ G.
Now we make contact with the usual physics formulation by writing the object defined

above in local coordinates. Let {Ui}i∈I be an open covering of M . Using local sections
σi we can define a pullback of a connection 1-form α on each open set Ui:

Ai ≡ σ∗i α ∈ Ω1(Ui, g) .
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When P (M,G) is the trivial bundle, then we can define this pullback globally. Otherwise
it exists only locally. Passing between two different trivializations results in identities
between corresponding Ai and Aj, namely:

Ai = adgij ◦Aj + g∗jiθ , (4.34)

where gij : Ui ∩ Uj =: Uij → G are the transition functions and θ is the Maurer-Cartan
form. Given a family of such 1-forms Ai ∈ Ω1(Ui, g) satisfying condition (4.34) on
overlaps Uij one can construct a globally defined α ∈ Ω1(P, g).

Another important structure in gauge theories is the field strenth . It arises as a
local expression for the curvature 2-form of the gauge connection.

Definition 4.4.6. The curvature 2-form Ω is the covariant derivative of the connection
1-form α:

Ω
.
= Dα .

Given a local trivialization {(Uiσi)}i∈I one defines the pullback:

Fi
.
= σ∗Ω .

This is called a field strength. From Cartan’s structure equations follows that it is related
to the local form Ai by

Fi = dAi + Ai ∧Ai ,

where d is the exterior derivative on M . After presenting the local description of the
connection 1-form we would like now to describe the structure of the space of all such
forms. It turns out that it is an affine space. Before we get into details, we recall one
more definition important in the gauge theory, namely the associated bundle .

Definition 4.4.7. Let P (G,M, π) be a principal bundle and let ℓ : G× S → S be a left
action of G on a manifold S. We can construct an associated bundle (P ×G S) → M ,
denoted by P [S, ℓ] as the quotient P×GS := (P×S)/G by the action (p, v)g = (pg, lg−1v).

In particular we can choose S to be g and the action ℓ to be the adjoined action ad
of G on g. We call the resulting associated bundle P [S, ℓ] =: adP , the adjoint bundle.

We can now come back to our discussion of the space of all the affine connections.
Since it is not a vector space, but an affine space, to get a vector space structure one has
to fix a reference connection α0. Now we can characterize all the gauge connections using
the following result: Let α be another connection 1-form on a principal bundle P , then
the difference A = α − α0 is a G-equivariant g-valued 1-form on P which is horizontal
in the sense that it vanishes on any section of the vertical bundle V of P . Hence it is
determined by a 1-form on M with values in the adjoint bundle. Conversely, any element
of Ω1(M, adP ), defines a G-equivariant horizontal 1-form on P and the space of principal
connections is an affine space for this space of 1-forms. We call elements of Ω1(M, adP )
gauge potentials. Locally A is given by a family of g-valued 1-forms Ai ∈ Ω1(Ui, g),
called local gauge potentials. Those are the objects familiar in physics. The field
strength corresponding to α can be locally written as:

Fi = F0,i + dAi + [Ai, Ai] ,

We identify the configuration space of the gauge theory with Ω1(M, adP ). It is justified,
since our setting is perturbational, i.e. we consider as dynamical variables only the
perturbation around the given background connection. Therefore we can consider as a
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physical configuration space the vector space underlying the affine space of connections,
instead of the affine space itself.

We want to make this assignment functorial. There is however a problem, since for
a given spacetime M with a nontrivial topology one can construct different principal
bundles P . There are two ways to overcome the problem. Either we assume that the
bundle is always trivial, or we can replace the category Loc with the category of principal
bundles Pb as the underlying structure for the locally covariant field theory. The second
option is justified if there are some physical effects that depend on the topology and
distinguish between different topologies. The Dirac monopole can be considered as such
an effect. Nevertheless, for now we settle for the first option, namely we assume the
bundle to be trivial. This provides us a functor from Loc to Pb and composition of
this functor with the functor of sections going from Pb to Vec results in a contravariant
functor E : Loc → Vec. It assigns to a spacetimes M the configuration space E(M) =
Ω1(P, g)G ∼= Ω1(M,g). Now let χ : M → N be a causal isometric embedding. We can
define a morphism from E(N) to E(M) in a natural way by setting: Eχ(ω⊗a) := χ∗ω⊗a,
where ω ∈ Ω1(M), a ∈ g and the pullback of a differential form is defined as: (χ∗ω)x :=
ωχ(x) ◦ dxχ. In this way E becomes a contravariant functor between the categories Loc

and Vec. One can also define a covariant functor Ec by assigning to a spacetime the
space of compactly supported g-valued forms Ω1

c(M,g). In this case Ecχ maps forms to
their push-forwards.

Now we introduce the generalized Lagrangian

LM (f) = −1

2

∫

M
f tr(F ∧ ∗F ) , (4.35)

where F = dA+[A,A] is the field strength corresponding to the gauge potential A and ∗ is
the Hodge operator. One can check that for this action the linearized equation of motion
might possess nontrivial compactly supported solutions. Therefore from the criterion
(4.13) follows that S(L) has nontrivial local symmetries. Actually these symmetries can
be easily characterized. They arise as a consequence of the group action of the so called
gauge group. This is an infinite dimensional space consisting of vertical G-equivariant
compactly supported diffeomorphisms of P :

G := {α ∈ Diffc(P )|α(p · g) = α(p) · g, π(α(p)) = π(p), ∀g ∈ G, p ∈ P} .

This space can be also characterized by G ∼= Γc(M ← (P ×G G)). For a trivial bundle
P this is just G(M) ∼= C∞

c (M,G). It was shown ([144, 84, 127], see also [143, 190]) that
C∞
c (M,G) can be equipped with a structure of an infinite dimensional Lie group modeled

on its Lie algebra gc(M) := C∞
c (M,g). The exponential mapping can be defined and it

induces a local diffeomorphism at 0. While the gauge group is a subgroup of Diff(P ), it
has a natural action on Ω1(P, g)G by the pullback:

ρM (α)A = (α−1)∗A, α ∈ G, A ∈ Ω1(P, g)G

The derived action of the Lie algebra gc on Ω1(P, g)G is therefore defined as:

ρM (ξ)A
.
=

d

dt

∣∣∣
t=0

ρM (exp tξ)A =
d

dt

∣∣∣
t=0

(exp(−tξ))∗A = £ZξA = dξ + [A, ξ] , (4.36)

where Zξ is the fundamental vector field on P associated to ξ. We see that ρM induces a
map from gc to the space of vector fields on E(M), which assigns to a gauge parameter
ξ ∈ gc a vector field ρM (ξ). This is indeed an element of V(M), since ρM (ξ) associates
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to the field configuration A ∈ E(M) the compactly supported configuration dξ + [A, ξ],
i.e.

∂ρM (ξ)F (A) =
〈
F (1)(A), ρ(ξ)A

〉
=
〈
F (1)(A), dξ + [A, ξ]

〉
. (4.37)

Clearly, ρ is a natural transformation from gc to V as may be seen from the relation

ρN (χ∗ξ)A = χ∗(ρM (ξ)(χ∗A))

for a causal embedding χ :M → N .
Moreover one can check that the full algebra of nontrivial local symmetries can be

characterized by G(M)
.
= C∞

ml(E(M), gc(M)), the F-module of smooth compactly sup-
ported multilocal5 functions from E(M) to gc(M). The map from G(M) to V(M),
denoted by the same symbol as in (4.37), is defined as:

∂ρM (Ξ)F (A) =
〈
F (1)(A), ρ(Ξ(A))A

〉
, (4.38)

where Ξ ∈ G(M). G becomes a covariant functor after setting: Gχ(Ξ) := gcχ ◦ Ξ ◦ Eχ.
With this definition (4.38) yields a natural transformation ρ between G and V. The
space G completely characterizes the nontrivial local symmetries, since any symmetry
may be obtained by a sum of a trivial one and one of the form ρM (Ξ) with Ξ ∈ G(M).

4.4.2 Chevalley-Eilenberg complex

We start this section with the construction of the off-shell Chevalley-Eilenberg cochain
complex CE(M). The space of on-shell symmetries sph(M) from section 4.3.3 is in this
case identified with C∞

ml(ES(M), gc). Since the symmetries arise from an action of an
abstract Lie group, they are well defined also off-shell and we can construct an off-shell
version of the Chevalley-Eilenberg complex by means of the reduced symmetry algebra
sr(M) = C∞

ml(E(M), gc). We recall that the algebraic Chevalley-Eilenberg complex is

given by
(∧

F(M)
s∗r (M), γ

)
. The topological one can be defined by restricting the under-

lying algebra to

CE(M)
.
= C∞

ml

(
E(M),

∧
g′(M)

)
,

equipped with the pointwise convergence topology.
The assignment of g(M) to a manifold M is a contravariant functor. It associates

to a morphism χ : M → N a map gχ acting on functions as a pullback: gχ(f ⊗ a) :=
χ∗f ⊗ a for f ∈ C∞(N), a ∈ g. From the naturality of ρ and [., .] it follows that CE(M)
becomes a covariant functor from Loc to dgA if we set CEχ(ω) := (g′χ)k ◦ ω ◦ Eχ, for
ω ∈ C∞(E(M),Λkg′(M)).

To end this subsection we want to make a comment on the relation to the “standard”
approach. In physics literature one often writes distributions in the integral notation
(see the discussion in section 2.2). This way the elements of CE(M) would be formally
written as:

F (ϕ)
formal
=

∫
dvolM(x

1) . . . dvolM(x
n)fa1...an(ϕ)(x1, . . . , xn)C(x1)

a1 ∧ ... ∧C(xn)
an ,

where fa1...an(ϕ) is a compactly supported distribution and Ca(x) ∈ g′ are coefficients of
the Maurer-Cartan form C on G(M). In physics one calls them the ghost fields. They
can be seen as formal “generators” of the algebra CE(M). In the present setting they
appear naturally as elements of the Chevalley-Eilenberg complex.

5The notions of support and locality are defined as in 3.5 with W(M) = gc, i.e. Ξ(k)(ϕ) ∈
Γ′(Mk+1, V ⊗k ⊗ g).
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4.4.3 Batalin-Vilkovisky complex

We have finally come to the main point of this section, namely to the construction of
the Batalin-Vilkovisky complex. First we want to present one more interpretation of its
underlying algebra (4.31). Just as in 4.2 we extended the algebra of functionals with its
local compactly supported derivations, we can extend the graded algebra

∧
F(M) sr(M)∗

with graded symmetric powers of its graded derivations. One can easily check, that

∧

F(M)

sr(M)∗ ⊗
F(M)

S•
F(M) sr(M) ⊗

F(M)

∧

F(M)

V(M) ⊂ S•
F(M)Der

( ∧

F(M)

sr(M)∗
)
.

This means that elements of the algebraic BV complex can be treated as graded tensor
powers of derivations of the Chevalley-Eilenberg algebra. To introduce some topology
into the structure, we restrict ourselves to those derivations which are smooth compactly
supported multilocal maps. From now on we will use the following definition of the
underlying topological algebra of the BV complex:

BV(M) = C∞
ml(E(M),A(M)) , (4.39)

where we denoted A(M) := ΛEc(M)⊗̂S•gc(M)⊗̂Λg′(M)6. The topology on BV(M) is
again the topology of pointwise convergence. The space BV(M) contains in particular
V(M) and G(M) = C∞

ml(E(M), gc(M)). A pair (X, ξ) ∈ V(M)⊕G(M) acts on CE(M)
in the following way:

(∂(X,ξ)F )(ϕ) := (∂XF )(ϕ) + iξ(ϕ)F (ϕ) , (4.40)

where iξ(ϕ) is the interior product, i.e. the insertion of ξ(ϕ) ∈ gc(M) into Λg′(M). The
action of a general derivation of the form (4.39) can be now defined by imposing the
graded distributive rule and the Leibniz rule.

The graded commutator [., .] on Der(CE(M)) and the evaluation of a derivation on
an element of CE(M) can be extended to the Schouten bracket {., .} on BV(M). Like
in the scalar case, this structure is called the antibracket .

Remark 4.4.8. Analogously to section 4.2.3 we can formaly write the antibracket in the
form (4.9). The only difference is that the field configurations can be of fermionic type,
so we get additional sign rules:

{X,Y } = −
∑

α

(−1)(1+|X|)|ϕα|
∫
dx

(
δX

δϕα(x)

δY

δϕ‡
α(x)

+ (−1)|X| δX

δϕ‡
α(x)

δY

δϕα(x)

)
, (4.41)

where α runs through different field types (ghosts, physical fields, etc.), |.| denotes the

ghost grading #gh and we used the fact that #gh(ϕ‡
α) = −#gh(ϕα)− 1.

Using the fact that we restricted ourselves to derivations with compact support, one
can show that BV(M) is a covariant functor from Loc to Vec. The Chevalley-Eilenberg
derivation γ itself is not an element of BV(M), since it is not compactly supported.
Compare this with a similar situation encountered in Section 4.2, where we showed that
δS is not an inner derivation with respect to the antibracket. Nevertheless, locally it can

6We choose the completion ⊗̂ of the tensor product to be the space of compactly supported distribu-

tions
∞∏

n=0
n=k+l+m

Γ′(Mn,ΛkV ⊗ Slg ⊗ Λmg), smooth in the first k + l arguments.
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be written with the use of inner derivations. First note that γ decomposes into the sum
γ = γ(0) + γ(1), where:

(γ(0)F )(ξ)
.
= ∂ρM (ξ)F, F ∈ F(M), ξ ∈ g(M) , (4.42)

(γ(1)ω)(ξ1, ξ2)
.
= −ω([ξ1, ξ2]), ω ∈ g′(M), ξ1, ξ2 ∈ g(M)

and γ(0), γ(1) are extended to the whole space CE(M) by applying the graded Leibniz
rule. Although they are not inner with respect to {., .} we can consider a following family
of mappings θM from D(M) to BV(M)

(θ
(0)
M (f)F )(ξ)

.
= ∂fρM (ξ)F, F ∈ F(M), ξ ∈ g(M) ,

(θ
(1)
M (f)ω)(ξ1, ξ2)

.
= ω(f [ξ1, ξ2]), ω ∈ g′(M), ξ1, ξ2 ∈ g(M) ,

where f ∈ D(M) is a test function. It follows now that {ω, θM (f)} = γ(ω) if supp(ω) ⊂
f−1(1), ω ∈ CE(M). The family of maps θ constructed in this way can be identified with
a natural transformation between the functors D and BV. One sees immediately the
analogy with the generalized Lagrangians. Finally we obtain an equivalent definition of
the BV-differential:

sF = {F,LM (f) + θM (f)} , (4.43)

where f ≡ 1 on suppF , F ∈ BV(M). This differential can be expanded in the antifield
number and it contains two terms: s = s(−1) + s(0). We have the following structure of
a bicomplex7 (compare with (4.33):

. . .
s(−1)

−−−−→ Λ2V⊕G
s(−1)

−−−−→ V
s(−1)

−−−−→ F
s(−1)

−−−−→ 0
ys(0)

ys(0)
ys(0)

. . .
s(−1)

−−−−→ C∞
ml

(
E, (Λ2Ec ⊕ gc)⊗̂g′

) s(−1)

−−−−→ C∞
ml

(
E,Ec⊗̂g′

) s(−1)

−−−−→ C∞
ml

(
E, g′

) s(−1)

−−−−→ 0

The first row of this bicomplex corresponds to the resolution of FS(M). This can be
easily seen, since s(−1) on G(M) is just ρM and Im(ρM )G(M)→V(M) = Ker(δS)V(M)→F(M).
Moreover F0(M) = Im(δS)V(M)→F(M). Explicitly the first row of the bicomplex can be
written as:

. . .→ Λ2V⊕G
δS⊕ρ−−−→ V

δS−→ F→ 0

The 0-order homology of this complex is just FS(M) and the higher homology groups
are trivial. We can therefore recognize two terms in the decomposition of s as:

1. s(−1) is the Koszul-Tate differential providing the resolution of CES(M), it contains
the information on the off-shell terms.

2. s(0) on CE(M) is the off-shell Chevalley-Eilenberg differential.

Since all the steps were done in the covariant way, BV can be made into a functor
from Loc to dgA. The main theorem of homological perturbation theory says that the
0-cohomology of s is given by:

H0(BV(M), s) = H0(CES(M), s(0)) = Finv
S (M)

7We omit the dependence on M , since all the maps are natural and can be written on the level of
functors.
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4.4.4 Classical master equation

A very important aspect of the BV-construction is the so called classical master equation.
It is extensively discussed for example in [97, 9], where it is used as a guiding principle
to derive the right form of the extended action. The underlying idea is the observation
that the BV operator can be written formally as an inner derivation with respect to the
antibracket. This has to be understood differently in our setting, since we are working on
non-compact manifold and typical configurations are not compactly supported. There-
fore, as we pointed out before, the BV operator can only locally be written in terms
of the antibracket. Nevertheless, the general reasoning is similar. We start with the
action S that induces locally the Koszul map δS through its Euler Lagrange derivative
S′
M . Next, we include in our construction the Chevalley-Eilenberg map that can also be

written locally as the antibracket with a derivation θM (.) (formula (4.43)) and we can
interpret this as modifying the original Lagrangian L by an additional term θ. This way
of looking at the BV differential turns out to be very fruitful, since it allows to obtain
the gauge fixed action at the end of the construction (we discuss this in detail in section
4.4.5). It also allows to systematically analyze possible deformations of the action and
allowed couplings [9]. In the standard treatment of BV formalism, the classical master
equation (CME) is just the condition that the antibracket of the action with itself is equal
to 0. This is in turn equivalent to the nilpotency of the BV operator. In the present
setting this has to be understood in a different way since Lagrangians are no more fixed
functionals but rather natural transformations. It was already shown in [77] that this
can be done in a consistent way. We give a recap of that argument in the present section.

First, recall that the generalized Lagrangians are natural transformations between
the functors D and Floc. In the BV construction we extended the space of functionals
F(M) to the BV complex BV(M) so the space of Lagrangians should also be extended.
Let BVloc(M) denote the linear subspace of BV(M) consisting of local functions. We
can extend the notion of a Lagrangian to a natural transformation between the functors
D and BVloc. Let Nat(D,BVloc) denote the set of natural transformations. To obtain
a structure that will be closed under the “pointwise” product we make one more general-
ization. Let Dk be a functor from the category Loc to the product category Veck, that
assigns to a manifold M a k-fold product of the test section spaces D(M)× . . .×D(M).
Let Nat(Dk,BVloc) denote the set of natural transformations from Dk to BVloc. We
define extended Lagrangians L ∈ Lgr to be elements of the space

⊕∞
k=0Nat(D

k,BVloc)
satisfying: supp(LM (f1, ..., fn)) ⊆ suppf1 ∪ ... ∪ suppfn and the additivity rule in each
argument. We can introduce on Lgr an equivalence relation similar to (3.5). We say
that L1 ∼ L2, L1, L2 ∈ Nat(Dk,BVloc) if:

supp((L1−L2)M (f1, ..., fk)) ⊂ supp(df1)∪...∪supp(dfk), ∀f1, ..., fk ∈ Dk(M) (4.44)

The natural transformation Lext := L+ θ is an example of a generalized Lagrangian in
Lgr. We call the corresponding equivalence class Sext the extended action. As noted
before sF = {F,Lext

M (f)}, for f ≡ 1 on the support of F , F ∈ BV(M). To make a
contact with the standard approach we write Lext formally as:

Lext
M (f)

formal
= −1

2

∫

M

ftr(F ∧ ∗F )+

+

∫

M

dvolMf
(
dC +

1

2
[A,C]

)I
µ
(x)

δ

δAIµ(x)
+

1

2

∫

M

dvolMf [C,C]I(x)
δ

δCI(x)
.
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This is the standard extension of the Yang-Mills action in the BV-formalism. The an-
tibracket can be lifted to a bracket on Lgr by the definition:

{L1, L2}M (f1, ..., fp+q) =
1

p!q!

∑

π∈Pp+q
{L1M (fπ(1), ..., fπ(p)), L2M (fπ(p+1), ..., fπ(p+q))} ,

(4.45)
where Pp+q denotes the permutation group. The classical master equation extended to
the natural transformations (ECME) can now be formulated as:

{Lext, Lext} ∼ 0 , (4.46)

with the equivalence relation defined in (4.44). It guarantees the nilpotency of s defined
by sF = {F,Lext

M (f)}, where f ≡ 1 on suppF , F ∈ BV(M).

4.4.5 Gauge fixing

The structure of the BV complex presented up to this point was done on a very general
level, but still the main question remains not answered: how to implement the gauge
fixing? This is indeed the most important issue in BV formalism, since from the physical
point of view, this is exactly the reason to invoke it. In the present section we summarize
the present understanding of the gauge fixing procedure in the BV setting. Those issues
are not so often adressed in mathematical literature, since the gauge fixing procedure
involves some amount of arbitrariness. In physics literature one should mention the book
by M. Henneaux and C. Teitelboim [97] that covers also this issue, among many others.
There is also a paper of G. Barnich, M. Henneaux, T. Hurth and K. Skenderis [10] that
adreses the problem of comparing the gauge-fixed and non-gauge-fixed cohomology of
the BV complex.

We presented a more algebraic interpretation of the gauge fixing procedure that fits
into the present formalism in [77]. Here we shall follow this approach. Recall that in
the functional approach to classical field theory the dynamical structure is encoded in
the Peierls bracket [150, 133]. We recalled its construction in section 3.4. Note that in
order to construct the causal propagator we need first a normally hyperbolic system of
equations of motion. This is of course not the case when the action has symmetries (see
criterion 4.10), so to introduce the Peierls bracket we are forced to fix the gauge. This
can be done systematically with the help of the Batalin-Vilkovisky complex. In the BV
framework gauge fixing means eliminating the antifields by setting them equal to some
functions of fields [13, 98, 97, 2].

The gauge fixing is usually done in two steps. Firstly, one performs a transformation
of BV(M), that leaves the antibracket {., .} invariant8. This way we obtain a new
extended action S̃ext and a new differential s̃. The cohomology classes of the new and
old BV differential are isomorphic H0(BV(M), s) ∼= H0(BV(M), s̃). In the second step
we want to set the antifields to 0. This is done in a systematic way by introducing a
new grading on BV(M), the so called total antifield number #ta. It has value 0 on
fields and value 1 on all antifields. We expand the differential s̃ with respect to this new
grading: s̃ = δg + γg + . . . (for Yang-Mills theories this expansion has only two terms).
From the nilpotency of s̃ it follows that δg is a differential and γg is a differential modulo
δg. Moreover δg can be interpreted as the Koszul map corresponding to the so called
“gauge-fixed action” Sg. We have to choose the canonical transformation of BV(M) in
such a way that this extended action doesn’t have nontrivial symmetries. In this case

8In literature [97] this is dubbed a canonical transformation by analogy to the Hamiltionan formalism.
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the Koszul map δg provides a resolution and using the main theorem of homological
perturbation theory [97, 10] one can conclude that:

H0(BV(M), s̃) = H0(H0(BV(M), δg), γg) . (4.47)

The r.h.s of (4.80) is called the gauge-fixed cohomology . It was discussed in details in
[10]. Now we shall describe this construction in details for the example of the Yang-Mills
theory. We shall follow closely the presentation given in [77].

Nonminimal sector

To implement the usual gauge fixing (for example the Lorenz one) we need first to
introduce Lagrange multipliers. In the spirit of classical Lagrangian field theory, these
are auxiliary, non-physical fields, that have to be eliminated at the end by performing a
quotient of the field algebra. In the homological framework we have to introduce them in
a way that would not change the cohomology classes of s. In other words we replace the
original BV complex by C∞

ml(E(M),Nm(M)⊗̂A(M)), where Nm(M) is a certain graded
algebra called the nonminimal sector [97]. The natural way to do it is to extend
BV(M) by contractible pairs.

Definition 4.4.9. Two elements a, b of the cochain complex with a differential d form
a contractible pair if a = db and a 6= 0.

Let a be of degree n and b of degree n − 1. Since Hn(d) = Ker(dn)/Im(dn−1), a
and b are mapped to the trivial elements [0] of the cohomology classes. This observation
provides us with a method to add Lagrange multipliers to the BV-complex. For con-
creteness we take the Lorenz gauge G(A) = ∗−1d ∗A, where ∗ denotes the Hodge dual
and G is a map from E(M) to g(M). The Lagrange multipliers are therefore elements of
the dual g′(M). Hence we extend the BV-complex by tensoring with the space: S•g′(M)
and its elements have grade #gh = 0. Together with this space we introduce the space

Λg′(M) =
∞⊕
k=0

Λkg′(M). These are the so called antighosts and have #gh = −k. They

form trivial pairs with Nakanishi-Lautrup fields if we define

sF = 0, F ∈ S1g′(M) , (4.48)

sG = ΠG ◦mi, G ∈ Λ1g′(M) ,

where Π denotes the grade shift by +1 and mi the multiplication of the argument by i,
i.e. G ◦mi(B)

.
= G(iB), for B ∈ g(M). The appearance of the imaginary unit i is just a

convention used in physics to make antighosts hermitian. Together with antighosts and
Nakanishi-Lautrup fields we can introduce the corresponding antifields. Just like in the
minimal sector those are the derivations of C∞

ml(E(M), S•g′(M)⊗̂Λg′(M)), that can be
written as smooth compactly supported multilocal maps on the configuration space. In
other words the full nonminimal sector is of the form:

Nm(M) = Λg′[−1]⊗̂S•g′(M)[0]⊗̂S•gc(M)[0]⊗̂Λgc[−1] ,

where we indicated the grades explicitly in brackets. The new BV-complex con-
sists of compactly supported multilocal maps C∞

ml(E(M),Nm(M)⊗̂A(M)) with the BV-
differential s defined above.

Again it is worth to write s as a locally inner derivation with respect to the an-
tibracket. On the nonminimal sector {., .} is again just the Schouten bracket. We require



74 Batalin-Vilkovisky formalism

sF = {F,Lext(f)}, where f ≡ 1 on suppF , F ∈ BV(M). From equation (4.48) we can
read off that Lext = L+ θ + Lnm, where Lnm is a natural transformation between func-
tors D and BV. Concretely Lnm

M (f) is a graded derivation of the graded F(M)-module
C∞
ml(E(M), g′(M)[0] ⊕ g′(M)[−1]) defined as:

∂Lnm
M (f)(F ⊕G)(ϕ) = G(ϕ) ◦mif ⊕ 0 ,

where mif denotes multiplication of the argument with a function if . To make contact
with the standard approach we discuss now how the formal expressions appearing in the
literature can be interpreted in our formulation. Let us denote by BI(x) the evaluation
functional on the space of Lagrange multipliers g(M), i.e. BI(x) ∈ S1g′(M). In this
sense elements of S•g′(M) can be seen formally as integrals

F
formal
=

∫
dx1...dxnfa1...an(x1, ..., xn)B

a1(x1)⊗ ...⊗Ban(xn) .

Similarly we can write G ∈ Λg′(M) as

G
formal
=

∫
dx1...dxnga1...an(x1, ..., xn)C̄

a1(x1) ∧ ... ∧ C̄an(xn) ,

with the evaluation functionals C̄an(xn). Moreover we identify δ
δC̄I (x)

with the derivation

that acts on Λg′(M) as the left derivative (see [154] for the detailed discussion). In this
notation we can write the extended Lagrangian Lext = L+ θ + Lnm as:

Lext
M (f)

formal
= −1

2

∫

M

ftr(F ∧ ∗F ) +
∫

M

dvolM f
(
dC +

1

2
[A,C]

)I
µ
(x)

δ

δAIµ(x)
+

+
1

2

∫

M

dvolM f [C,C]I(x)
δ

δCI(x)
− i
∫

M

dvolM fBI(x)
δ

δC̄I(x)
. (4.49)

The last term corresponds to Lnm
M (f). Moreover the action of s on the non-minimal

sector can be formally written as: sBI(x) = 0, sC̄I(x) = iBI(x). The expression (4.49)
is what is usually meant under the name extended action.

Gauge fixing for the Yang-Mills theory

With the structure extended by the nonminimal sector we can now turn back to the
gauge-fixing. Let ψ ∈ BV(M) be a fixed algebra element of degree #gh = −1 and
#af = 0. Using ψ we define a linear transformation αψ on BV(M) by

αψ(X) :=
∞∑

n=0

1

n!
{ψ, . . . , {ψ︸ ︷︷ ︸

n

,X} . . . } , (4.50)

The antibracket with ψ preserves the ghost number #gh and lowers the antifield number
#af by 1. Hence the sum in (4.50) is finite and αψ preserves the grading with respect to
the ghost number. Moreover, it preserves as well the product and the antibracket itself.
Let now Ψ be a natural transformation from D to BV such that ΨM (f) satisfies the
conditions which were stated on ψ above. Ψ is called the gauge fixing fermion . We define
an automorphism on BV(M) by

αΨ(X)
.
= αΨM (f)(X), X ∈BV(M)
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where f ≡ 1 on the support of X. Let L̃ext = αΨ ◦ Lext be the transformed generalized
Lagrangian. We define a new BV-operator as s̃F := {F, L̃ext

M (f)}, for f ≡ 1 on suppF ,
F ∈ BV(M) . We have:

Finv
S (M) ∼= H0(BV(M), s̃) ,

where the isomorphism is given by means of αΨ.
For the Lorenz gauge we choose the gauge-fixing fermion of the form:

ΨM(f) = i

∫

M

f
(α
2
κ(C̄, B) +

〈
C̄, ∗d ∗A

〉
g

)
dvolM , (4.51)

where κ is the Killing form on the Lie algebra g and 〈., .〉g is the dual pairing between g
and g′. It is interesting to compare this formulation with the standard definition of the
gauge-fixing fermion [97]. In the standard approach it is required to be a local functional.
This fits very well in the present formalism, since the condition of locality is basically
replaced with the condition to be a natural transformation. Explicitly the transformed
Lagrangian takes the form:

αΨ(L
ext
M (f)) = LM(f) + θM(f) + {ΨM (f1), θM (f) + Lnm

M (f)} ,

where f1 ≡ 1 on the support of f . Formally this can be written with the more familiar
expression:

Lext
M (f)

formal
= −1

2

∫

M
ftr(F ∧ ∗F )− i

∫

M
ftr
(
∗DC ∧ dC̄

)
+

∫

M
ftr
(
∗DC ∧ δ

δA

)
+

+
1

2

∫

M
dvolM f [C,C]

δ

δC
−i
∫

M
dvolM fB

δ

δC̄
+

∫

M
dvolM f

(α
2
κ(B,B) + 〈B, ∗−1d ∗A〉g

)
,

(4.52)

where we suppressed all the form and Lie-algebra indices.
In the second step of the gauge fixing procedure we expand the differential s̃ with

respect to the total antifield number: s̃ = δg + γg, where δg lowers #ta by 1 and γg

preserves it. Let X ∈ BV(M) be a derivation of total antifield number #ta = 1. The
action of δg on X is given by:

δgX = {X, L̃ext
M (f)}

∣∣∣
#ta=0
terms

= {X,LgM (f)}, f ≡ 1 on suppX , (4.53)

where Lg is the so called gauge-fixed Lagrangian and is obtained from L̃ by putting all
antifields to 0. The corresponding equivalence class Sg is the gauge-fixed action. The
ideal of BV(M) generated by all terms of the form (4.53) is the graded counterpart of the
ideal of F(M) generated by the equations of motion. In the next section we shall see that
one can introduce a notion of a derivative on BV(M) which makes this correspondence
precise. In this sense the 0-order homology of δg is the algebra of on-shell functions for
the gauge-fixed action Sg. For Yang-Mills theory the gauge-fixed Lagrangian reads:

LgM (f) = SM(f) + γgΨM (f) .

In case of the Lorenz gauge we obtain:

LgM (f)
formal
= −1

2

∫

M

ftr(F∧∗F )−i
∫

M

ftr(dC̄∧∗DC)−
∫

M

dvolM f
(α
2
κ(B,B) + 〈B, ∗−1d ∗A〉g

)
.

(4.54)



76 Batalin-Vilkovisky formalism

The differential γg is called the gauge-fixed BRST differential . The action of the
gauge-fixed BRST differential on the functions in BV(M) is summarized in the table
below.

γg

F ∈ F(M)
〈
F (1), dC + [., C]

〉

C −1
2 [C,C]

B 0

C̄ iB

4.4.6 Peierls bracket

We come finally to the discussion of the dynamical structure. As already mentioned in
Section 4.4.5, we first need to fix the gauge, before we can define the Peierls bracket, that
implements the dynamics. As discussed in section 3.4, the space of multilocal functionals
is not closed under the Peierls bracket. To fix this we replace it by the space Fmc(M)
of microcausal functionals, equipped with the topology τΞ. Multilocal functionals are
dense in Fmc(M) with respect to this topology. Using this space as a starting point
one can repeat the construction of the BV-complex given in section 4.4.3 with some
technical changes. The extended BV graded algebra BVmc(M) is defined as the space
of microcausal vector-valued functions. Now we want to extend the BV differential to
those more singular objects. Since the Lagrangian LM (f) is a local functional and its
functional derivative is a smooth test section, the Koszul operator can be extended from
multilocal vector fields to Vmc(M) = C∞

mc(E(M),E′(M)) and the resolution of Fmc(M) in
the scalar case is provided by the differential graded algebra ΛVmc(M). Similar reasoning
applies also to the case when symmetries are present. The extended Chevalley-Eilenberg
complex CEmc(M) consists of microcausal vector-valued functions with Wn = Λng (see
section 3.5). Since the map ∂ρM (.)F is an element of CEmc(M), for all F ∈ Fmc(M), we
can conclude that:

H0(CEmc(M), γ) = Finv
mc(M) .

The full BV complex is equipped with the topology τΞ and since multilocal functionals lie
dense in BVmc(M), the differential s can be extended to the full complex by continuity.
From the above discussion it follows that H0(BVmc(M), s) is the space of microcausal
gauge invariant functionals on-shell. We want to point out however, that the antibracket
itself is not well defined on the whole BVmc(M). This is because the commutator of
vector fields V(M) can be extended only to those elements of the space Vmc(M) that
have smooth first derivative.

In Yang-Mills theories the elements of the extended BV complex are now microcausal
vector-valued functions

BVmc(M) = C∞
mc(E(M),A(M)) , (4.55)

where A(M) is of the form:

A(M) =
∞∏

k,l,m=0

Γ′
Ξn(M

n, Skg ⊗ Λlg ⊗ Λmg ⊗ Antifields) .
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The first three factors in the space Wn correspond accordingly to the Lagrange multi-
pliers, antighosts and ghosts. The subsequent factors are the antifields. The fact that
gauge fixing is possible implies that if we keep all the unphysical fields with fixed values,
then the initial value problem is well posed for the physical fields. This is however not
enough. Since the differential δg is the Koszul map for the gauge fixed action, we should
understand the equations of motion as equations for the full field multiplet with the
auxiliary fields included.

To make precise what we mean by the eom’s for odd variables we use similar defi-
nitions as in section 3.6. The functional derivative of a function F ∈ C∞

mc(E(M),A(M))

at the point A0 ∈ E(M) is an A(M)-valued distribution: F
(1)
A (A0) := δF

δA (A0) ∈
E′(M)⊗̂A(M)9. The derivatives with respect to the odd variables are defined point-

wise. For example for the functions of ghost fields we have: F
(1)
C (A0) :=

(
F (A0)

)(1)
C

,
F (A0) ∈ A(M), where the derivative on the graded algebra A(M) is defined as in sec-
tion 3.6:

F (1)(a)[h] := F (h ∧ a) F ∈ Λpg′(M), a ∈ Λp−1g(M), h ∈ g(M) p > 0 (4.56)

Note that F
(1)
C (A0) ∈ g′(M)⊗̂A(M). Now to implement the equations of motion we take

the quotient of BV(M) by the ideal generated by graded functions of the form:

A0 7→ 〈Sg ′α(A0), β(A0)〉 , (4.57)

where A0 ∈ E(M), α is A,B,C or C̄ and β(A0) is the appropriate test section. Note that
in the graded case, when Sg is of degree higher than 1 in anticommuting variables, we
don’t have an interpretation of the equations of motion as equations on the configuration
space. Instead, the algebraic definition on the level of functionals can still be applied.
We can compare this situation to the purely bosonic case, when we had to show that the
ideal F0(M) is generated by the equations of motion for a given action functional. In
the fermionic case, we reason differently and define this ideal as generated by elements
of the form (4.57). See section 3.6 for details. Equivalently we can say that F0(M) is the
image of the map δg acting on derivations with #ta = 1. Hence the on-shell functionals
for the action Sg are characterized by H0(A(M), δg).

We conclude that after the gauge fixing the full dynamics is described by the action
Sg and therefore this generalized Lagrangian is the starting point for the construction of
the Peierls bracket. The off-shell formalism [56, 57] is to be understood with respect to
Sg and going on-shell means taking the quotient by the ideal generated by the equations
of motion. The construction of the Peierls bracket is a straightforward generalization of
the construction done in the scalar case [30, 31]. The only subtle point is the grading.
We discussed the general case of Peierls bracket for anticommuting fields in sections 2.2.3
and 3.6 (see also [154]). All the distributional operations have to be generalized to distri-
butions with values in a graded algebra. The distributional operations like convolution,
contraction and pointwise product generalized to the A(M)-valued distributions are now
graded commutative. As in the case of R-valued distributions, the pointwise product is
well defined only when the sum of the wave front sets of the arguments does not intersect
the zero section of the cotangent bundle. We point out that the use of A(M)-valued dis-
tributions already accounts for the grading, so there is no need to introduce additional
Grassman algebras by hand.

9The completed tensor product is to be understood as the space of distributions
∞∏

k,l,m=0

Γ′
Ξn

(Mn, g⊗

Skg ⊗ Λlg ⊗ Λmg ⊗ Antifields) equipped with the Hörmander topology.
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Since Sg has at most quadratic terms with respect to the anticommuting variables,
its second derivative can be again treated as an operator on the extended configuration
space [154]. To construct the Peierls bracket, we need this operator to be normally
hyperbolic. Therefore we need to find a gauge-fixing fermion which makes the linearized
equations of motion of Sg into a normally hyperbolic system in variables A,B,C and
C̄. The existence of such a fermion in a general case is an open question. In case of
Yang-Mills theory, it suffices to take the Lorenz gauge with Ψ given by (4.51). Taking
the first functional derivative of Sg results in a following system of equations10:

∗−1D∗F = ∗−1D∗DA = −dB − i[dC̄, C] , (4.58)

∗−1d∗A + αB = 0 , (4.59)

∗−1d∗DC = 0 ,

∗−1D∗dC̄ = 0 ,

where Dω = D+ [A,ω] denotes the covariant derivative. Acting with ∗−1D∗ on equation
(4.58) we obtain an evolution equation for B:

∗−1D ∗ dB = −i ∗ [dC̄, ∗DC] .

For every field from configuration space the second variational derivative of (4.54) is an
integral kernel of a normal hyperbolic differential operator. Indeed, in the linearized
system of equations the only terms containing second derivatives in (4.58) are of the
form ∗−1d ∗ dA = �A− d ∗−1 d ∗A. From the gauge fixing condition (4.59) it follows that
∗−1d∗A = −αB and therefore the only contributions containing the second derivatives are
of the form �φα, where φα = A,C, C̄ or B. This means that Sg ′′M provides a hyperbolic
system of equations and one can construct the advanced and retarded Green’s functions
∆R
Sg , ∆

A
Sg . We define the Peierls bracket by:

{F,G}Sg .
= RSg(F,G) −ASg(F,G) , (4.60)

RSg(F,G)
.
=
∑

α,β

(−1)(|F |+1)|φα|
〈
F (1)
α , (∆R

Sg )αβ ∗G
(1)
β

〉
, (4.61)

ASg(F,G)
.
=
∑

α,β

(−1)(|F |+1)|φα|
〈
F (1)
α , (∆A

Sg )αβ ∗G
(1)
β

〉
, (4.62)

where ∆
R/A
Sg has to be understood as a matrix, φα = A,C, C̄ or B and |.| denotes the

ghost number. The sign convention chosen here comes from the fact that we use only
left derivatives. One can show that {., .}Sg is a well defined graded Poisson bracket on
A(M). Moreover the algebra A(M) is closed under this bracket. The next proposition
shows that there is a relation between this dynamical structure and the BRST symmetry.

Proposition 4.4.10. The BRST operator γg satisfies the graded Leibniz rule with respect
to the Peierls bracket:

γg{F,G}Sg = (−1)|G|{γgF,G}Sg + {F, γgG}Sg . (4.63)

10These equations should be understood as relations in the algebra A(M), that we have to quotient
out. For example (4.58) means that we quotient out the ideal generated (in the algebraic and topological
sense) by evaluation functionals (∗−1D∗F − dB − i[dC̄, C])Iµ(x).
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Proof. From the definition of the BRST operator we know that it is a graded derivation
on the algebra BV(M), acting from the right. Therefore it holds:

γg
〈
F (1)
α , (∆R

Sgαβ) ∗G
(1)
β

〉
= (−1)|φα|+|G|

〈
γg
(
F (1)
α

)
, (∆R

Sgαβ) ∗G
(1)
β

〉
+

+ (−1)|φβ |+|G|
〈
F (1)
α ,

(
γg(∆R

Sg)αβ
)
∗G(1)

β

〉
+
〈
F (1)
α , (∆R

Sg )αβ ∗ γg
(
G

(1)
β

)〉
.

Now, using the fact that Sg is γg-invariant (follows from the nilpotency of s̃), we obtain:

γgRSg(F,G) = (−1)|G|RSg(γ
gF,G) +RSg(F, γ

gG) .

The same holds for ASg(F,G), so the result follows from the definition (4.60).

Now we want to show that the Peierls bracket {., .}Sg is well defined on the algebra
of gauge invariant observables. We recall that Finv

S (M) ∼= H0(H0(BV(M), δg), γg) and
H0(δ

g,BV(M)) is the on-shell algebra of the gauge-fixed action Sg. For the scalar field
the subalgebra of functionals that vanish on-shell is a Poisson ideal with respect to {., .}S .
A similar reasoning can be applied also to the graded case and one shows that the image
of δg in degree #ta = 0 is a Poisson ideal with respect to {., .}Sg . This means that the
Peierls bracket is well defined on-shell, i.e. on the homology classes H0(δ

g,BV(M)). To
see that it is also compatible with the differential γg we consider F,G ∈ Ker(γg) and
from (4.63) we conclude that

{F,G + γgH}Sg = {F,G}Sg + {F, γgH}Sg =
= {F,G}Sg + γg{F,H}Sg − (−1)|H|{γgF,H}Sg

= {F,G}Sg + γg{F,H}Sg . (4.64)

This shows that {., .}Sg is compatible with the cohomology classes of γg. Using this result
and the previous one, concerning the 0-th homology of δg, we conclude that the Peierls
bracket is well defined on Finv

S (M). As a final remark, we note that for Yang-Mills theories
the Poisson structure on Finv

S (M) defined by the gauge-fixed action doesn’t depend on the
gauge-fixing fermion Ψ. Indeed, let Sg1 = S + γgΨ1, whereas Sg2 = S + γgΨ2. Therefore
Sg2 = Sg1 + γg(Ψ1 −Ψ2). It follows now that for F,G ∈ Ker(γg) we have:

{F,G}Sg2 = {F,G}Sg1 + γg(. . .) .

It means that {F,G}Sg1 and {F,G}Sg2 are in the same cohomology class.
To end this section we discuss the functoriality of the construction presented above.

Let PgAlg denote the category of graded topological Poisson algebras with continuous
faithful graded Poisson algebra morphisms as morphisms. It can be shown that the
assignment of (BV(M), {., .}Sg ) to M is a covariant functor from Loc to PgAlg.

4.5 Classical gravity

We finally come to the most interesting example, where the locally covariant construc-
tion of the BV complex provides some new insights. As we know, the diffeomorphism
invariance of the general relativity is one of the conceptual problems standing on the way
of quantization. We think that a better understanding of this feature in the classical
theory will be a first step to get a grasp of it also in the quantum case. The fundamental
question that arises here is the definition of diffeomorphism invariant observables. If we
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can characterize them in a systematic way in the classical theory, then we can take this
structure as an input to some quantization procedure. In the present thesis, we propose
such a definition and show how it fits into the general scheme of locally covariant field
theory.

The treatment of quantum gravity in the framework of local covariance was proposed
in [75, 26]. The first step towards this program is the proper understanding of struc-
tures that appear already on the classical level. We have to identify what corresponds
to diffeomorphism invariant physical quantities in our framework. This a very subtle
question. We already anticipate that objects we need have to be global. Therefore, a
single element of a local algebra of observables is not a good candidate for such an in-
variant quantity. Fortunately, the framework of locally covariant field theory provides
a very natural solution to the problem of observables. It was proposed in [75, 26] to
consider gauge invariant fields as physical objects. Here the fields are understood as
natural transformations [29, 62] between the functors Ec and F. Let Nat(Ec,F) denote
the set of natural transformations. In analogy to Section 4.4.4 we define the set of fields

as
∞⊕
k=0

Nat(Ekc ,F). It was shown in [77] that this is the right structure to consider as a

starting point for the BV construction. Indeed in general relativity one always uses ob-
jects that are natural, for example the scalar curvature. Although it doesn’t make sense
to consider it at a fixed spacetime point, it is still meaningful to treat it as an object
defined in all spacetimes in a coherent way. This is the underlying idea of identifying
the physical quantities with natural transformations. We discuss those issues in detail in
section 4.5.2.

4.5.1 Geometrical preliminaries

For the classical gravity the configuration space is E(M) = (T ∗M)2⊗
.
= T 0

2M , the space
of rank (0, 2) tensors. The Einstein-Hilbert action reads11:

S(M,g)(f)(h)
.
=

∫
R[g̃]f d vol(M,g̃) , (4.65)

where g is the background metric, h the perturbation and g̃ = g + h. For every g
the local functional S(M,g)(f)(h) is defined in some open neighborhood Ug ⊂ E(M).
We can make this neighborhood small enough to guarantee that g̃ is a Lorentz metric
with the signature (− + ++). Since we are interested only in the perturbation theory,
we don’t need S(M,g)(f)(h) to be defined on the full configuration space. The diffeo-
morphism invariance of (4.65) means that the symmetry group of the theory is the
diffeomorphism group Diff(M). Since we are interested only in local symmetries, we
can restrict our attention to Diffc(M). It is an infinite dimensional Lie group mod-
eled on Xc(M), the space of compactly supported vector fields on M [136, 127, 85, 86].
We can now define the action of Diffc(M) on E(M) or more generally on arbitrary
tensor fields. Let Tens(M) denote the space of smooth sections of the vector bun-
dle

⊕
k,l

T kl M , where T kl M
.
= TM ⊗ . . .⊗ TM︸ ︷︷ ︸

k

⊗T ∗M ⊗ . . . ⊗ T ∗M︸ ︷︷ ︸
l

. We define a map

ρM : Diffc(M)→ L(Tens(M),Tens(M)) as a pullback, namely:

ρM (φ) = (φ−1)∗t, φ ∈ Diffc(M), t ∈ Tens(M) (4.66)

11In this chapter we use the metric signature (−+ ++) and the conventions for the Riemann tensor
agreeing with [184].
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The corresponding derived representation of Xc(M) on Tens(M) is the Lie derivative:

ρM (X)t
.
=

d

dt

∣∣∣
t=0

(exp(−tX))∗t = £Xt, (4.67)

where X ∈ Xc(M) and the last equality follows from the fact that the exponential map-
ping of the diffeomorphism group is given by the local flow. The most general nontrivial
symmetries of the action (4.65) can be written as elements of C∞

ml(E(M),Xc(M)) so we
can identify the space of reduced symmetries with sr(M) = C∞

ml(E(M),Xc(M)). Like in
gauge theories one can define the action of Xc(M) on F(M), the space of functionals on
the configuration space. It is given by:

∂ρM (X)F (h) =
〈
F (1)(h),£X g̃

〉
, F ∈ F(M),X ∈ Xc(M) . (4.68)

4.5.2 Observables and diffeomorphism invariance

To understand what the diffeomorphism invariance means in our framework we have to
bring the discussion from the previous section to the level of natural transformations.
The intuitive idea behind this is actually very simple. If we think about an experiment
that locally probes the geometric structure of spacetime, we can associate to our setup a
causally convex spacetime region O of spacetime M and an observable Φ localised in O,
which we measure. Since the experiment has a finite resolution, we don’t really measure
values of the geometric data at a point. There is always some smearing involved. For
example, in case of the Ricci curvature R we can model it by defining our observable
quantity as Φ(f) =

∫
f(x)R(x), where f is the smearing function with supp(f) ⊂ O. In

certain situations, we can think of the measured observable as a perturbation of the fixed
background metric. This is for example the case if we want to observe gravitational waves.
In other words, we can do a tentative split into: g̃µν = gµν+hµν . The situation is pictured
on the figure 4.3. To formulate what the diffeomorphism invariance means, we first have
to answer the question: what happens if we move our experimental setup to a different
region O′? Intuitively thinking, we have to transform the metric and the test function by

O′(M, g)

Φ(O,g)(f)(h)

f

O

Figure 4.3: Experimental situation while probing the spacetime geometry.

the pushforward (see figure 4.4). Now to compare Φ(O,g)(f) and Φ(O′,α∗g)(α∗f) we need
to know what does it mean to have “the same observable in a different region”. This is
where the notion of fields comes in. It was proposed in [29], that fields should allow us
to compare the results of experiments performed in different regions of a spacetime in
the absence of symmetries. Moreover, they should be compatible with the net structure
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given by the isometric embeddings. In this sense, the family {ΦM}M∈Obj(Loc) defines a
field if it satisfies certain naturality conditions. It can be made precise in the language
of category theory. The idea to treat fields as natural transformations goes back to R.
Brunetti and appeared first in [29]. One defines fields as natural transformations between
functors D and F. The condition for Φ to be a natural transformation reads

ΦO(f)(χ
∗h) = ΦM(χ∗f)(h) . (4.69)

The interpretation of physically relevant quantities as natural transformations fits very
well with the intuitive picture. In classical gravity we understand geometrical data
not as pointwise objects but rather as something defined on all the spacetimes in a
coherent way. On the practical side, we can think of natural transformations Nat(D,F)
as elements of

∏
M∈Obj(Loc)

L(D(M),F(M)). In QFT one can drop the assumption of linearity, i.e.

compose functors F and D with a forgetful functor to the category Sts of sets or TAlg

of topological algebras.
Now we want to understand how the fields transform under diffeomorphisms. Firstly

we need a notion of transforming all the spacetimes in a coherent way compatible with the
embedding structure. Since our discussion is local, we can concentrate on infinitesimal
diffeomorphisms, i.e. vector fields in X(M)

.
= Γ(TM). Let χ : (M,g′) → (N, g). X can

be made into a contravariant functor to the category Vec as follows: to ξ ∈ X((N, g))
we associate a 1-form iξg and pull it back to a form χ∗(iξg) ∈ Γ(T ∗M). This again
corresponds to a vector field by means of the g′-induced duality between Γ(T ∗M) and
Γ(TM). We denote the resulting map by Xχ : X(N)→ X(M). If χ is a diffeomorphism,
this is just the pullback map χ∗.

We can now define a Lie algebra X, which provides us with a notion of transforming
all the spacetimes in a coherent way.

X
.
=

∏

M∈Obj(M)

X(M) .

Let now ~ξ ∈ X be an element of this algebra with all the components compactly sup-
ported. In this case we can apply the exponential map and define a diffeomorphism:
αM

.
= exp(ξM). Let ~α denote the corresponding sequence of diffeomorphisms. It acts on

Nat(D,F) as:
(~αΦ)(M,g)[h]

.
= Φ(αM (M),αM ∗g)

[h+ g − αM∗g] .

(M,g)

Φ(O,g)(f) Φ(O′,α∗g)(α∗f)

f

α∗f

O

O′

α

Figure 4.4: Moving the experimental setup to a different region of spacetime.
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From the naturality condition (4.69) follows that:

Φ(αM (M),αM ∗g)
(αM∗ f)[h+ g − αM∗g] = = Φ(M,g)(f)[α

∗
M g̃ − g] .

Therefore it holds always:

(~αΦ)(M,g)(f)[h] = Φ(M,g)(α
−1
M ∗ f)[α

∗
M g̃ − g] .

This is the diffeomorphism covariance . It is a consequence of the locally covariant
formulation of the theory. Now the diffeomorphism invariance is a stronger condition,
that states:

(~αΦ)(M,g)(f)[h] = Φ(M,g)(f)[h] .

Now we come back to the discussion of infinitesimal diffeomorphisms. The derived action
of compactly supported elements of X on fields reads:

(~ξΦ)(M,g)(f)[h] =
〈
(Φ(M,g)(f))

(1)(h),£ξM g̃
〉
+Φ(M,g)(£ξM f)[h] . (4.70)

The right hand side is well defined also if we drop the compact support condition on ~ξ,
so we can adapt the above formula as the definition of the action of X on Nat(D,F).
Diffeomorphism invariance is now the requirement that: ~ξΦ = 0.

Example 4.5.1. As an example of a diffeomorphism invariant field we can take

Φ(M,g)(f)[h] =

∫
R[g̃]f dvol(M,g̃) .

One can check that ξΦ = 0 for all ξ ∈ X. Note that both the scalar curvature and
the volume form depend on the full metric g̃. However if we take a field defined
as
∫
R[g̃]f dvol(M,g) it is still diffeomorphism covariant, but no longer invariant, i.e.

~ξΦ /≡ 0. N

After discussing the generalities concerning the diffeomorphism invariance, we can
now reformulate it in the homological language. In other words we have to build the BV
complex that will describe the infinitesimal symmetries acting on Nat(D,F) according
to (4.70).

4.5.3 BV complex on the level of natural transformations

In this section we define the BV-complex of general relativity, basing on the concept pro-
posed by R. Brunetti to treat fields as natural transformation. The construction follows
the one we proposed in [77]. Firstly we note that in (4.70) the action of infinitesimal
symmetries on the elements of Nat(D,F) has two terms, where the first one is analogous
to the infinitesimal transformation in gauge theories (4.38). The second term is charac-
teristic to the theories where symmetries are a consequence of diffeomorphism invariance.
Since we are now working on the level of natural transformations, the underlying algebra
of the BV complex also has to be built from a set of natural transformations. It is useful
to make one more generalization. Instead of test functions, we can consider more general
objects, such as arbitrary compactly supported tensors Tensc(M). From now on we set
Ec = Tensc and use this functor as a functor associating to a manifold the space of test
field configurations.
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The Chevalley-Eilenberg complex on the level of natural transformations is defined

as
∞⊕
k=0

Nat(Ekc ,CE), where CE is a functor constructed analogously as in Yang-Mills the-

ories, i.e. CE(M) is the graded algebra of smooth compactly supported multilocal maps
CE(M)

.
= C∞

ml(E(M),ΛX′(M)) with the differential γ defined as:

γ : ΛqX′(M)⊗ F(M)→ Λq+1X′(M)⊗ F(M) ,

(γω)(ξ0, . . . , ξq)
.
=

q∑

i=0

(−1)i∂ρM (ξi)(ω(ξ0, . . . , ξ̂i, . . . , ξq))+

+
∑

i<j

(−1)i+jω
(
[ξi, ξj ], . . . , ξ̂i, . . . , ξ̂j, . . . , ξq

)
,

and extended by continuity.

On the level of natural transformations
∞⊕
k=0

Nat(Ekc ,CE) we can define the Chevalley-

Eilenberg differential γ = γ(0) + γ(1) by:

γ(0)Φ = ρ(.)Φ, Φ ∈ Nat(Ec,F) ,

γ(1)Φ = −Φ ◦ [., .], Φ ∈ Nat(Ec,X
′) .

In the above formula ρ(.)Φ is a natural transformation between the functors D and
C∞
ml(E,X

′) given by (4.70), i.e.

(ρ(.)Φ)(M,g)(f)(h,X) =
〈
(Φ(M,g)(f))

(1)(h),£X g̃
〉
+Φ(M,g)(£X f)[h] .

The requirement of the graded Leibniz rule allows us to extend γ to the whole
∞⊕
k=0

Nat(Ekc ,CE). We define the extended algebra of fields as:

Fld =

∞⊕

k=0

Nat(Ekc ,BV) ,

where BV is a functor from Loc to PgAlg defined in analogy to the gauge theories:

BV(M) = C∞
ml

(
E(M),ΛEc(M)⊗̂ΛX′(M)⊗̂S•Xc(M)

)
(4.71)

The set Fld becomes a graded algebra if we equip it with addition defined pointwise and
a graded product defined as:

(ΦΨ)M (f1, ..., fp+q) =
1

p!q!

∑

π∈Pp+q
ΦM(fπ(1), ..., fπ(p))ΨM (fπ(p+1), ..., fπ(p+q)) , (4.72)

where the product on the right hand side is the product of the algebra BV(M). We can
also introduce on Fld a graded bracket using definition (4.45), i.e.:

{Φ1,Φ2}M (f1, ..., fp+q) =
1

p!q!

∑

π∈Pp+q
{Φ1M (fπ(1), ..., fπ(p)),Φ2M (fπ(p+1), ..., fπ(p+q))} .

This bracket is graded antisymmetric, satisfies the graded Jacobi identity (4.6) and the
Leibniz rule (4.5) with respect to the product (4.72), so (Fld, {., .}) is a graded Poisson
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algebra. As in the Yang-Mills case we can define natural transformations θ(0), θ(1) ∈ Fld
that locally implement the Chevalley-Eilenberg differential on the fixed background:

(θ
(0)
M (f)F )(X)

.
=
〈
F (1)(h),£fX g̃

〉
, F ∈ F(M), X ∈ X(M) ,

(θ
(1)
M (f)ω)(X1,X2)

.
= ω(f [X1,X2]), ω ∈ X′(M), X1,X2 ∈ X(M) ,

Let θ = θ(0) + θ(1). The full Chevalley-Eilenberg differential can be written as:

(γΦ)M (f) = {Φ, θ}M (f, f1) + (−1)|Φ|ΦM(£(.) f)

where Φ ∈ Fld and f1 ≡ 1 on suppf . The BV differential s is now defined as:

(sΦ)M (f)
.
= {Φ, L+ θ}M(f, f1) + (−1)|Φ|ΦM (£(.)f) f1 ≡ 1 on suppf .

The 0-cohomology of s is nontrivial, since it contains for example the Riemann tensor
contracted with itself, smeared with a test function:

Φ(M,g)(f)(h) =

∫

M

Rµναβ [g̃]R
µναβ [g̃]fdvol(M,g̃), g̃ = g + h .

Based on the discussion in 4.5.2, we claim that the physical quantities should be identified
with the elements of H0(Fld, s). As natural transformations they define what it means
to have the same physical objects in all spacetimes. In this sense we get a structure that
is completely covariant. We can now introduce dynamics on H0(Fld, s) by defining the
Poisson bracket.

4.5.4 Peierls bracket

To obtain an algebra closed under the Peierls bracket we have to replace the multilocal
with the microcausal functionals and use the topology τΞ. The corresponding space
of natural transformation is denoted by Fldmc. We can construct the Peierls bracket
analogously as in Section 4.4.6. Our starting point is a Lagrangian Lext = L+θ. Formally
it can be written as

Lext
M (f)

formal
=

∫
fR[g̃] dvol(M,g̃)+

∫
dvol(M,g)(f£C g̃µν)

δ

δhµν
+
1

2

∫
dvol(M,g)(f [C,C]µ)

δ

δCµ
.

(4.73)
To impose the gauge fixing we introduce the nonminimal sector. We shall do it already
on the level of natural transformations. The functions of Nakanishi-Lautrup fields will
be the elements of Nat(Ec, S

•X′) and functions of antighosts will belong to Nat(Ec,ΛX
′).

We can define the BV operator on the nonminimal sector simply as: sΦ1 := ΠΦ1 ◦mi,
sΦ2 = 0 for Φ1 ∈ Nat(Ec,Λ

1X′), Φ2 ∈ Nat(Ec, S
1X′). To impose the gauge fixing we

shall use a gauge fixing fermion Ψ ∈ Fldmc. It induces a transformation of Fldmc given
by (4.50). This transformation is an isomorphism on the cohomology groups, since:

(s̃X̃)M (f1) = ˜{XM (f1), LM (f2)}+ (−1)|X|X̃M (£(.)f1) = (̃sX)M (f1) ,

where X is a natural transformation with values in derivations, X̃ := αΨ(X) and f2 ≡ 1
on the support of f1. The above result can be written more compactly as:

s̃X̃ = s̃X
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To fix the gauge we have to choose Ψ. Since it has to be covariant, the most natural
choice is the background gauge (see [110, 148]), i.e.:

Ψ(M,g)(f) = i

∫
dvol(M,g)

(
α

2
C̄µB

µ +
1√−g C̄µ∇ν(g̃

νµ)

)
= i

∫
g
(
C̄,
α

2
B+K(h)

)
dvol(M,g) ,

where the indices are lowered in the background metric g, ∇ is the covariant derivative
on (M,g) and we denoted g̃νλ :=

√−g̃g̃νλ, Kµ(h) = 1√−g∇ν g̃νµ. For α = 0 this is just

the harmonic gauge. After putting antifields to 0 we obtain the following form of the
gauge-fixed Lagrangian:

LgM(f) :=

∫
fR[g̃]dvol(M,g̃) +

∫
dvol(M,g)f

(
ig
(
C̄,
δK

δh
[£C g̃]

)
− g
(
B,

α

2
B +K(h)

))
.

The differential s̃ can be expanded with respect to the total antifield number as s̃ =
δg + γg, where δg is the Koszul differential of the gauge fixed action and γg is the gauge-
fixed BRST differential given by:

(γgΦ)M (f) = γg0(ΦM (f)) + (−1)|Φ|ΦM (ρ(.)f) ,

where:

γg0

F ∈ F(M)
〈
F (1),£C(g + .)

〉

C −1
2 [C,C]

B 0

C̄ iB

The algebra of physical microcausal fields can be recovered as Fldph :=
H0(H0(Fldmc, δ

g), γg). To introduce the Poisson structure on it, we shall first do it
on Fldmc. We start with finding the field equations for the action Sg. We use the fact
that in local coordinates:

£C g̃
µν = −g̃αν∇αCµ − g̃αµ∇αCν +∇α(Cαg̃µν) .

The field equations12 take the form:

Rνλ[g̃] = −i
(
∇(νC̄|µ|∇λ)Cµ +∇µC̄(ν∇λ)Cµ + (∇α∇(νC̄λ))C

α
)
−∇(λBν) ,

g̃
νλ∇ν∇λCµ = g̃ανR µ

λνα [g]Cλ + α
√−g

(
Bλ∇λCµ −∇λ(BµCλ)

)
,

g̃
νλ∇ν∇λC̄µ = −g̃νλR α

νµλ [g]C̄α + α
√−g

(
Bλ∇λC̄µ +Bλ∇µC̄λ

)
,

∇ν g̃νµ = −α√−gBµ .

The details of the calculation are given in the appendix 4.5.5. This system is gauge-
fixed but not normally hyperbolic in all the variables, since we have second derivatives
of the ghosts in the first equation. To find a solution of this problem we rewrite the first
equation using the Leibniz rule:

(∇α∇(νC̄λ))C
α = −∇(ν(C

α∇|α|C̄λ))−∇αC̄(λ∇ν)Cα−
1

2

(
R β
αν λC̄βC

α+R β
αλ ν [g]C̄βC

α
)
.

12The field equations have to understood in the algebraic sense, see footnote 10.
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It follows that

−Rνλ[g̃] = i∇(νC̄|µ|∇λ)Cµ +∇(ν

(
Bλ) − iCα∇|α|C̄λ)

)
− iRανβλ[g]C̄(βCα) .

It is now evident that the system can be made hyperbolic by a suitable variable change.
Before setting antifields to 0 we perform a canonical transformation of the algebra
BV(M) by setting bλ = Bλ − iCα∇αC̄λ. The antifields have to transform in such a
way that the antibracket remains conserved, i.e.:

bλ = Bλ − iCα∇αC̄λ
δ

δbλ
=

δ

δBλ
,

cν = Cν
δ

δcλ
=

δ

δCλ
+ i∇λC̄β

δ

δBβ
, (4.74)

c̄ν = C̄ν
δ

δc̄λ
=

δ

δC̄λ
− iCα∇α(.) ◦

δ

δBλ
.

We used a short-hand notation:
(
Cα∇α(.) ◦ δ

δBλ

)
(x)

.
=
∫
dzCα(z)∇zαδ(x− z) δ

δBλ(z)
. The

new gauge-fixed Lagrangian takes the form

LgM (f) =

∫
fR[g̃] dvol(M,g̃)+

+

∫
dvol(M,g)f

(
ig
(
c̄,
δK

δh
[£cg̃]

)
− g
(
b+ (icα∇α)c̄,

α

2
(b+ (icα∇α)c̄) +K(h)

))
.

(4.75)

The gauge-fixed BRST differential γg0 is now defined as:

γg0

F ∈ F(M)
〈
F (1),£c(g + .)

〉

c −1
2 [c, c]

b i(cβ∧ cα∇β∇α)c̄+ cα∇αb
c̄ ib− cλ∇λc̄

The equations of motion in the new variables can be written as:

R̃νλ = −i∇(ν c̄|µ|∇λ)cµ −∇(νbλ) + iRανβλc̄
(βcα) , (4.76)

g̃
νλ∇ν∇λcµ = g̃ανR µ

λνα cλ + α
√−g

(
(bλ + icα∇αc̄λ)∇λcµ −∇λ((bµ + icα∇αc̄µ)cλ)

)
,

g̃
νλ∇ν∇λc̄µ = −g̃νλR α

νµλ c̄α + α
√−g

(
(bλ + icα∇αc̄λ)∇λc̄µ + (bλ + icα∇αc̄λ)∇µc̄λ

)
,

∇ν g̃νµ = −α√−g(bµ + icα∇αc̄µ) ,

where we denoted R̃νλ := Rνλ[g̃] and Rαβγλ := Rαβγλ[g]. The equation for b can be
obtained from the first equation by means of the Bianchi identity. One can already see
that after linearization we obtain a normally hyperbolic system of equations since from
the antisymmetry of ghost fields follows that cλcα∂λ∂αc̄

µ = 0 and all the other second
order terms are of the d’Alembertian-like form. For such a system, retarded and advanced
solutions of the linearized equations exist and one can define the Peierls bracket on Fldmc.
Like in case of Yang-Mills theories it is well defined also on Fldph and we obtain a Poisson
algebra (Fldph, {., .}Sg ). Although the Poisson structure on Fldmc can depend on the
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choice of variables in the extended algebra, this doesn’t affect the structure induced on
Fldph. Note that for the harmonic gauge (α = 0) and the Minkowski background the
system (4.76) simplifies to (compare with [142]):

R̃νλ = −i∂(ν c̄|µ|∂λ)cµ − ∂(λbν) ,
�g̃c

µ = 0 ,

�g̃ c̄µ = 0 ,

�g̃bµ = 0 ,

∂ν g̃
νµ = 0 .

4.5.5 Appendix: calculation of the equations of motion

The gauge fixed Lagrangian is equivalent to: Lg ∼ LEH + LFP + LGF, where:

LEH
M (f) =

∫
dvol(M,g̃)R[g̃]f ,

LFP
M (f) = i

∫
dvol(M,g)

1√−g∇νC̄µ
(
g̃
λν∇λCµ + g̃λµ∇λCν −∇λ(Cλg̃µν)

)
f ,

LGF
M (f) = −

∫
dvol(M,g)

(α
2
BµBµ +

1√−gBµ∇ν(g̃
νµ)
)
f .

We used the fact that in local coordinates:

£C g̃
µν = −g̃αν∇αCµ − g̃αµ∇αCν +∇α(Cαg̃µν) .

Now we calculate the field equations. We obtain following formulas for the Euler-
Lagrange derivatives of the Fadeev-Popov term:

(SFP
M )′C̄µ = − i√

−g
∇ν
(
g̃
λν∇λCµ + g̃λµ∇λCν −∇λ(Cλg̃µν)

)
, (4.77)

(SFP
M )′Cµ = − i√

−g

(
∇λ(g̃λν∇νC̄µ) +∇λ(g̃λν∇µC̄ν)− g̃αβ∇µ∇αC̄β

)
, (4.78)

(SFP
M )′hλν =

√
−g̃√
−g

(
i
(
∇(νC̄|µ|∇λ)Cµ +∇µC̄(ν∇λ)Cµ + (∇α∇(νC̄λ))C

α
)
+

− i

2
g̃λν

(
g̃βα∇αC̄µ∇βCµ + g̃βµ∇αC̄µ∇βCα + g̃µα(∇β∇αC̄µ)Cβ

))
. (4.79)

Similarly for the gauge fixing term:

(SGF
M )′Bµ = −α√−gBµ −∇ν(g̃νµ) , (4.80)

(SGF
M )′hλν =

√
−g̃√
−g

(
∇(λBν) −

1

2
g̃νλg̃

αβ∇αBβ
)
. (4.81)

The variation of LEH,M(f) gives simply the Einstein’s equation for the full metric:

(SEH
M )′hλν =

√
−g̃√
−g

G̃νλ , (4.82)

where we denoted G̃νλ := G[g̃]νλ. Using the fact that G̃νλ = R̃νλ − 1
2 g̃νλg̃

αβR̃αβ we can
combine equations (4.79), (4.81) and (4.82) into

− R̃νλ = i
(
∇(νC̄|µ|∇λ)Cµ +∇µC̄(ν∇λ)Cµ + (∇α∇(νC̄λ))C

α
)
+∇(λBν) . (4.83)
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The equation for the ghost (4.77) can be rewritten as:

0 = g̃λν∇ν∇λCµ + g̃λµ∇ν∇λCν − (∇ν∇λCλ)g̃µν+
+ (∇ν g̃λν)∇λCµ + (∇ν g̃λµ)∇λCν − Cλ∇ν∇λg̃µν − (∇νCλ)∇λg̃µν − (∇λCλ)∇ν g̃µν .

Using the formula for the commutator of covariant derivatives we obtain:

0 = g̃λν∇ν∇λCµ + g̃λµ(∇ν∇λCν −R ν
νλα C

α)− g̃λµ(∇λ∇νCν) + (∇ν g̃λν)∇λCµ+
− (∇λCλ)∇ν g̃µν − Cλ(∇λ∇ν g̃µν +R µ

λνα g̃
αν +R ν

λνα g̃
αµ) =

= g̃λν∇ν∇λCµ − g̃λµR ν
νλα C

α + (∇ν g̃λν)∇λCµ − (∇λCλ)∇ν g̃µν+
− Cλ(∇λ∇ν g̃µν +R µ

λνα g̃
αν −R ν

ναλ g̃
αµ) =

= g̃λν∇ν∇λCµ + (∇ν g̃λν)∇λCµ − (∇λCλ)∇ν g̃µν − Cλ(∇λ∇ν g̃µν +R µ
λνα g̃

αν) .

Terms containing the derivatives of the full metric can be eliminated with the gauge
fixing condition (4.80). The result is:

g̃
λν∇ν∇λCµ = CλR µ

λνα g̃
αν + α

√
−g
(
Bλ∇λCµ − (∇λCλ)Bµ − Cλ∇λBµ

)
=

= CλR µ
λνα g̃

αν + α
√

−g
(
Bλ∇λCµ −∇λ(CλBµ)

)
. (4.84)

Similarly one obtains from the equation for the antighost (4.78):

g̃
λν∇λ∇νC̄µ = −g̃λνR α

λµν C̄α + α
√

−g
(
Bν∇νC̄µ +Bν∇µC̄ν

)
. (4.85)

Together equations (4.80), (4.83), (4.84) and (4.85) constitute the following system:

−R̃νλ = i
(
∇(νC̄|µ|∇λ)Cµ +∇µC̄(ν∇λ)Cµ + (∇α∇(νC̄λ))C

α
)
+∇(λBν) ,

g̃
νλ∇ν∇λCµ = g̃ανR µ

λνα Cλ + α
√−g

(
Bλ∇λCµ −∇λ(BµCλ)

)
, (4.86)

g̃
νλ∇ν∇λC̄µ = −g̃νλR α

νµλ C̄α + α
√−g

(
Bλ∇λC̄µ +Bλ∇µC̄λ

)
,

∇ν g̃νµ = −α√−gBµ .

For the harmonic gauge α = 0 this amounts to

−R̃νλ = i
(
∇(νC̄|µ|∇λ)Cµ +∇µC̄(ν∇λ)Cµ + (∇α∇(νC̄λ))C

α
)
+∇(λBν) ,

g̃
νλ∇ν∇λCµ = g̃ανR µ

λνα Cλ ,

g̃
νλ∇ν∇λC̄µ = −g̃νλR α

νµλ C̄α ,

∇ν g̃νµ = 0 .

In the Minkowski background this system simplifies to

−R̃νλ = i
(
∂(νC̄|µ|∂λ)C

µ + ∂µC̄(ν∂λ)C
µ + (∂α∂(νC̄λ))C

α
)
+ ∂(λBν) ,

�g̃C
µ = 0 ,

�g̃C̄µ = 0 ,

∂ν g̃
νµ = 0 .





Part II

Quantum field theory
In this part, we show that using the classical structures discussed before one can gain
some insight into the quantum theory. The interpretation of the BV complex formulated
in the language of infinite dimensional geometry allows us to treat the BV quantization
as a deformation of the geometrical structure resulting from the deformation of the
pointwise product. Using this method, we provide the definition of the renormalized
quantum BV operator. The problem in incorporating the renormalization into the BV
formalism is present since the first papers of Batalin and Vilkovisky [13, 14, 15]. The
gauge invariance of the path integral measure is in this formalism equivalent to the
quantum master equation. It is similar to the classical one but contains an additional
contribution from a functional differential operator △ = δ

δϕ‡(x)δϕ(x)
, which can be seen as

a divergence of vector fields on the configuration space. The quantum master equation
(qme) reads: 1

2{S, S} − i~△S = 0. It was clear from the beginning, that the operator
△ is a very singular object and the qme is not well defined. Nevertheless, it can be used
for formal manipulations in the path integral quantization of gauge theories, as long as
one gives up on the geometrical meaning of the structure. In [15] authors comment on
this problem pointing out the existence of divergences in higher loop order in qme:

The solution of Eq. (3.7) [quantum master equation] can be expanded in
powers of ~

W = S +
∞∑

p=1

~pMp. (3.11)

This gives

p = 0 : {S, S} = 0, (3.12)

p = 1 : {M1, S} = i△S, (3.13)

p ≥ 2 : {Mp, S} = i△Mp−1 −
1

2

p−1∑

q=1

{Mq,Mp−q} (3.14)

(. . . ) However, in a local basis of the gauge algebra the right-hand sides
of Eqs. (3.13) and (3.14) are proportional to δ(0). In the framework of
a regularization which annihilates such divergences one may put Mp =
0, p ≥ 1.
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As seen from the above quote, the first idea to deal with the divergences was to apply
some regularization scheme that puts all the terms proportional to δ(0) to 0 and then
perform the renormalization. In [178] it was proposed to use instead a regularization
that puts the divergent terms of qme at finite non-zero values. This approach allowed
the analysis of the anomalies in a more systematic way and their relation to obstructions
in fulfilling the qme. The regularization used in [178] is the Pauli-Villars scheme and
the discussion is restricted only to the 1-loop order. A method valid for higher loop
orders was proposed in [149], but the regularization scheme used there is non-local. The
dimensional regularization and renormalization in the context of BV formalism were
discussed in [176]. The BPHZ renormalization is discussed in [113]. All of the mentioned
approaches rely on some regularization scheme and involve arbitrary choices. From the
conceptual point of view it is still unclear how the qme should be interpreted in the
renormalized theory. An alternative treatment of qme which involves certain extension
of the field-antifield formalism was presented in [7].

As seen from the above review, the status of the renormalized qme is still in the
focus of ongoing research. Our aim is to show that it arises naturally in the framework of
perturbative algebraic field theory, without referring to a specific regularization scheme.
As mentioned at the beginning of this section, we need firstly to deform the classical
geometric structure of the BV complex. The idea of deformation quantization goes back
to Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer [16] and the first attempt to
use these structures in quantum field theory is due to Dito [49]. Based on these ideas
Brunetti, Dütsch, and Fredenhagen [53, 54, 55, 56, 57, 23, 30] developed a formalism,
which uses a purely algebraic formulation of perturbative QFT and treats the renormal-
ization on a very general level. An appealing feature of this formalism is the idea to
treat the renormalization procedure in terms of certain differential operators on the infi-
nite dimensional space of functionals. This approach can be related to the path-integral
formalism, but it is formulated on the purely algebraic level. In the present work we
follow this idea and show in particular that the renormalized time-ordered product is
a full product on a certain domain, which is invariant under the renormalization. The
BV differential defined with respect to this product provides a mathematically rigorous
interpretation of the quantum BV operator. We will show that the renormalized qme

can be related to the Master Ward Indentity (mwi) postulated in [52] in the context of
paqft and analyzed in detail in [57], where it was proved to hold also in the classical
theory.



CHAPTER 5

BATALIN-VILKOVISKY FORMALISM IN PAQFT

Zasadniczą cechą dzieł sztuki jest jedność w wielości bez
względu na to, jakie są elementy tej wielości i jakim sposobem
osiągnięta jest ich jedność. Tę właśnie cechę jedności nazy-
wamy pięknem danego tworu; pojęcie to może stosować się i
do dzieł sztuki, i do innych tworów (...).

S.I. “Witkacy” Witkiewicz

The main feature of artistic creations is their unity in mul-
tiplicity, no matter what the elements of this multiplicity are
and how the unity is achieved. This feature of unity is called
the beauty of a given artistic creation; this notion applies
not only to artistic creations, but to all human creations in
general (...).

S.I. ‘Witkacy” Witkiewicz (translation K.R.)

Here we come to the final chapter of this thesis and to the end of our metaphorical
journey. Some questions that we posed at the beginning will now be answered and after
a long struggle through the technical subtleties of mathematics and physics we arrived at
the point where it all somehow gets its purpose and justification. It is always gratifying
in science to see how a multitude of threads and concepts converge together to a unified
idea. This feeling that everything has its right place is certainly one of the features of the
mathematical beauty of a theory. In this sense it is impossible not to admire, how the
quantum field theory is built on the fundament of rich mathematical and experimental
background. After almost 100 years’ history it still undergoes development and provides
us with surprises. In particular the QFT on curved spacetimes is a relatively new research
field and a lot has been done in it in recent years (for example [28, 25, 104, 105, 106,
107, 103, 44, 94, 30, 39]). The major step was done in the seminal paper of Radzikowski
[152], who recognized, that the microlocal spectrum condition allows us to define a class
of states on generic globally hyperbolic spacetimes, that behave similar to the vacuum in
Minkowski spacetime. Based on this observation, the Wick polynomial algebra has been
constructed in [28, 25, 104, 107]. It was done by directly encoding the Wick theorem
in the algebraic structure. This approach, called deformation quantization has been
introduced in [25] and further developed in [55, 30]. The interaction is introduced there
with the use of Epstein-Glaser [59] causal perturbation theory and the whole approach
is commonly called perturbative algebraic quantum field theory (paqft).

There are of course other frameworks for qft aiming at mathematically rigorous
results. Some of them cover only specific problems, without going into the deep concep-
tual roots, but all these ideas influence each other and constitute together a remarkable
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construction. Sometimes one finds a link between different approaches and each such
result can lead to completely new developments. Concerning causal perturbation theory
and the BV formalism, a first example of combining technics of both frameworks is due
to Hollands and appeared in [103], in the context of Yang-Mills theories. There were
however still some open questions concerning the general structure. The BV framework
was originally associated with the path integral formalism and up to now there were no
attempts to develop it intrinsically within paqft. The present thesis proposes a solution
of this problem. In the previous chapters we prepared all the mathematical tools and
now finally we can show how the BV quantization can be understood from the point
of view of paqft. Following the idea of deformation quantization, we start with the
classical structure and deform the pointwise product into the noncommutative one. All
the classical structures we discussed in the previous chapters can be now deformed into
the quantum ones in a systematical way. In particular the geometric construction of the
BV complex can be easily translated to the quantized theory. Before we move to this
task, we recall in the next section basic definitions and results of perturbative algebraic
quantum field theory.

5.1 General structure

5.1.1 Algebraic formulation of perturbative QFT

We start with a short review of the paqft formalism. Ideas presented in this subsection
come mainly from [30, 53, 55, 56, 116]. In causal perturbation theory one starts with
the free action and then introduces the interaction in a perturbative way, following the
prescription of Bogoliubov [20]. For concreteness we will use the example of the free
minimally coupled scalar field with the generalized Lagrangian given by (3.15). In the
algebraic approach one focuses on the abstract structure of the theory. This is what was
done in the classical case (chapter 3), where we fixed the specific theory by defining a
certain Poisson algebra. Analogously, in the quantum case our aim is to construct an
involutive associative algebra (∗-algebra), or rather a local net of algebras, in the spirit
of local quantum physics. We use as a starting point the same topological space as in
the classical theory, namely Fmc(M). At the beginning, to avoid technical difficulties,
we restrict ourselves only to regular functionals. Let Freg(M) ⊂ Fmc(M) be the space of
functionals whose derivatives are smooth sections. This space is already equipped with
the commutative pointwise product ·, but to obtain a quantized structure we need a non-
commutative one. To this end we use the deformation quantization scheme. The space
of formal power series in ~ with coefficients in Freg(M) will be denoted by Freg(M)[[~]].
On this space we can define a noncommutative ⋆-product:

F ⋆ G
.
= m ◦ exp(i~Γ∆)(F ⊗G) , (5.1)

where m is the pointwise multiplication and Γ∆ is the functional differential operator

Γ∆
.
=

1

2

∫
dx dy∆(x, y)

δ

δϕ(x)
⊗ δ

δϕ(y)
, ∆ = ∆R −∆A . (5.2)

To simplify the notation we write dx instead of dvolM(x) whenever the choice of the
integration measure is clear from the context. We can view the definition of the ⋆-
product as a pullback of the pointwise product · by means of the following diagram:
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Freg(M)[[~]]⊗2 Freg(M)[[~]]⊗2

Freg(M)[[~]]

exp(i~Γ∆)

⋆ ·

The complex conjugation satisfies the relation:

F ⋆ G = G ⋆ F . (5.3)

Therefore we can use it to define an involution F ∗(ϕ)
.
= F (ϕ). The resulting structure

is a ∗-algebra (Freg(M)[[~]], ⋆), which provides the quantization of (Freg(M), {., .}S ). For
the example of a scalar field we obtain the following commutation relations:

[Φ(f),Φ(g)]⋆ = i~〈f,∆g〉 , f, g ∈ D(M) ,

where Φ(f)(ϕ)
.
=
∫
fϕdvolM is a smeared field. Compare it with the corresponding Pois-

son bracket {Φ(f),Φ(g)}S = 〈f,∆g〉, constructed in 3.4. The algebra (Freg(M)[[~]], ⋆)
contains an ideal generated (with respect to ⋆) by the free equations of motion. We can
obtain the standard algebra of the free scalar field after performing the quotient by this
ideal. Nevertheless it is more convenient not to do it in the beginning and to work in the
off-shell formalism instead.

Up to now this was all free field theory. Now we want to introduce the interaction.
To this end we need yet another algebraic structure, namely the time-ordered product

·T . Following [30] we define it by means of the time ordering operator T.

T(F )
.
= ei~Γ∆D (F ) ,

where Γ∆D =
∫
dxdy∆D(x, y)

δ2

δϕ(x)δϕ(y) and ∆D = 1
2(∆R+∆A) is the Dirac propagator.

The antitime-ordering T is the inverse of T and is defined by replacing ∆D with −∆D.
With these operators we define the time-ordered product ·T on DT(M)

.
= T(Freg(M)[[~]])

by:

F ·T G .
= T(T−1 · T−1G)

The time-ordered product is associative, commutative and even equivalent to the point-
wise product! This is a good news, because it can serve as a mean to carry over the
classical structures to the quantum world. We will make use of this feature to bring
the BV complex to the quantum level. The time ordered product can be also seen as a
pullback by the diagram:

Freg(M)[[~]]⊗2 DT(M)⊗2

Freg(M)[[~]] DT(M)

T⊗2

T

· ·T

Formally the time ordering operator T may be understood as the operator of convolution
with the oscillating Gaussian measure with covariance i~∆D,

TF (ϕ)
formal
=

∫
dµi~∆D(φ)F (ϕ − φ) . (5.4)
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To see that ·T is indeed the time ordered product for ⋆ we can look at the example of the
scalar field. In this case we have:

Φ(f) ·T Φ(g) = Φ(f) · Φ(g) + i~

2
〈f, (∆R +∆A)g〉 ,

Φ(f) ⋆ Φ(g) = Φ(f) · Φ(g) + i~

2
〈f, (∆R −∆A)g〉 .

From the support properties of ∆R and ∆A it follows that Φ(f) ·T Φ(g) = Φ(f) ⋆ Φ(g)
if the support of f is later than the support of g, i.e. suppf & suppg. The time
ordered product provides us with means to introduce the interaction using the local
S-matrices. For localized V ∈ T(Freg(M)) the formal S-matrix is defined as the time-
ordered exponential:

S(V )
.
= eV

T
= T(eT

−1V ) .

Note that it is not meant to be understood as an actual scattering matrix, but as a
generating functional for the higher order time-ordered products:

S(V ) =
∞∑

n=0

1

n!
V ·T ... ·T V ≡

∞∑

n=0

1

n!
Tn(V ⊗n) . (5.5)

We can now define the relative S-matrix by the formula of Bogoliubov:

SV (F )
.
= S(V )⋆−1 ⋆ S(V + F ) . (5.6)

SV plays a role of an intertwining Møller map between the free and the interacting
theory. You can compare it with the classical version of Møller maps introduced in
section 3.7. Interacting observables can be now obtained from SV (F ), which serves as
a generating functional. We will discuss it in detail in section 5.2. Up to now we only
defined the time-ordered products for regular functionals. This is not enough to introduce
a “sensible” interaction, since typical interaction terms are local nonlinear functionals and
the expression S(V ) would be ill-defined. To amend this, one has to carefully extend S(V )
to more general objects. It was shown in [59] that this can be done by means of causal
perturbation theory but the extension is not unique. Its ambiguity corresponds to the
renormalization freedom. We discuss the problem of renormalization in section 5.2 but for
now we want to stay for a while in the realm of non-renormalized time-ordered products
to look closer at the algebraic structure. Interacting quantum fields are generated by
SiV/~(F ) and we can write them as formal power series:

d

dλ

∣∣∣
λ=0

SiV/~(λF ) =
∞∑

n=0

1

n!
Rn,1(V

⊗n, F ) ≡ RV (F ) , (5.7)

where the coefficients Rn,1 are called retarded products and are obtained from (5.6) by
differentiation:

(~
i

)n
Rn,1(V

⊗n, F ) =
d

dλ

∣∣∣
λ=0

S(V )⋆−1 ⋆ S(V + λF ) =

=
d

dλ

∣∣∣
λ=0

n∑

k=0

T(V ⊗k) ⋆ T((V + λF )⊗(n−k))

You can compare this definition with the classical counterpart (3.28). In the classical
case the higher ordered retarded products were coefficients of the expansion of a Møller
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map rF in powers of λ. The same structure appears now in the quantum case. More
explicitly the intertwining map RV can be written as

RV (F ) =
(
e
iV/~
T

)⋆−1

⋆
(
e
iV/~
T
·T F

)
.

When we switch on the interaction, also the star product has to change. A natural
definition can be obtained with the use of the intertwining map RV (F ). Following [76] we
define the interacting star product as (compare it with the classical counterpart (3.31)):

F ⋆V G
.
= R−1

V (RV (F ) ⋆ RV (G)) , (5.8)

where the inverse of RV is given by:

R−1

V (F ) = e
−iV/~
T

·T
(
e
iV/~
T

⋆ F
)
.

Now we want to relate algebraic formulas we are using to a more “standard” formu-
lation of QFT. This is particularly interesting in the context of the BV formalism, which
was developed originally in the path integral approach. For the moment let M = M, the
Minkowski spacetime. Before we discuss the relation between the algebraic and path inte-
gral formalisms, we want to make a small comment. In the definition of the time-ordering
operator, instead of ∆D we could also use the Feynman propagator ∆F = i∆D + ∆1,
where ∆1 is the symmetric part of the Wightmann 2-point function ∆+. In fact one
can take a Hadamard solution, that satisfies certain conditions, in place of ∆1 and the
algebraic structure will still be equivalent [30]. We discuss this in detail in section 5.2.1.
For the comparison with the path integral formalism it is convenient to use for a moment
∆F in the definition of time-ordered products and correspondingly ∆+ = i

2∆ + ∆1 for
the ⋆-product. Let ω0(F )

.
= F (0), F ∈ Freg(M). This functional plays a role of the

vacuum state. As we already mentioned, the expectation value in ω0 is related to the
formal expression of integrating with the Gaussian measure, therefore:

ω0(S(iV/~))
formal
=

∫
dµi~∆F e

:V : formal
=

∫
Dφe

i
~
(S+:V :) . (5.9)

Note that in the present framework the normal ordering is implemented by applying T−1

to V .
Assume that we can take the adiabatic limit, so in this limit S is translation invariant

and we have a unique vacuum. Then (5.6) relates to the Gell-Man-Law formula, since
ω0(S(V ) ⋆ SV (F )) = ω0(S(V ))ω0(SV (F )) and we can write formally:

ω0(SV (F ))
formal
=

∫
dµi~∆F e

:V : : F :∫
dµi~∆F e

:V :
.

With this little dictionary at hand we can now set to understand the BV quantization
in the formalism of paqft.

5.1.2 BV quantization in the algebraic framework

In the previous section we were only reviewing the results on algebraic quantization
available elsewhere in the literature. Finally it’s time to use these tools to tackle a new
problem. The main result of the present thesis is the formulation of the BV quantization
within the framework of paqft and now we can outline the underlying idea of our
construction. The ideas presented here are the fundament for a completely new way to
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look at the BV complex in the context of paqft. We will elaborate on this concept in
the rest of the present chapter.

In order to perform the construction of the BV complex we need to extend the algebra
of functionals with its derivations, i.e. vector fields. As in the classical case this extension
is provided by the space Vmc(M) of microcausal maps from E(M) to Ec(M). By a slight
abuse of notation we call it the space of microcausal vector fields. Now we want to extend
the time ordering operator T to vector fields. For the moment we restrict ourselves to
the regular ones. We define Vreg(M) to be the space of vector fields such that for n > 0
the functional derivative X(n)(ϕ) is a test section in Γc(M

n+1, V ⊗(n+1)). In particular
this excludes all the local non-constant vector fields since in this case X(ϕ)(x) is a
function of the infinite jet of ϕ, i.e.: X(φ)(x) = f(j∞x (ϕ)) so the functional derivative is
proportional to the derivatives of delta distribution. It was already discussed in section
4.2.1 that vector fields can be seen from two viewpoints: on one hand as derivations of
F(M) and on the other as sections of the tangent bundle, i.e. maps from E(M) to Ec(M).
These two roles played by vector fields have their consequences for the definition of the
time ordering operator on Vreg(M). Indeed, if we think of an element X ∈ Vreg(M)
as a section, then T acts on it simply as a differential operator and we can put forth a
following definition:

TX
.
=

∫
dxT(X(x))

δ

δϕ(x)
(5.10)

In section 4.2.1 we denoted by ∂X the derivation of Freg(M) corresponding to the vector
field X. It is now natural to ask how this derivation transforms. The guiding principle
for all our definitions is to use T as a mean to transport the classical structure to the
quantum algebra. In this spirit we can associate with Y ∈ T(Vreg(M)) a derivation of
T(Freg(M)) defined as

∂T

Y F = T〈T−1Y,T−1F (1)〉 F ∈ T(Freg(M)) . (5.11)

From the above formula it is evident that ∂T

Y is a derivation of T(Freg(M)) with respect
to the time ordered product ·T :

∂T

Y (F ·T G) = (∂T

Y F ) ·T G+ F ·T (∂T

YG) , (5.12)

Moreover we obtain a following identity:

∂T

TX = T ◦ ∂X ◦ T−1 (5.13)

The construction we performed shows that we can recover in a natural way all the classical
structures of the BV complex in the quantum algebra, but they are defined with respect
to the the time-ordered product, not ⋆. The advantage of using ·T is that it is still a
commutative product (in contrast to ⋆), so the Koszul-Tate complex makes sense in this
case. The graded algebra of antifields is transformed into T(ΛVreg(M)). This algebra is
equipped with the Schouten bracket {., .}T defined as:

{X,Y }T = T{T−1X,T−1Y } (5.14)

Again we see that this is the graded extension of the commutator of derivations and the
evaluation of a derivation on a functional in T(Freg(M)), since it holds:

∂T{X,Y }T = [∂T

X , ∂
T

Y ] (5.15)

{X,F}T = ∂T

XF (5.16)
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Now we want to see how the ideal generated by the equations of motion is transforming
under the time ordering. We identify it as the image of the time-ordered Koszul operator:

δTS = T ◦ δT−1S ◦ T−1 , (5.17)

where S ∈ T(Freg(M)). We have just characterized the classical ideal of of equations
of motion, but what about the quantum one? There is also a nice way to describe it,
but before we turn to this task, we need one more definition. We already defined the
·T -product of antifields, but we need also the ⋆. The definition is quite natural if we treat
vector fields as functions E(M) → Ec(M) and apply to them the operator exp(i~Γ∆)
defined by (5.1) and (5.2). We spell out this definition explicitly. Let X,Y ∈ Vreg(M).
Then we define

X ⋆ Y
.
= exp(i~Γ∆)(X ∧ Y ) , (5.18)

where Γ∆ is the functional differential operator defined in (5.2). We can also write it in
terms of the vector field “coefficients” as:

(X ⋆ Y )(x, y) = X(x) ⋆ Y (y)−X(y) ⋆ Y (x) . (5.19)

From the above formula we can see that X ⋆Y is an antisymmetric compactly supported
function on M2 with values in the algebra (Freg(M), ⋆). Let as now have a closer look
at the image of δTS . Acting on a time-ordered vector field X ∈ T(Vreg(M)) with δTS we
obtain

δTS(X) = T(δT−1S(T
−1X)) = m ◦ ei~Γ

′
∆D

(∫
dxX(x)⊗ δS

δϕ(x)

)
,

where in the second step we used the Leibniz rule. Since S is a functional of second order
in ϕ, the expansion of ei~Γ∆D has only two nontrivial terms and we finally obtain:

δTS(X) =

∫
dxX(x)

δS

δϕ(x)
+ i~

∫
dxdydz

δX(x)

δϕ(y)

δ2S

δϕ(x)δϕ(z)
∆D(y, z) =

=

∫
dxX(x)

δS

δϕ(x)
+ i~

∫
dx

δX(x)

δϕ(x)
=

= δS(X) + i~△X , (5.20)

where △ is a map that acts on regular vector fields Vreg(M) like a divergence1:

△Q .
=

∫
dx

δ2Q

δϕ‡(x)δϕ(x)
=

∫
dx

δQ(x)

δϕ(x)
, Q ∈ Vreg(M) .

This operator can be extended also to multi-vector fields ΛVreg(M) in such a way that
it becomes a differential, i.e. △2 = 0 is fulfilled. Explicitly we can write △ as:

△Q = (−1)(1+|Q|)
∫
dx

δ2Q

δϕ‡(x)δϕ(x)
, Q ∈ ΛVreg(M) .

It has also some nice properties with relation to the antibracket. For example it holds:

{P,Q} = △(PQ)−△(P )Q− (−1)|P |P △(Q) , (5.21)

1This operator is in the literature denoted by ∆, but we use here a slightly different symbol △, to
distinguish it from the causal propagator ∆(x, y).



100 Batalin-Vilkovisky formalism in paqft

where P,Q ∈ ΛVreg(M). Moreover, using (5.21) and the nilpotency of △, one can show
that:

△ {P,Q} = −{△(P ), Q} − (−1)|P |{P,△(Q)} . (5.22)

The graded algebra ΛVreg(M) together with the antibracket {., .} and the differential △
form a structure, which is called in mathematics the BV-algebra.

Note that since the time ordering commutes with both derivatives δ
δϕ(x) and δ

δϕ‡(x)
,

it also commutes with △. Hence we obtain

{X,Y }T = △(X ·T Y )−△(X) ·T Y − (−1)|X|X ·T △(Y ) , (5.23)

where X,Y ∈ T(ΛVreg(M)). Now we can come back to the problem of comparing the
quantum and the classical ideal of eom’s. To see the relation between them, we use the
fact that ∫

dxX(x) · δS

δϕ(x)
=

∫
dxX(x) ⋆

δS

δϕ(x)
, (5.24)

and we can rewrite (5.20) as:

δTS(X) =

∫
dxX(x) ⋆

δS

δϕ(x)
+ i~△(X) . (5.25)

In this formula both the time-ordered and the ⋆-product appear and it is natural to ask,
if there is a ⋆-transformed version for the antibracket. In analogy to (5.21) and (5.23)
we can define it as2:

{X,Y }⋆ = △(X ⋆ Y )−△(X) ⋆ Y − (−1)|X|X ⋆△(Y ) . (5.26)

The sign rule in (5.26) was chosen to be consistent with formulas (4.9) and (4.41). This
can also be written as:

{X,Y }⋆ = −
∫
dx

(
δX

δϕ(x)
⋆

δY

δϕ‡(x)
+ (−1)|X| δX

δϕ‡(x)
⋆

δY

δϕ(x)

)
, (5.27)

In this new notation we can write (5.25) as:

i~△(X) = {X,S}T − {X,S}⋆ . (5.28)

This formula provides us with a nice interpretation of △ as an operator describing the
difference between the classical ideal of equations of motion represented by the image of
{., S}T and the quantum one, characterized as the image of {., S}⋆. Using the identity
(5.24) it is easy to see that the operator {., S}⋆ is a derivation with respect to the ⋆-
product. We can view it as the quantum Koszul map of the free action. The fact that
{., S}T and {., S}⋆ differ by a ~-order term corresponds to the Schwinger-Dyson type
equations. This is of course something we expected, since quantum theory should be
distinguishable from the classical one. In the following sections we will analyze a similar
structure for the renormalized time ordered products. This involves many technical
subtleties but the guiding principle is the same as in this section. We start with the
classical structure and then construct the quantum algebra, where two products are
defined, ⋆-product and the time-ordered product. Various relations between these two
products result also in relations between certain ideals and differential operators arising
from the BV structure.

2Note that this is not a Poisson bracket, essentially because ⋆ is not graded commutative. Nevertheless
{., Y } defines a derivation with respect to ⋆ if δY

δϕ(x)
and δY

δϕ‡(x)
are central.
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5.1.3 Quantum master equation and the quantum BV operator

The really interesting story in the BV quantization starts when we consider an action
with symmetries. We shall do it on the example of Yang-Mills theories in section 5.3.5.
It will involve some technicalities, so in order to keep focused on the essential structure
we want to discuss some preliminary steps already on the level of nonrenormalized time-
ordered product. To this end we consider BVreg(M), a subspace of the BV-complex
(4.55) consisting of graded functionals and derivations that are regular.

Remark 5.1.1. The algebra BVreg(M) contains also functionals of fermionic fields, so
some additional signs appear in formulas used in the previous section. The operator △
in the graded case is defined as:

△X =
∑

α

(−1)|ϕα|(1+|X|)
∫
dx

δ2X

δϕ‡(x)δϕ(x)
X ∈ BVreg(M) ,

where |.| denotes the ghost number #gh and α runs through all the field configuration
types of the theory, i.e. physical fields, ghosts, antighosts, etc. The antibrackets {., .}T
and {., .}⋆ are now simply given by formulas (5.23), (5.26) with the graded version of △
defined above.

With these structures at hand we want now to discuss the gauge fixing. Our starting
point is a classical Lagrangian, where a suitable canonical transformation (4.50) was
performed, so that the term of #ta = 0, quadratic in fields, induces a normally hyperbolic
system of equations. We denote it again by S. This is the free part of the Lagrangian
and we use it to define the free time-ordered product T. The interacting part of our
action has to be chosen with some cautiousness. We don’t want to use the transformed
Yang-Mills Lagrangian (4.52) yet, since it is local and therefore its nonlinear part is not
an element of BVreg(M). Instead we consider for the moment some other functional
V ∈ T(BVreg(M)) with ghost number #gh = 0 which also contains antifields. The
natural question to ask is, what will happen, if we change the gauge-fixing fermion.
In other words we want to perform again a canonical transformation αψ and see how
the structure is changing. We choose the new gauge-fixing fermion ψ as an element of
T(BVreg(M)) with #gh = −1. Assume that ψ doesn’t contain antifields. Just like in
the classical case, first we define an automorphism (4.50) of the algebra T(BVreg(M))
by

αψ(X) :=

∞∑

n=0

1

n!
{ψ, . . . , {ψ︸ ︷︷ ︸

n

,X}T . . . }T = T(αT−1ψ(T
−1X)) , (5.29)

In the second step of the gauge fixing procedure we set all the elements with #ta > 0 in
T(BVreg(M)) at 0. Following the standard approach to BV-quantization (see for example
[97]) we want now to provide a condition, which assures that the quantum average would
be independent of ψ, modulo terms that vanish on-shell. This can be formulated as

d

dλ
e
iαλψ(V )/~
T

·T αλψ(F ) =
{
ψ, e

iṼ/~
T
·T F̃

}
T

o.s.
= 0 , (5.30)

where “o.s.” means “on shell” and we denoted F̃
.
= αλψ(F ), Ṽ

.
= αλψ(V ) . In particular

we require the independence of the S-matrix of the gauge fixing, i.e.

{
ψ, e

iṼ/~
T

}
T

o.s.
= 0 . (5.31)
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We can rewrite the left hand side of this equation using the identity (5.23):

△
(
ψ ·T eiṼ/~T

)
+ ψ ·T △(e

iṼ/~
T

)
o.s.
= 0 . (5.32)

Now on the first term we can use the identity (5.28) which corresponds to the Schwinger-
Dyson equation and obtain:

− i
~

({
ψ ·T eiṼ/~T

, S
}
T
−
{
ψ ·T eiṼ/~T

, S
}
⋆

)
− ψ ·T △(e

iṼ/~
T

)
o.s.
= 0 .

Note that the second term is an element of the ideal of equations of motion. Therefore
a sufficient condition to fulfill (5.31) on-shell can be formulated as

i

~

{
ψ ·T eiṼ/~T

, S
}
T
+ ψ ·T △(e

iṼ/~
T

)
o.s.
= 0 . (5.33)

The operator △ acting on the exponential function produces: △(e
iṼ/~
T

) = i
~
(△Ṽ +

i
2~{Ṽ, Ṽ }) ·T e

iṼ/~
T

. Moreover from (5.22) it follows that △(αλψV ) = αλψ(△V ). Using
again the Leibniz rule in (5.33) and the fact that ψ doesn’t contain antifields we arrive
finally at a condition of the form:

ψ ·T αλψ
( i
~
{V, S}T +△V +

i

2~
{V, V }T

)
·T eiṼ/~T

o.s.
= 0 .

Since the above condition has to be valid for arbitrary ψ, we obtain the following sufficient
condition

{V, S}T +
1

2
{V, V }T − i~△ V = 0 .

Using the fact, that S doesn’t contain antifields, we can write the above result in the
form of the quantum master equation (qme).

1

2
{S + V, S + V }T = i~△ (S + V ) . (5.34)

Note that this is exactly the same condition, which is used in the path integral formalism
to guarantee the gauge independence of the gauge-fixed “measure” [97]. In a similar
way, by manipulating expression (5.30) we can conclude that the condition that the
expectation value of an observable F ∈ T(BVreg(M)) on-shell is independent of the
gauge fixing is guaranteed by:

i

~
F · {V, S}T +

i

~
{F, S}T + F · △V +△F +

i

~
{F, V }T +

i

2~
F · {V, V }T = 0 .

Using the qme we obtain:

{F, S + V }T − i~△ F = 0 .

We can conclude, that the expectation value of F is independent of the gauge fixing,
modulo on-shell terms, if F lies in the kernel of

ŝ = {., S + V }T − i~△ .

This operator is called in the literature the quantum BV operator . Using the above
considerations we can express ŝ off-shell in terms of time-ordered products. This in-
terpretation is completely new and we argue that it allows for a consistent treatment
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of renormalization. First we note that if X is a regular function or a vector field (i.e.
X ∈ T(Vreg(M)⊕ Freg(M))), then from the relation (5.28) follows that:

{
e
iV/~
T
·T X,S

}
T
=
{
e
iV/~
T
·T X,S

}
⋆
+ i~△ (e

iV/~
T
·T X) , (5.35)

In particular for X = 1 we can rewrite this formula as:

e
iV/~
T
·T
(
1

2
{S + V, S + V }T − i~△ (S + V )

)
= {eiV/~

T
, S}⋆ , (5.36)

so the qme is a statement that {eiV/~
T

, S}⋆ = 0 also off-shell. This is just invariance of
the S-matrix under the free quantum Koszul operator. We can now obtain a formula for
the quantum BV operator by using the qme in equation (5.35).

ŝX = e
−iV/~
T

·T
(
{eiV/~

T
·T X,S}⋆

)
. (5.37)

In section 5.3 we will show that this expression for the quantum BV operator can be
generalized to renormalized time-ordered products and no divergences appear. Now we
will show yet another way to interpret the formula (5.37). To obtain interacting fields
one uses the intertwining map RV (F ), so it is natural to ask, what is the transformed
version of the free quantum Koszul operator {., S}⋆. Using the definition (5.7) and (5.6)
we obtain:

({., S}⋆ ◦RV )(X) = {(eiV/~
T

)⋆−1 ⋆ (e
iV/~
T
·T X), S}⋆ = (e

iV/~
T

)⋆−1 ⋆ {eiV/~
T
·T X,S}⋆ =

= (e
iV/~
T

)⋆−1 ⋆ (e
iV/~
T
·T e−iV/~T

·T {eiV/~T
·T X,S}⋆) =

= RV (e
−iV/~
T

·T {eiV/~T
·T X,S}⋆) = (RV ◦ ŝ)(X) .

In the first step we used the qme, which guarantees that {eiV/~
T

, S}⋆ = 0 and since

{., S}⋆ is a derivation it holds {(eiV/~
T

)⋆−1, S}⋆ = 0 as well. The above result justifies the
interpretation of ŝ as the interacting quantum BV operator. It is obtained from the free
Koszul operator by means of the intertwining map RV :

{., S}⋆ ◦RV = RV ◦ ŝ . (5.38)

It is now clear that ŝ is a derivation with respect to the interacting star product ⋆V .
Moreover we can characterize the (co)homology of ŝ knowing the one of {., S}⋆.

To close this section we want to reflect a while on the equation (5.36). Looking at this
formula, it is natural to ask, if we can add to the free Lagrangian a term that contains
antifields? Let us denote it by θ0 ∈ T(BVreg(M)). Of course it has to be linear both
in fields and antifields. The full extended action takes the form S + θ0 + λ(θ1 + S1) =
S + θ0 + V , where θ1 is linear in antifields, and S1 ∈ T(BVreg(M)). We can interpret θ0
as the free BRST operator. The 0-th order in the coupling constant of equation (5.34)
is a statement that

{S, θ0}T = 0 . (5.39)

From this relation we obtain the following result:

Proposition 5.1.2. Let S, θ0 be defined as above. If (5.39) holds, then:

{
e
iV/~
T
·T X, θ0

}
T
=
{
e
iV/~
T
·T X, θ0

}
⋆
.
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Proof. To prove this identity we first note that:

∫
dxT

(
T−1 δ

δϕ(x)
(e
iV/~
T
·T X) · T−1θ0(x)

)
=

∫
dxm◦ei~Γ

′
∆D

(
δ

δϕ(x)
(e
iV/~
T
·T X)⊗ θ0(x)

)
=

∫
dx

δ

δϕ(x)
(e
iV/~
T
·T X) · θ0(x) + i~

∫
dxdydz ∆D(y, z)

δθ0(x)

δϕ(y)

δ2

δϕ(x)δϕ(z)
(e
iV/~
T
·T X) .

(5.40)

Now it remains to prove that
∫
dx

δ

δϕ(x)
(e
iV/~
T
·T X) · θ0(x) =

∫
dx

δ

δϕ(x)
(e
iV/~
T
·T X) ⋆ θ0(x) , (5.41)

and that the second term of the expansion (5.40) vanishes. Actually both results can be
obtained in a similar way. We start with the second one. From (5.39) it follows that:

∫
dxdydz ∆D(y, z)

δθ0(x)

δϕ(y)

δ2F

δϕ(x)δϕ(z)
= m ◦ (Γ′

∆D)
2

(∫
dx θ0

δS

δϕ(x)
⊗ F

)
= 0 ,

for an arbitrary argument F ∈ T(BVreg(M)). To show (5.41) we use a similar reasoning,
but this time with the causal propagator:

∫
dxdydz ∆(y, z)

δθ0(x)

δϕ(y)

δ2F

δϕ(x)δϕ(z)
= m ◦ Γ′

∆D
◦ Γ∆

(∫
dx θ0

δS

δϕ(x)
⊗ F

)
= 0 ,

It follows now that

T

(∫
dxT−1 δ

δϕ(x)
(e
iV/~
T
·T X) · T−1θ0(x)

)
=

∫
dx

δ

δϕ(x)
(e
iV/~
T
·T X) ⋆ θ0(x) ,

so to end the proof we need to check

T

(∫
dxT−1 δ

δϕ‡(x)
(e
iV/~
T
·T X) · T−1 δθ0

δϕ(x)

)
=

∫
dx

δ

δϕ‡(x)
(e
iV/~
T
·T X) ⋆

δθ0
δϕ(x)

,

but this is trivially fulfilled, since θ0 is linear and hence δθ0
δϕ(x) doesn’t depend on fields

anymore.

Using the proposition 5.1.2 and equation (5.35) we obtain a following formula:

{eiV/~
T
·T X,S + θ0}T = {eiV/~

T
·T X,S + θ0}⋆ + i~△

(
e
iV/~
T
·T X

)
. (5.42)

In particular for X = 1 we have:

e
iV/~
T
·T
(
{V, θ0 + S}T +

1

2
{V, V }T − i~△ (V )

)
= {eiV/~

T
, S + θ0}⋆ .

The qme for the free action (0-th order in λ) states that 1
2{S+θ0, S+θ0}T = i~△(S+θ0),

so the qme for the full action S+ θ0+V guarantees that {V, θ0 +S}T + 1
2{V, V }T− i~△

(V ) = 0 and we obtain:

{eiV/~
T

, S + θ0}⋆ = 0 .

Therefore the quantum BV operator can be alternatively written as:

ŝX = e
−iV/~
T

·T
(
{eiV/~

T
·T X,S + θ0}⋆

)
. (5.43)
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We also obtain the formulation of the on-shell gauge invariance of the S-matrix, which is
closer to the one given in [103] (we come back to this discussion in section 5.3.5):

{eiV/~
T

, θ0}⋆ = 0 on shell ,

To summarize, we have shown in this section, that important notions of the BV quanti-
zation have a natural interpretation in the language of paqft. All the steps were done
in a mathematically precise way and expressions we obtained are well defined. The chal-
lenge we have to face right now is the generalization of these structures to more singular
objects. As we already pointed out, the operator △, which plays an important role in
the BV-quantization is not well defined on local vector fields. This pathology results
from the fact, that we were using the non-renormalized time-ordered product ·T . Now we
want to amend it, by means of renormalization. In the next section we argue, that one
can completely avoid any divergences, if one works with the renormalized time-ordered
product from the very beginning.

5.2 Renormalization

5.2.1 Algebra of observables

In the previous section we considered only very regular objects which allowed us to present
the general structure of the quantum theory without going into technical details. Now
we want to extend our discussion to more singular objects, namely elements of Fmc(M)
and Vmc(M). We need here a little bit of distribution theory and not to make things
too complicated at the beginning, we start our discussion with the Minkowski spacetime
M. We review first the results obtained in [30]. The condition (3.19) guarantees that
the ⋆-product will be well defined if we replace i

2∆ with the Wightman 2-point function
i
2∆+∆1 in the definition (5.1), where ∆1 is the symmetric part. We denote this product
by ⋆∆1 . It is related to the previous one by a following transformation:

α∆1

.
= exp(~Γ∆1) : Freg(M)→ Freg(M)

Let us write this relation explicitely:

F ⋆∆1 G
.
= α∆1(α

−1
∆1

(F ) ⋆ α−1
∆1

(G)) . (5.44)

The new star product can now be extended to the elements of Fmc(M). This choice of
the star product is called in the literature the Wick quantization. It turns out however
that it is not optimal in the context of locally covariant field theory. In [105, 106]
the smooth behavior under scaling of all dimensionful parameters at zero was crucial
for the renormalization method and ∆1 doesn’t depend smoothly on mass at m2 = 0.
We can amend this by replacing the mass dependent family (∆1m)m

2 > 0 by a family
of Hadamard distributions H = (Hm)m2∈R, Hm ∈ D′(M2), such that each Hm is a
distributional solution of the Klein-Gordon equation in both arguments, Hm + i∆m/2
satisfies the microlocal spectrum condition (see [152, 28, 25]) and for each test function
f ∈ D(M2), 〈Hm, f〉 is a smooth function of m2. For each such Hm we can define a
corresponding transformation αHm

.
= exp(~ΓHm) : Freg(M)[[~]] → Freg(M)[[~]] and a

star product equivalent to the original one:

F ⋆Hm G
.
= αHm(α

−1
Hm

(F ) ⋆ α−1
Hm

(G)) . (5.45)
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From the mathematical point of view we are already happy with the construction, but
how is it related to more standard approaches used in QFT? Well, it turns out that this is
nothing else, but an algebraic version of the Wick ordering. To see it clearly we need again
a little bit of abstract reasoning. Recall the discussion of topologies we had in section
3.4. We introduced at that point the topology τΞ on the space of microcausal functionals,
which is induced by the Hörmander topology. The space of regular functionals Freg(M)
is dense in Fmc(M) with respect to this topology. One can now equip Freg(M) with
the initial topology with respect to αHm , i.e. the coarsest topology that makes this
map continuous. We denote this topology by τHm and the sequential completion of
Freg(M) with respect to this topology is denoted by Freg(M)

τHm . Different choices of
Hadamard functions lead to equivalent topologies. Now we can consider the following
extension of Freg(M): we take all the sequences (fn) in Freg(M) that converge to an

element lim
n→∞

Fn = F ∈ Fmc(M) and map them back to Freg(M)
τHm with the use of

α−1
Hm

. This way we obtain sequences (α−1
Hm

Fn) that converge in the topology τHm to

elements lim
n→∞

(α−1
Hm

Fn). Let A(m)(M) denote the closure of Freg(M) with respect to all

such sequences. We can think of elements of A(m)(M) as Wick products. This can be
seen from the following example:

Example 5.2.1. Consider a sequence Fn(ϕ) =
∫
ϕ(x)ϕ(y)gn(y − x)f(x) with a smooth

function f and a sequence of smooth functions gn which converges to the δ distribu-
tion in the Hörmander topology. By applying α−1

Hm
we obtain a sequence α−1

Hm
Fn =∫

(ϕ(x)ϕ(y)gn(y − x)f(x) − Hm(x, y)g(y − x)f(f)). The limit of this sequence is an
element of A(m)(M) that can be identified with

∫
: ϕ(x)2 : f(x). N

Note that in even dimensions Hm is not uniquely determined by the conditions above,
but depends on an additional mass parameter µ > 0 (see [56, 102]). The change of µ
amounts to the transition to an equivalent product. The equivalence transformation
between the products ⋆m,µ1 and ⋆m,µ2 is given by the linear continuous isomorphism of
(Freg(M), τHµ1

m
) and (Freg(M), τHµ2

m
) given by

αwµ1,µ2m

.
= exp(~Γwµ1,µ2m

) , (5.46)

where
wµ1,µ2m = Hµ1

m −Hµ2
m , (5.47)

is smooth. As in [30] we can use these intertwining maps to define a projective limit

F
(m)
reg (M) of locally convex topological vector spaces (Freg(M), τHµ

m
).

F(m)
reg (M)

.
= lim←−

µ

(Freg(M), τHµ
m
) =

{
(Fµ)µ>0 ∈

∏

µ∈R
Freg(M)

∣∣∣ Fµ1 = αwµ1,µ2m
(Fµ2), µ1 ≤ µ2

}
.

We equip this space with the initial topology, which by definition is m-dependent, but

µ-independent. Elements of F
(m)
reg (M) may be identified with families (α−1

Hµ
m
(F ))µ>0, F ∈

Freg(M). Again we can take the completion of F
(m)
reg (M) with respect to all the sequences

(α−1
Hµ
m
(Fn))µ>0, such that Fn converges in (Fmc(M), τΞ). We denote this completion by

A(m)(M). We can define a map αHm : A(m)(M)→ Fmc(M) by setting

αHm

(
lim
n→∞

(
α−1
Hµ
m
(Fn)

)
µ>0

)
.
= lim

n→∞
(Fn) ,

where lim
n→∞

(α−1
Hµ
m
(Fn))µ>0 is a generic element of F(m)(M). This map is sequentially

continuous from the definition of the topology τHm . We introduce now a simplified
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notation α−1
Hm

(F )
.
= lim

n→∞
(α−1

Hµ
m
(Fn))µ>0, where lim

n→∞
(Fn) = F ∈ Fmc(M). We can equip

A(m)(M) with a sequentially continuous product ⋆m defined as

α−1
Hm

(F ) ⋆m α−1
Hm

(G)
.
= lim

n→∞
(α−1

Hµ
m
(Fn ⋆Hµ

m
Gn))µ>0 .

The construction we performed here may seem a little bit abstract, but it will safe us
some effort later on, since now the only scale in the algebra is m. Following [30] we define
now the bundle of algebras ⊔

m2∈R
A(m)(M) .

We denote by A(M) the algebra of sections A = (Am)m2∈R of this bundle such that
αH(A), defined as

(αH(A))m
.
= αHm(Am), m

2 ∈ R ,

is a smooth function of m2. Note that αHm(Am) = αHµ
m
((Am)µ) ∈ Fmc(M). By Areg(M)

we denote the subalgebra of A(M) consisting of sections taking values in Freg(M), in
the sense that αHm(Am) ∈ Freg(M). In a similar way we define the subspace Aloc(M)
of A(M), whose elements will provide the possible interaction terms for a quantum field
theory. We also define a subspace Aml(M) consisting of multilocal observables. Star
products ⋆m on A(m)(M) induce a star product on A(M), which we denote by ⋆.

(F ⋆ G)m
.
= α−1

Hm

(
αHm(Fm) ⋆m αHm(Gm)

)
, F,G ∈ A(M) . (5.48)

Functional derivatives on Fmc(M) induce linear mappings on A(M) defined by

〈
δ

δϕ
A,ψ

〉
= α−1

H

〈
δ

δϕ
αHA,ψ

〉
. (5.49)

Following ([30]) we associate to every A ∈ A(M) a compact region (denoted as supp(A)
by abuse of notation) defined as the set

supp(A)
.
= supp(αH(A)) .

We can see that all the structures defined on Fmc(M) can be easily brought to the space
of observables A(M).

5.2.2 Renormalized time ordered product

In the last section we saw that the wave front set of i
2∆ + Hµ

m is such that using the
microlocal spectrum condition [28, 152], the star product ⋆Hµ

m
can be uniquely extended

by sequential continuity to Fmc(M). This allowed us to define the ⋆-product on A(M) by
means of (5.48). The situation for the time-ordered product is more complicated. The
time ordering operator T : Freg(M)[[~]] → A(M)[[~]] can be defined by a family of maps
Hµ
F,m, where Hµ

F,m
.
= i∆D +Hµ

m. Explicitly we can write it as:

(TF )m
.
=
(
α−1

Hm
◦ αHF,m

)
F = αi∆D(F )

Using T we define a time-ordered product on Areg(M)[[~]] by

F ·T G .
= T(T−1F · T−1G)



108 Batalin-Vilkovisky formalism in paqft

This can be also written as:

(α−1

H F ·T α−1

H G)m = α−1

Hm
◦ αHF,m

(
α−1

HF,m
◦ αHm((α

−1

H F )m) · α−1

HF,m
◦ αHm((α

−1

H G)m)
)
=

= α−1

Hµ
m
(F ·Tm,µ G) , (5.50)

where (Fm,µ)µ>0 = α−1

Hµ
m
(F ), F ∈ Freg(M) and similar for G. In the above formula ·Tm,µ

is a product on Freg(M) defined as

F ·Tm,µ G
.
= αHµ

F,m
(α−1

Hµ
F,m

F · α−1

Hµ
F,m

G) .

In contrast to the star product ⋆Hµ
m

this product is not continuous with respect to the
topology τHµ

m
, therefore it cannot be extended to the full space of microcausal function-

als Fmc(M)[[~]]. Nevertheless the n-fold time ordered product ·Tm,µ can be defined for
functionals F1, . . . , Fn ∈ Fmc(M) as long as their supports are disjoint and for such choice
of Fi’s we can define an operator T n

m,µ : Fmc(M)[[~]]⊗n → Fmc(M)[[~]].

T n
m,µ(F1, . . . , Fn) = F1 ·Tm,µ . . . ·Tm,µ Fn ,

These operators on Fmc(M) induce operators T n
H : Fmc(M)[[~]]⊗n → A(M)[[~]] by means

of (5.50), i.e.
T n
H(F1, . . . , Fn) = α−1

H (F1) ·T . . . ·T α−1

H (Fn) ,

for Fi ∈ Fmc(M) with disjoint supports. This is already something, but don’t forget, that
the reason for introducing time-ordered products was implementation of the interaction.
Recall from the formula (5.5) that for the definition of the S-matrix we need to make
sense of expressions like T nH(αH(F )

⊗n), F ∈ Aloc(M). It’s clear that the extension of T n
H

to local observables with disjoint supports is not enough. We need to work a little bit
more, since we want to make sense of the time ordered exponential of local interaction
terms. This is where the most exciting adventure in perturbative quantum field theory
begins. The extension of T nH to arbitrary elements of Floc(M) is the central problem of
renormalization theory. With a similar construction we can also formulate this question
for an arbitrary globally hyperbolic background manifold M . See [25] for details.

Looking from the outside one can get a wrong impression that QFT has some internal
problem, because plenty of divergencies appear everywhere. This is however not the
case. The problem of renormalization can be formulated as a well posed mathematical
question of distributions’ extension. If we are careful enough with defining all our objects,
no divergencies would appear. The extension of TnH can be constructed by means of
the inductive procedure of Epstein and Glaser [59] (developed on the basis of ideas of
Stückelberg [173] and Bogoliubov [20]). There is of course a certain freedom in extending
T n
H to functionals with coinciding supports, but this freedom is well understood and

under control. In causal perturbation theory the choice of time ordering prescriptions
is characterized by the renormalization group in the sense of Stückelberg-Petermann
[56]. Its relation to different notions of renormalization group like the Gell-Mann-Low or
Willson renormalization groups was discussed in [30].

Equipped with powerful tools of distribution theory we can now start our quest to
find the extension of S to elements of Aloc(M). There are some properties of the formal
S-matrix that we want to keep. Here we list some of them, following [30]:

S 1. Causality. S(A+B) = S(A) ⋆ S(B) if supp(A) is later than supp(B).

S 2. Starting element. S(0) = 1, S(1) = id .
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S 3. ϕ-Locality. αH ◦ S(V )(ϕ0) = αH ◦ S ◦ α−1
H (αH(V )

(N)
ϕ0 )(ϕ0) + O(~N+1). This

guarantees that for the computation of a certain coefficient in the ~-expansion of
αH ◦ S(V ), we may replace αH(V )(ϕ) by a polynomial in ϕ (see [30] for details).

S 4. Field Independence. 〈δS(V )/δϕ, ψ〉 = S(1)(V )〈δV/δϕ, ψ〉 , with V ∈ Aloc(M).

The axioms for S can be easily translated to properties of the renormalized time-ordered
products, since

S(F ) =

∞∑

n=0

1

n!
T n
r,H(αH(F )

⊗n) .

Usually the renormalized time ordered products T nr,H are required to fulfill the following
normalization conditions (see for example [103]):

T 1. Starting element. For the lowest order time-ordered products we require T 0
r,H = 0,

T1
r,H = α−1

H .

T 2. Symmetry.The time ordered products are symmetric under a permutation of fac-
tors,

T n
r,H(F1 ⊗ · · · ⊗ Fn) = T n

r,H(Fπ(1) ⊗ · · · ⊗ Fπ(n)) ,
for any permutation π.

T 3. Unitarity. Let T
n
r,H(⊗iFi) = [T n

r,H(⊗iF ∗
i )]

∗ be the antitime-ordered product. Then
we require

T
n
r,H

( n⊗

i=1

Fi

)
=

∑

I1⊔···⊔Ij=n
(−1)n+jT |I1|

r,H

(⊗

i∈I1
Fi

)
⋆ · · · ⋆ T |Ij |

r,H

(⊗

j∈Ij
Fj

)
,

where the sum runs over all partitions of the set n
.
= {1, . . . , n} into pairwise

disjoint subsets I1, . . . , Ij .

T 4. Causal Factorization. If the supports of F1 . . . Fi are later than the supports of
Fi+1, . . . Fn, then we have

T nr,H(F1 ⊗ · · · ⊗ Fn) = T i
r,H(F1 ⊗ · · · ⊗ Fi) ⋆ T n−i

r,H (Fi+1 ⊗ · · · ⊗ Fn) . (5.51)

For the case of 2 factors, this means

T 2
r,H(F1 ⊗ F2) =

{
α−1

H (F1) ⋆ α
−1

H (F2) if supp(F1) & supp(F2);

α−1

H (F2) ⋆ α
−1

H (F1) if supp(F2) & supp(F1).

T 5. Commutator. The commutator of a time-ordered product with a free field is
given by lower order time-ordered products multiplied with functions, namely
[
T n
r,H

( n⊗

i

Fi

)
,Φ(x)

]

⋆

= i~

n∑

k=1

T n
r,H

(
F1 ⊗ . . .

∫
∆(x, y)

δFk
δφ(y)

⊗ . . . Fn
)
, (5.52)

T 6. Field equation. The free field equation is implemented in a Schwinger-Dyson
type equation:

T n+1
r,H

(
δS0
δφ(x)

⊗
n⊗

i=1

Fi

)
=
∑

i

T n
r,H

(
F1⊗· · ·

δFi
δφ(x)

⊗· · ·Fn)
)
+

δS0
δφ(x)

T nr,H

(
F1⊗· · ·Fn

)

(5.53)
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Furthermore one can impose conditions like scaling, smoothness and fulfilling the action
Ward Identity. Time ordered products fulfilling those properties were already constructed
for the scalar field [25], Dirac fields [44, 94] and Yang-Mills theory [103]. The ambiguity
in defining maps T n

r,H is described by the Stückelberg-Petermann Renormalization Group
R which is the group of analytic maps of Aloc(M)[[~]] into itself with the properties:

Z 1. Z(0) = 0,

Z 2. Z(1)(0) = id,

Z 3. Z = id +O(~),

Z 4. Z(A+B + C) = Z(A+B)− Z(B) + Z(B + C) if supp(A) ∩ supp(C) = ∅,

Z 5. ϕ-locality, see [30] for details,

Z 6. δZ/δϕ = 0.

The main theorem of renormalization [56, 30] states that:

Theorem 5.2.2. Given two S-matrices S and Ŝ satisfying the conditions Causality,
Starting Element, ϕ-locality, and Field Independence, there exists a unique Z ∈ R such
that

Ŝ = S ◦ Z . (5.54)

Conversely, given an S-matrix S satisfying the mentioned conditions and a Z ∈ R, Eq.
(5.54) defines a new S-matrix Ŝ satisfying also these conditions.

If S is replaced by Ŝ = S ◦ Z with a renormalization group element Z, then for an
observable F ∈ A(M) we obtain

ŜV (F ) = SZ(V )(ZV (F ))

where ZV (F ) = Z(V + F )− Z(V ). From the additivity of Z it follows that

ZV (F ) = ZV ′(F ) if supp(V − V ′) ∩ suppF = ∅ . (5.55)

The relation (5.55) implies that

suppZV (F ) ⊂ suppF . (5.56)

After this short review of the standard methods of causal perturbation theory we move
on to the next section, where some new results concerning the renormalized time-ordered
product are proven.

5.2.3 Associativity of the renormalized time-ordered product

Up to now the renormalized time-ordered product was not an algebraic product defined
as a binary operation on the suitable domain. Instead the family of multilinear maps
T n
r,H was constructed. With this formulation it was difficult to prove the associtivity. In

the present work we solve this problem and prove that the renormalized time-ordered
product is an associative product on a suitable subspace of A(M)[[~]]. We show that
T n
r,H : Floc(M)[[~]]⊗n → A(M)[[~]] can be pulled back to a map Tr,H : F(M)[[~]] →
A(M)[[~]] and therefore the renormalized time ordered product can be really treated as
a binary operation on the space Tr,H(F(M))[[~]].
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Theorem 5.2.3. The renormalized time-ordered product ·Tr,H is an associative product
on Tr,H(F(M)) given by

F ·Tr,H G
.
= Tr,H(T

−1

r,HF · T−1

r,HG) ,

where Tr,H : F(M)[[~]] → Tr,H(F(M))[[~]] ≡ DTr(M) is defined by means of the commuta-
tive diagram:

F(M)[[~]] S•F(0)
loc(M)[[~]]

A(M)[[~]]

β

Tr,H ⊕nT nr,H

In the above diagram S•F(0)
loc(M) denotes the space of symmetric tensor powers of local

functionals satisfying F (0) = 0 and β is the inverse of multiplication m.

Proof. To prove the theorem it remains to construct the map β : F(M) → S•F(0)
loc(M)

which is the inverse of the multiplication m and provides the factorization of a mul-
tilocal functional into local ones. Before we do it, we make a following observa-
tion: let F1, ..., Fn ∈ Floc(M), F = m(F1, ..., Fn) = F1 · ... · Fn and assume that
F1(0) = ... = Fn(0) = 0, then:

F (ϕ) =

1∫

0

〈
F

(1)
1 (λ1ϕ), ϕ

〉
dλ1 · ... ·

1∫

0

〈
F (1)
n (λnϕ), ϕ

〉
dλn .

Since a derivative of a local functional is a smooth section, we can change the order of
the integration and write the above formula as:

F (ϕ) =

∫
dx1...dxn

1∫

0

d~λF
(1)
1 (λ1ϕ)(x1) · ... · F (1)

n (λnϕ)(xn)ϕ(x1)...ϕ(xn) , (5.57)

where the integration is performed with respect to λ1,. . . , λn from 0 to 1. We can
symmetrize the expression on the right hand side with respect to x1,. . . , xn and using
the fact that all the factors are local we can write F as integration of the pullback of a
function on the jet bundle:

F (ϕ) =

∫
d~x ((j∞ϕ)n)∗f(x1, ..., xn)ϕ(x1)...ϕ(xn) ,

where j∞ϕ denotes the pullback by the jet prolongation of ϕ ∈ C∞(M) and f is a smooth
symmetric function on the jet bundle. One can picture it on the diagram:

J∞(M←M× R)⊕n Mn × R

Mn

f

(j∞ϕ)⊕n

((j∞ϕ)n)∗f
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Knowing f one can now define a functional F̃ ∈ SnFloc(M) by setting:

F̃ (ϕ1, ..., ϕn)
.
=

∫
d~x j∞~ϕ ∗f(x1, ..., xn)ϕ1(x1)...ϕn(xn) , (5.58)

where j∞~ϕ ∗ is the symmetrized pullback, i.e. ~ϕ
.
= 1

n!

∑
π∈Pn

(ϕπ(1), ..., ϕπ(n)). It follows

from the construction that F̃ (ϕ, ..., ϕ) = F (ϕ). Therefore the problem of finding the
factorization map β : F(M) → S•Floc(M) can be reduced to the construction of the jet
bundle function f for a given multilocal functional F .

Let F ∈ F(M). Since F(M) contains only finite sums of products of local functionals,
there exists a maximal k > 0 such that ∃ϕ ∈ E(M) for which

〈
F (k)(ϕ), ϕ1 ⊗ ...⊗ ϕk

〉
6=

0 for ϕ1 ⊗ ... ⊗ ϕk with pairwise disjoint supports of the corresponding infinite jets
j∞(ϕ1), .., j

∞(ϕk). Consider a functional:

1∫

0

d~λ
〈
F (k)(λ1ϕ1 + ...+ λkϕk), ϕ1 ⊗ ...⊗ ϕk

〉
. (5.59)

Now we use the fact that F is multilocal, so the only term of F (k)(λ1ϕ1+ ...+λkϕk) that
contributes to (5.59) is a smooth section. We denote this test section by g(λ1ϕ1 + ... +
λkϕk). Using the theorem of Fubini-Tonelli we can now change the order of integration
in (5.59) and write it as:

∫
dx1...dxk

1∫

0

d~λg(λ1ϕ1 + ...+ λkϕk)(x1, ..., xk)ϕ1(x1)...ϕk(xk) (5.60)

Now we want to show that Gx1,...,xk(ϕ1, ..., ϕk) =
1∫
0

d~λg(λ1ϕ1 + ... +

λkϕk)(x1, ..., xk)ϕ1(x1)...ϕk(xk) depends only on jets of ϕ’s at points x1, ..., xk.
We pick a test section h infinitely flat at x1, ..., xk and calculate the change of
Gx1,...,xk(ϕ1, ..., ϕk):

Gx1,...,xk(ϕ1, ..., ϕk)−Gx1,...,xk(ϕ1 + h, ..., ϕk) =

=

1∫

0

dµ

1∫

0

d~λg(1)(λ1(ϕ1 + µh) + ...+ λkϕk)(x1, ..., xk)[h]ϕ1(x1)...ϕk(xk) =

=

1∫

0

dµ

1∫

0

d~λ

∫
dzg(1)(λ1(ϕ1 + µh) + ...+ λkϕk)(x1, ..., xk, z)h(z)ϕ1(x1)...ϕk(xk)

From the maximality of k follows that g(1)(λ1(ϕ1 + µh) + ...+ λkϕk)(x1, ..., xk , z) differs
from 0 only if z = xi for some i ∈ 1, ..., k, but then h(z) = 0, so: Gx1,...,xk(ϕ1, ..., ϕk) −
Gx1,...,xk(ϕ1 + h, ..., ϕk) = 0 and we conclude that Gx1,...,xk(ϕ1, ..., ϕk) depends only on
the jets of the arguments at points x1, ..., xk. We can write now (5.60) as:

∫
d~x

1∫

0

d~λg(j∞x1 (λ1ϕ1 + ...+ λkϕk), ..., j
∞
xk
(λ1ϕ1 + ...+ λkϕk))(x1, ..., xk)ϕ1(x1)...ϕk(xk)
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Note that from the assumption on functions ϕ1,. . . , ϕk follows that if ϕi(xi) 6= 0, then
j∞xjϕ = 0 for j 6= i. This allows us to rewrite the above formula as:

∫
d~x

1∫

0

d~λ g̃(j∞x1 (λ1ϕ1), ..., j
∞
xk
(λkϕk))(x1, ..., xk)ϕ1(x1)...ϕk(xk)

We define a jet bundle function f by:

f(j∞x1(ϕ1), ..., j
∞
xk
(ϕk))(x1, ..., xk)

.
=

1∫

0

d~λ g̃(j∞x1 (λ1ϕ1), ..., j
∞
xk
(λkϕk))(x1, ..., xk)

Locally this function depends only on the finite jets, so it is just a finite dimensional func-
tion and from the surjectivity of the jet projection follows that it is uniquely determined
by the above definition.

It remains to extend f to arbitrary arguments. Note that g is a smooth compactly
supported function on the jet space. In particular it is bounded, together with all its
derivatives. Therefore the function f and its derivatives are bounded as well and smooth
outside the thin diagonal. We can therefore extend f by the smooth extension to a
smooth function on the whole jet bundle. Using f we define F̃k by means of (5.58). Now
we take F − F̃k. This functional has now maximal degree l < k and we can now repeat

all the steps to define (
˜
F − F̃k)l. Repeating this until degree 0 we construct inductively

the desired map β. It follows from the construction that it is indeed the right inverse of
the multiplication m. To show that it is also the left inverse it remains to show that m

is injective on S•F(0)
loc(M). Let F =

n⊕
k=0

Fk ∈ S•F(0)
loc(M) and m(F ) = 0. It follows that

also the n-fold derivative of m(F ) is equal to 0. Let us take x1, . . . , xn ∈ M such that
xi 6= xj for i 6= j. Then it follows that

δn(m(F ))

δϕ1(x1) . . . δϕn(xn)
(ϕ) = n!

δnFn(ϕ, . . . , ϕ)

δϕ1(x1) . . . δϕn(xn)
= 0 .

We know from the assumption that Fn depends on ϕ only via its jet prolongation.
Therefore we can replace ϕ’s in the argument of Fn by different functions ϕ1 . . . ϕn such
that j∞xi (ϕi) = j∞xi (ϕ), i = 1, . . . , n. Let us now take arbitrary ϕ1, . . . , ϕn and define a

smooth partition of unity 1 =
n∑
i=1

χi, where χi(xi) = 1 and suppχi ∩ {xj ; j 6= i} = ∅.

Now we set ϕ =
n∑
i=1

χiϕi and it follows that:

δnFn(ϕ1, . . . , ϕn)

δϕ1(x1) . . . δϕn(xn)
= 0 . (5.61)

This holds for arbitrary field configurations ϕ1, . . . , ϕn and for distinct points xi. From
the assumption follows that the only potentially non-vanishing contribution to the above
derivative is smooth and bounded in xi. This is exactly the smooth function that appears
on the right hand side of the formula (5.57). By smooth extension we can conclude from
(5.61) that this function vanishes everywhere and therefore Fn = 0. A similar argument

can be used for Fn−1 and if follows that F = 0, hence m is injective on S•F(0)
loc(M) and

β is its inverse.
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The existence of the map β allows us to treat the renormalized time ordered product
·Tr,H as a binary operation on the space Tr,H(F(M)).

F ·Tr,H G
.
= Tr,H(T

−1

r,HF · T−1

r,HG), F,G ∈ Tr,H(F(M)) .

The associativity can be now easily shown with the above formula, since:

A ·Tr,H (B ·Tr,H C) = Tr,H(T
−1

r,HA · T−1

r,H ◦ Tr,H(T−1

r,HB · T−1

r,HC)) =

= Tr,H(T
−1

r,HA · T−1

r,HB · T−1

r,HC) = (A ·Tr,H B) ·Tr,H C . (5.62)

Note that ·Tr,H is well defined not on the full A(M), but on a smaller space (which
is invariant under the renormalization group action) namely DTr(M)

.
= Tr,H(F(M))[[~]].

Similarly as in section 5.1 we can use the renormalized time ordering operator Tr,H to
bring classical structures to the quantum world. To avoid the notational inconvenience,
we drop from now on the subscript H, so Tr,H will be now written as Tr. In particular we
can define the time ordering of multilocal vector fields. Let X ∈ V(M), then we define

TrX
.
=

∫
dxTr(X(x))

δ

δϕ(x)
. (5.63)

Since ·Tr is now defined as a full product on DTr(M), we can repeat the reasoning from
section 5.1 and define the Tr-transformed Koszul operator with the renormalized time-
ordered product in place of ·T . Let S ∈ Floc(M) be the free action functional. The
renormalized time ordered Koszul map is defined as

δTrS
.
= Tr ◦ δT−1S ◦ T−1

r

Clearly it is a well defined object and no divergences are present. We can also define the
time-ordered antibracket:

{X,Y }Tr = Tr{T−1
r X,T−1

r Y }

Definitions introduced above allow us to provide a mathematically rigorous interpre-
tation of the renormalized quantum BV operator and the renormalized qme. Before we
turn to this task we want to remark on the problems encountered in other approaches
to the BV quantization. Note that the source of divergences in expression (5.20) is the
operator △, which is ill defined on local vector fields. In the standard approach this is
solved by using an appropriate regularization scheme. Instead we argue, that this prob-
lem can be completely avoided if we work with renormalized time ordered products Tr

from the very beginning. We shall follow now all the steps outlined in 5.1 and see what
is changing when we take the renormalization into account.

5.3 The renormalized quantum BV operator and the quan-

tum master equation

Now we have all the tools needed to introduce the interacting renormalized quantum BV
operator. We start with the classical algebra BV(M) underlying the BV-complex. It
consists of functionals (elements with #ta = 0) and derivations (#ta > 0). The main
difference with respect to the scalar case is the appearance of a grading. This implies
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that axioms for the time ordered products have to be modified by introducing appropriate
sign rules. For example time ordered products of ghosts are antisymmetric instead of
symmetric. Time ordered products of graded derivations are defined in the same way as
time-ordered products of vector fields, i.e. by means of (5.63).

With these considerations in mind we can now set to define the renormalized BV
operator. We can do it in a similar way to the non-renormalized case by using the
expression (5.37) or (5.43) with T replaced by Tr, namely:

ŝ(X) = e
−iV/~
Tr

·Tr
((

δ

δϕ‡(x)
(e
iV/~
Tr
·Tr X)

)
⋆

δS

δϕ(x)

)
=

= e
−iV/~
Tr

·Tr
(
{eiV/~

Tr
·Tr X,S}⋆

)
, (5.64)

where V,X ∈ Tr(BVloc(M)). To understand better this expression we shall use the
anomalous Master Ward Identity (mwi) [23, 52]. In our formalism it takes the following
form:

Proposition 5.3.1. Let X ∈ Tr(Vloc(M)), F, S ∈ Tr(Floc(M)), then it holds:

∫
dx(e

iF/~
Tr
·Tr X(x)) ⋆

δS

ϕ(x)
= e

iF/~
Tr
·Tr ({X,F + S}Tr −△F (X)) , (5.65)

where △F (X) is the anomaly3. It is of order O(~) and can be written in the form

△F (X) =
∞∑
n=0
△(n)(F⊗n;X), where each △(n) is local, linear in X and △(n)(F⊗n;X) = 0

if suppX ∩ suppF = ∅.

Proof. The proof bases on [23, 52, 103]. Firstly we rewrite (5.65) in a slightly different
form:

e
iF/~
Tr
·Tr △̄F (X) =

∫
dx

δS

ϕ(x)
· (eiF/~

Tr
·Tr X(x)) − δTrS (e

iF/~
Tr
·Tr X) , (5.66)

From (5.66) it is clear that △̄F (X) describes the difference between the classical ideal
generated by the equations of motion and the image of the time-ordered Koszul operator.
Equivalently one can write it as:

△̄F (X) = e
−iF/~
Tr

·Tr
∫
dx

δS

ϕ(x)
· (eiF/~

Tr
·Tr X(x))− δTrS (X) . (5.67)

In order to show that △̄F (X) is local we expand equation (5.66) in powers of F . It
follows that △̄(0)(1;X) = −δS(X) and for n > 0 we obtain:

△̄(n)(F⊗n;X) =
( i
~

)n ∫
dxFn,Tr ·TrX(x)· δS

ϕ(x)
−

n∑

k=1

( i
~

)k(n
k

)
F k,Tr ·Tr △̄(n−k)(F⊗(n−k);X) ,

where Fn,Tr
.
= F ·Tr · · · ·Tr F︸ ︷︷ ︸

n

. From this formula it is already clear that all the operators

△̄(n)(F⊗n;X) are well defined. It remains to show that they are local. To this end we
consider functionals F1, . . . , Fn such that supports of F1, . . . , Fk are later than supports

3In the original paper [23] the anomaly term is denoted by △X(F ). We use an opposite convention
since it resembles more the notation used for the Laplacian operator △ defined on the regular vector
fields.
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of Fk+1, . . . , Fn and the support of X. The proof will be done by induction. Assume
that the hypothesis holds up to order n− 1, so △̄(m)(F1 ⊗ . . .⊗ Fm;X) = 0, m ≤ n− 1.
We want to show that

△̄(n)(F1 ⊗ . . .⊗ Fn;X) =
( i
~

)n ∫
dxF1 ·Tr . . . ·Tr Fn ·Tr X(x) · δS

ϕ(x)
+

−
∑

I⊂n
I 6=∅

( i
~

)|I|(∏

i∈I

Tr
Fi

)
·Tr △̄(n−|I|)(⊗

j≤n
j/∈I

Vj ;X
)
= 0 ,

where
∏
i∈I

Tr is the product with respect to ·Tr , indexed by I. Now we can use the causal

factorization property (5.51) to both terms on the r.h.s. of the above formula. It follows
from the induction hypothesis that

△̄(n)(F1⊗. . .⊗Fn;X) =
( i
~

)n
F1 ·Tr . . .·Tr Fk⋆

(∫
dxFk+1 ·Tr . . . ·Tr Fn ·TrX(x)· δS

ϕ(x)

)
+

−
( i
~

)k
F1 ·Tr . . . ·Tr Fk ⋆

( ∑

J⊂{k+1,...,n}

( i
~

)|J |(∏

i∈J

Tr
Fi

)
·Tr △̄(n−k−|J |)( ⊗

k<l≤n
l/∈J

Fl;X
))

=

( i
~

)k
F1 ·Tr . . . ·Tr Fk ⋆

(( i
~

)n−k ∫
dxFk+1 ·Tr . . . ·Tr Fn ·Tr X(x) · δS

ϕ(x)
+

−
∑

J⊂{k+1,...,n}
J 6=∅

( i
~

)|J |(∏

i∈J

Tr
Fi

)
·Tr △̄(n−k−|J |)( ⊗

k<l≤n
l/∈J

Fl;X
)
−△̄(n−k)(Fk+1⊗. . .⊗Fn;X)

)
=

=
( i
~

)k
F1 ·Tr . . .·TrFk⋆

(
△̄(n−k)(Fk+1⊗. . .⊗Fn;X)−△̄(n−k)(Fk+1⊗. . .⊗Fn;X)

)
= 0 .

In the first term we also made use of the identity
∫
dxG⋆

(
Y (x) · δSϕ(x)

)
=
∫
dx
(
G⋆Y (x)) ·

δS
ϕ(x)

)
for arbitrary Y ∈ Vmc(M), G ∈ Fmc(M). This proves the induction step. We can

now separate from △̄F the contribution from {X,F}Tr , which is also local and vanishes
if X and F have disjoint supports. This way we obtain △F (X) = △̄F (X)+ {X,F}Tr . It
remains to proof that △F (X) is of order O(~). We use the argument of [23, 52, 57] that
bases on the fact that mwi is satisfied in the classical theory. Firstly we can multiply

both sides of the equation (5.65) with the inverse of e
iF/~
Tr

with respect to the ⋆-product:

(e
iF/~
Tr

)−1,⋆ ⋆ e
iF/~
Tr
·Tr δTrS (X) =

∫
dx

δS

ϕ(x)
· (eiF/~

Tr
)−1,⋆ ⋆ Tr(e

iF/~ ·X(x))+

− (e
iF/~
Tr

)−1,⋆ ⋆ e
iF/~
Tr
·Tr ({X,F}Tr −△F (X)) (5.68)

Using the Bogoliubov’s formula relating the time-ordered product with the retarded

product RF (G) = (e
iF/~
Tr

)−1,⋆ ⋆ (e
iF/~
Tr
·Tr G) we obtain:

RF (δ
Tr
S (X) + {X,F}Tr +△F (X)) =

∫
dx

δS

ϕ(x)
·RF (X(x)) . (5.69)

This is the mwi expressed in terms of retarded products. It was shown in [57, 23] that
in the classical theory (5.69) holds without the anomaly, so △F (X) must be of order
O(~).
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This identity can be also easily generalized for the case F ∈ BVloc(M) (see [103] for
details). Let us take the interaction of the form F = F0 +

∫
dxF1(x)

δ
δϕ(x) with an even

ghost number. It follows from (5.65) that:

ŝe
iF/~
Tr

= e
iF/~
Tr
·Tr ({F,F + S}Tr −△F (F1)) =

= e
iF/~
Tr
·Tr
(
1

2
{F + S,F + S}Tr −△F (F1)

)
,

Comparing this formula with (5.34) we see that mwi provides us with means to formulate
the renormalized quantum master equation . The divergent term △ is now replaced
with the finite “anomaly” term. To keep a uniform notation we can trivially extend
△(.)(F0) to the case when F0 is an element with #ta = 0. We just set △(.)(F0) = 0. We
obtain the renormalized qme in the form:

1

2
{F + S,F + S}Tr = △F (F ) . (5.70)

Just like in the non-renormalized case, fulfilling the qme (5.70) is equivalent to the
invariance of the extended S-matrix under the quantum Koszul operator. This guarantees
that the equation (5.38) is fulfilled also in the renormalized case, i.e.:

{., S}⋆ ◦RF = RF ◦ ŝ , (5.71)

where RF (G) = (e
iF/~
Tr

)−1,⋆ ⋆ (e
iF/~
Tr
·Tr G). We see that the interpretation of ŝ as the

RF -transformed {., S}⋆ carries over also to the renormalized theory.
Using (5.70) we obtain for an arbitrary element TrX ∈ Tr(BV(M)) a following simple

expression for the renormalized quantum BV-operator:

ŝX = {X,F + S}Tr −△F (X) .

We want to stress once again that in the construction we performed no divergences
appear in the intermediate steps, since we work all the time with well defined objects,
i.e. renormalized time-ordered products Tr. It is maybe a good moment to stop for a
while and think back about the guiding principle of the paqft. By going to a little bit
abstract level we got a fresh look at the BV quantization. We used the path integral
approach only as a guideline and an heuristic principle to relate abstract constructions
with objects commonly used in practical calculations. The main technical tool of our
approach is the theory of distributions and in particular microlocal analysis. By using
these mathematical methods one can formulate the renormalization as the distributions’
extension problem. In the same spirit we defined the BV operator and the qme first
on regular objects and then we extended them consistently to more singular ones. The
ambiguity involved in this process is just the well understood renormalization freedom
resulting from extension of time-ordered products to functionals with coinciding supports.
The definition of qme we provided contains in place of a singular operator △, a finite
expression, which is commonly called the anomaly term of the anomalous master Ward
identity. Clearly the appearance of △F (F ) in equation (5.70) is expected, since the
same structure was present in case of the non-renormalized products. From this point
of view we don’t speak of any “anomalous” behavior here. Moreover the term △F (X)
in mwi is just the reflection of the fact that certain structures transform nontrivially if
we go from the classical to the quantum case. The appearance of such behavior is not
surprising at all. Also the fact that certain classical symmetries cannot be recovered in
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the quantum case is quite natural. Indeed, it is rather exceptional, that some of them
can be obtained. Therefore we shouldn’t be too much worried about the fact, that the
quantum master equation differs from the classical one. Instead we will now take a closer
look at the nature of the anomaly term and try to understand it better, by formulating
certain consistency conditions.

First we note that in equation (5.64) the star product with δS
δϕ(x) or δS

δϕ‡(x)
can be also

replaced by the pointwise product and therefore:

{{eiV/~
Tr
·Tr X,S}⋆, S}⋆ = 0

This implies that:
ŝ2(X) = 0

From this condition and the classical master equation (4.46) for S + V it follows that

{△V (X), V + S}Tr +△V ({X,V + S}Tr) +△V (△V (X)) = 0

Note that {., V +S}Tr is just the classical BV operator s = {.,T−1
r (V +S)} transported to

the quantum algebra by means of Tr. Therefore, if T−1
r X is invariant under s, then also

{X,V + S}Tr = 0 and we obtain a condition analogous to the Wess-Zumino consistency
condition [187]:

{△V (X), V + S}Tr = −△V (△V (X)) (5.72)

5.3.1 Quantum field theory on globally hyperbolic spacetimes

One of the great advantages of the algebraic formalism is the relatively simple generaliza-
tion from M to general globally hyperbolic spacetimes M ∈ Obj(Loc). In this section we
recall basic definitions and theorems concerning quantum field theory on curved space-
times, following [29]. Construction of the quantum algebra performed in section 5.2.1 is
done in a similar way, but one has to choose a reference Hadamard state ω. This doesn’t
affect the algebraic structure, since the resulting quantum algebras are ∗-isomorphic.
Also Wick products can be constructed as in section 5.2.3, but there is an additional
renormalization freedom in defining them (i.e. additional freedom in constructiong T1

r,H).
The detailed discussion of this fact is provided in [25, 104]. An abstract quantum algebra
A(M) assigned in this way to a spacetime M has to fulfill the axioms of locally covariant
quantum field theory postulated in [29]. The structure is similar to the classical case
discussed in section 3.3. Now the category of observables is the category of ∗-algebras:

Obs Obj(Obs): topological ∗-algebras

Morphisms: continuous ∗-homomorphisms

A locally covariant quantum field theory A is defined to be a covariant functor
between the categories Loc and Obs satisfying the properties of causality (A⊗ is a
tensor functor) and the time-slice-axiom. In the framework of locally covariant quantum
field theory a concept of a field also needs generalisation. Following [29] we define a
locally covariant quantum field Φ as a natural transformation between the functors D

and A. This means, that to any isometric embedding χ : M −→ N it associates the
following commutative diagram:

D(M1)
Φ(M1)−−−−→ A(M1)

χ∗

y
yαχ

D(M2)
Φ(M2)−−−−→ A(M2)
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where χ∗ is the push forward under D. Clearly the field Φ ≡ (ΦM )M∈Loc has the
following covariance property:

Aχ ◦ ΦM1 = ΦM2 ◦ χ∗ . (5.73)

It was shown in [29] that local Wick polynomials are examples of such locally covari-
ant quantum fields if certain cohomological condition is fulfilled. We recall briefly this
argument here. The enlarged local algebras formed by the Wick polynomials defined in
[25] can be constructed with quasifree Hadamard states ω of the free field over globally
hyperbolic spacetimes. It can be proved that it satisfies the condition of local covariance.
However, it was shown in [29, 104] that the Wick polynomials : ϕk :ω themselves are in
general not locally covariant quantum fields in the sense of the above definition. Never-
theless construction of local Wick monomials is possible along the lines of [29]. Following
this reference we give here an example of the construction of the Wick-square.

Example 5.3.2. Let ω = ω(M ′,g′) and ω′ = ω′
(M ′,g′) be two quasifree Hadamard states

over the spacetime (M ′, g′).Then there is a smooth function Bω,ω′ on M ′ such that
:Φ2 :ω (x

′)− :Φ2 :ω′ (x′) = Bω,ω′(x′) and the covariance and cocycle condition

Bω,ω′ +Bω′,ω′′ +Bω′′,ω = 0 .

are satisfied. The problem of constructing locally covariant Wick monomials can be now
reduced to finding a family of smooth functions fω(M′,g′)

∈ C∞(M ′) that trivialize the
above cocycle, i.e.

Bω,ω′(x′) = fω(x
′)− fω′(x′) , x′ ∈M ′ .

If this cohomological problem can be solved, then a locally covariant Wick-square can be
defined by setting : Φ2 :(M,g) (x) = : Φ2 :ω(M,g)

(x) − fω(M,g)
(x) for an arbitrary quasifree

Hadamard state ω(M,g) over (M,g). It was shown in [29] that the solution to this coho-
mological problem is provided by Hω, the smooth, non-geometrical term of the two-point
function of a quasifree Hadamard state ω, i.e. fω(x) = Hω(x, x) , x ∈M . N

The notion of locally covariant quantum fields recalled here agrees also with the
notion used by Hollands and Wald [104, 105].

5.3.2 Algebraic adiabatic limit

In the previous section we discussed how the free field theory can be formulated on
generic spacetimes M ∈ Obj(Loc). Now it’s time to introduce the interaction. We will
review now basic definitions and theorems from locally covariant quantum field theory,
which will be useful later on in the context of the qme. The main point of this section is
to go one level of abstraction further and introduce the interaction on the level of natural
Lagrangians. In the spirit of locally covariant quantum field theory also the S-matrix
and the renormalization group can be understood in this setting. Recall that in the
present framework Lagrangians themselves are natural transforamations and therefore,
it is justified to ask, how the renormalization group acts on such objects. Besides, we have
already shown in section 4.4.4 that the right framework for the formulation of the classical
master equation involves the notion of natural transformations. Therefore one expects
that also the qme should be investigated in this context. Moreover the formulation in
terms of natural Lagrangians allows us to take the so called algebraic adiabatic limit.
The construction provided here follows [30] and is similar to the classical one, which we
recalled in section 3.7. The only difference lies now in underlying categories.
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Definition 5.3.3. A generalized Lagrangian L is a natural transformation between func-
tors D and Aloc, both seen as functors into the category of topological spaces (we dropped
the linearity condition!), satisfying:

• supp(L(f)) ⊂ supp(f) ;

• L(0) = 0;

• L(f + g + h) = L(f + g)− L(g) + L(g + h) , if supp(f) ∩ supp(h) = ∅ ;

Just like in the classical case (section 3.2) we define the action S to be an equivalence
class of Lagrangians S(L) in the sense of (3.5). We recall, that the proposition 6.2 in [30]
states that the space of generalized Lagrangians is invariant under the action L 7→ Z ◦L
of the renormalization group, Z ∈ R. Moreover, if L ∼ L′ in the sense of (3.5), then the
same holds for Z ◦ L and Z ◦ L′, so the renormalization group has a well defined action
on the space of actions (equivalence classes of Lagrangians). We set

ZSM (L)(A) = ZLM (f)(A)

with f ≡ 1 on a neighbourhood of suppA. By the support properties of L and by
(5.56) the right hand side does not depend on f . Let O be a relatively compact open
subregion of spacetime M . The abstract algebra of observables associated to O should
be independent of an interaction swiched on outside of O. Let us define

VS1(O)
.
= {V ∈ Aloc(M) | supp(V − L1M (f)) ∩ O = ∅, if [L1] = S1 and f ≡ 1 on O} ,

Note hat ZV (F ) = ZS1(F ) if V ∈ VS1(O) and suppF ⊂ O and moreover

V ∈ VS1(O)⇔ Z(V ) ∈ VZ(S1)(O) ,

We shall use the notation Z(S1) for expressing the equivalence class of the transformed
Lagrangian Z(L1). The relative S-matrix in the algebraic adiabatic limit is defined by

SOS1
(F ) = (SV (F ))V ∈VS1

(O)

for F ∈ A(M) with suppF ⊂ O. The S-matrix defined this way is a covariantly constant
section in the sense that for any V1, V2 ∈ VS1(O) there exists an automorphism β of A(M)
such that

β(SV1(F )) = SV2(F ) ∀F ∈ Aloc(M) , suppF ⊂ O .

Compare this with the classical structure defined in section 3.7. The interpretation of
SOS1

(F ) as the algebraic adiabatic limit is justified, since the abstract algebra generated
by SV (F ) , suppF ⊂ O is independent of the choice of V ∈ VS1(O). The interacting
local algebra AS1(O) of observables in the algebraic adiabatic limit is generated by the
elements SOS1

(F ), suppF ⊂ O. This assignment can be made into a covariant functor. Let
χ :M → N be an isometric embedding, then the embedding AS1χ : AS1(M) →֒ AS1(N)
is induced by AS1χ (SMS1

(F )) = SNS1
(F ).

Now, following [30] we define the action of the renormalization group on the level
of natural transformations. We want to see how the S-matrix in the adiabatic limit is
behaving under the renormalization. Let Z ∈ R and Ŝ = S ◦ Z. Then

ŜOS1
(F ) = (ŜV (F ))V ∈VS1

(O) = (SZ(V )(ZV (F )))V ∈VS(O) = SOZ(S1)
(ZS1(F )) .

The renormalization group flow on the level of natural Lagrangians can be understood
by means of the following theorem [30]:
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Theorem 5.3.4 (Algebraic Renormalization Group Equation). Let ÂS1(O) and AS1(O)
denote the algebra of observables obtained by using Ŝ and S, respectively. The renormal-
ization group element Z ∈ R induces an isomorphism αZ = (αO

Z) of the nets,

αO
Z : ÂS1(O)→ AZ(S1)(O) , (5.74)

such that ιO2O1 ◦ αO1
Z = αO2

Z ◦ ι̂O2O1 for O1 ⊂ O2. The isomorphism is given by

αO
Z(Ŝ

O
S1
(F )) = SOZ(S1)

(ZS1(F )) . (5.75)

In particular, if L and Z(L) induce the same interaction, αZ is an automorphism.

5.3.3 Quantum master equation in the algebraic adiabatic limit

The idea to generalize the renormalization group to the level of natural transformations
may seem a little bit abstract at the beginning. It is however very useful, if we want
to have control on the cutoff needed to localize the interaction. In this section we will
show that also the quantum master equation appears naturally in this setting. The
idea is similar to the classical case discussed in 4.4.4. Working on the level of natural
transformations we avoid problems with boundary terms arising from the cutoff function.
The interpretation of the qme which we provide here is new and wasn’t discussed in the
literature before.

Let S0 be the free action and S1 the interaction term. Both are now to be understood
as equivalence classes of natural transformations. The quantum BV operator is defined
as

ŝ(X) = e
−iS1M (f1)/~
Tr

·Tr
(
{eiS1M (f1)/~

Tr
·Tr X,S0M (f)}⋆

)
, (5.76)

where suppX ⊂ O and f, f1 ≡ 1 on O. The quantum master equation is a statement
that the S-matrix in the algebraic adiabatic limit is invariant under the quantum BV
operator, i.e.:

supp
(
e
−iS1M (f1)/~
Tr

·Tr
(
{eiS1M (f1)/~

Tr
, S0M (f)}⋆

))
⊂ suppdf ∪ suppdf1 .

Using mwi we can see that this expression is again an element of Aloc(M), so the condition
above can be also formulated on the level of natural transformations:

e
−iS1/~
Tr

·Tr
(
{eiS1/~

Tr
, S0}⋆

)
∼ 0 , (5.77)

This is the extended quantum master equation. We can write it in a more explicit form
using (5.65). Note that the anomaly term △S1M (f)(S1M (f)) is a natural transformation
as well, so (5.77) is equivalent to:

1

2
{S0 + S1, S0 + S1}Tr −△S1(S1) ∼ 0 . (5.78)

Note the resemblance of this condition to the classical master equation cme (4.46). The
quantum BV operator can be now written as

ŝX = {X,S0M (f) + S1M (f)}Tr −△S1M (f)(X) ,

where f ≡ 1 on the support of X ∈ Tr(BV(M)). Now we want to see how the qme and
the quantum BV operator are transforming under the renormalization group. We start
with the qme.
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Proposition 5.3.5. Let L1 be a natural Lagrangian that solves the qme (5.77) for the
renormalized time-ordered product Tr. Let Z ∈ R be the element of the renormaliza-
tion group, which transforms between the S-matrices corresponding to Tr and Tr

′, i.e.

e
L1M (f)
Tr

= e
Z(L1M (f))
Tr

′ . Then Z(L1) solves the qme corresponding to Tr
′.

Proof. From the equation (5.77) follows that there exists a local element A(f, f1) ∈
Aloc(M), depending on test functions f , f1, such that supp(A(f, f1)) ⊂ suppdf) ∪
supp df1, such that:

{eiL1M (f1)/~
Tr

, L0M (f)}⋆ = e
−iL1M (f1)/~
Tr

·Tr A(f, f1)

We can now transform both sides with the renormalization group element Z to obtain:

{eiZ(L1M (f1))/~
Tr

′ , L0M (f)}⋆ = e
−iZ(L1M (f1))/~
Tr

′ ·Tr′ 〈Z(1)(L1M (f1)), A(f, f1)〉 .

Using the property (5.56) of the renormalization group, we can conclude that

supp(〈Z(1)(L1M (f1)), A(f, f1)〉) ⊂ supp(A(f, f1)) .

Hence:

supp
(
e
−iZ(L1M (f1))/~
Tr

′ ·Tr′ {e
iZ(L1M (f1))/~
Tr

′ , L0M (f)}⋆
)
⊂ suppdf ∪ supp df1 .

We can see from the above proposition that the qme is indeed an universal notion
and transforms correctly under the renormalization group. A similar property can be
shown for the BV operator. To distinguish between operators corresponding to different
interaction terms we denote by ŝS1 the quantum BV operator defined for the action S1
with respect to the time-ordering operator Tr. For a different time ordering T′

r we obtain
a corresponding operator ŝ′S1 in the form:

∫
dx(eiS1/~ ·T′

r
X(x)) ⋆

δS0
ϕ(x)

= e
iS1/~
T
′
r
·T′

r
ŝ′S1(X) , (5.79)

On the other hand we know from the main theorem of renormalization 5.2.2 that there
exists an element Z ∈ R such that the left hand side of the above formula can be written
as:

∫
dx (e

iS1/~
T
′
r
·T′

r
X(x)) ⋆

δS0
ϕ(x)

=

∫
dx e

iZ(S1)/~
Tr

·Tr 〈Z(1)(S1),X(x)〉 ⋆ δS0
ϕ(x)

=

= e
iZ(S1)/~
Tr

·Tr (ŝZ(S1)
〈Z(1)(S1),X〉) ,

Similarly we can rewrite the right hand side of (5.79) as

e
iS1/~
T
′
r
·T′

r
ŝ′S1(X) = e

iZ(S1)/~
Tr

·Tr 〈Z(1)(S1), ŝ
′
S1
(X)〉 .

By comparing above formulas we obtain:

ŝZ(S1)
〈Z(1)(S1),X〉 = 〈Z(1)(S1), ŝ

′
S1
(X)〉 .

Since it holds for arbitrary X, we can write the above relation as:

ŝZ(S1)
◦ Z(1)(S1) = Z(1)(S1) ◦ ŝ′S1 . (5.80)
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This means that also the quantum BV operator transforms under the renormalization
group in the natural way.

To end this section we want to discuss the problem of finding a solution to the
qme. We start with a classical action T−1

r (S0 + S1), which satisfies the cme, i.e. {S0 +
S1, S0 + S1}Tr = 0. For our renormalized time-ordering operator Tr we calculate the
corresponding anomaly term △S1(S1). In general it doesn’t vanish, so the qme will not
be fulfilled. There are basically two possibilites to proceed. We can either redefine Tr

using the renormalization freedom, or try to absorb △S1(S1) into the action, by adding
higher loop order terms. The second way is more in the spirit of the original formulation
of the BV formalism [13, 14, 15], so we follow this path first. The cohomological problem
can be formulated in the following way: we look for natural transformations Wn such
that W =

∑
n ~

nWn, W0 = S1 and it holds:

{W + S0,W + S0}Tr −△W (W ) ∼ 0 (5.81)

Let us expand △W (W ) as a power series in ~. Since △X is linear in X, it follows that the
lowest order term is just △S1(S1). Therefore in the first order ~ this gives a condition:

2{W1, S0 + S1}Tr −
1

~
△1
S1

(S1) ∼ 0 . (5.82)

From the consistency condition (5.72) in the first order in ~, we know that

{△1
S1
(S1), S0 + S1}Tr ∼ 0 .

Therefore the solutionW1 to (5.82) is given by the cohomology of s on the space of actions.
To understand better this cohomological problem, recall that action is an equivalence
class of Lagrangians and these are in turn characterized by maps from D(M) to Aloc(M).
Therefore calculating the cohomology of s on the space of actions effectively amounts to
calculate the cohomology of s modulo d on the space of local forms (polynomials of fields
and their derivatives). Results in this direction were obtained in [8, 9]. If the cohomology
of s turns out to be trivial, the existence of W1 is guaranteed and we can insert it back
to the equation (5.81) and calculate the higher order terms. This way we can reduce
construction of W to a strictly cohomological problem. Finding a solution W of the qme

provides us with a map S1 7→ W . Note that this map satisfies the axioms 1-6 (for the
additivity we need to use the additivity of △S1(S1)) and therefore it is an element of the
renormalization group. We can write the qme in the form:

e
−iZ(S1)/~
Tr

·Tr
(
{eiZ(S1)/~

Tr
, S0}⋆

)
∼ 0 ,

where Z(S1) = W . From the main theorem of renormalization theory and proposition
5.3.5 it follows that there exists a time ordering operator Tr

′ such that:

e
−iS1/~
Tr

′ ·Tr′
(
{eiS1/~

Tr
′ , S0}⋆

)
∼ 0 ,

This way we showed that the violation of the qme can be also absorbed into the redefi-
nition of the time-ordered product. This approach agrees with the one taken in [103].

5.3.4 Relation to the regularized qme

The construction of the renormalized quantum BV operator and the qme we propose
is completely independent of any regularization scheme, but it is still interesting to see
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how our approach relates to ones involving an explicit regularization. I particular in this
section we want to make contact with the works of K. Costello [40, 41]. Following
[30] we define the regularized time-ordered product corresponding to the scale Λ as
TΛ

.
= exp(i~ΓΛ), where

ΓΛ =
1

2

∫
dxdy(hΛ −H)(x, y)

δ2

δϕ(x)δϕ(y)
,

and hΛ
Λ→∞−−−−→ HF in the sense of Hörmander. It is evident that hΛ − H Λ→∞−−−−→ i∆D

and it provides a regularization of the Dirac propagator. The regularized S-matrix is
now defined as SΛ

.
= expTΛ and the regularized time-ordered Koszul operator is given by

δΛS
.
= TΛ ◦ δTΛ−1S ◦ TΛ−1. The regularized quantum BV operator is defined by replacing T

with a regularized time-ordered product in (5.37), i.e

ŝΛX = e
−iF/~
TΛ

·TΛ
((

δ

δϕ‡(x)
(e
iF/~
TΛ
·TΛ X)

)
⋆

δS

δϕ(x)

)
=

= e
−iF/~
TΛ

·TΛ
(
{eiF/~

TΛ
·TΛ X,S}⋆

)
. (5.83)

The regularized quantum master equation can be understood as the condition that the
regularized S-matrix is invariant under the quantum Koszul operator, i.e.:

{eiF/~
TΛ

, S}⋆ = 0

Let F = F0 +
∫
dzF1(z)

δ
δϕ(z) , where F0 doesn’t depend on antifields. We can write the

regularized qme explicitly using the fact that:

δΛS (SΛ(F )) = TΛ

(
δTΛ−1S

(
eiTΛ

−1F/~
))

= m ◦ ei~Γ′
Λ

(∫
dx

δS

δϕ(x)
⊗
(
F1(x) ·TΛ eiF/~·TΛ

))
=

=

∫
dx

δS

δϕ(x)

(
TΛF1(x) ·TΛ eF·TΛ

)
+ TΛ

(
i~△Λ F −

1

2
{F,F}Λ

)
·TΛ eF·TΛ ,

where by △Λ we denoted the differential operator:

△Λ
.
=

∫
dxdydz

δ2S

δϕ(z)ϕ(x)
(hΛ −H)(x, y)

δ2

δϕ‡(z)δϕ(y)
,

and {., .}Λ is the scale Λ antibracket defined as:

{A,B}Λ .
= △Λ(AB)−△Λ(A)B − (−1)|A|A△Λ (B) .

We can conclude that the scale Λ QME is the condition that:

δΛSF +
1

2
{F,F}Λ − i~△Λ F = 0

This is exactly the form of the regularized qme provided in [40].

5.3.5 Yang-Mills theory

To end this chapter we take a look at an explicit example, where the BV construction
is nontrivial. The most straightforward one is provided by Yang-Mills theories with the
generalized Lagrangian given by (4.35). To construct the Hadamard solution we need
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again a hyperbolic system of equations, so we have to fix the gauge. To this end we can use
the classical structure of the BV complex BVmc(M) described in section 4.4.3, extended
by the non-minimal sector as stated in 4.4.5. We perform a suitable automorphism αΨ

of the algebra BVmc(M) with the gauge-fixing fermion (4.51) and we arrive finally at
the extended Lagrangian of the form:

Lext
M (f) = −1

2

∫

M
ftr(F ∧ ∗F ) + γgΨM (f) +

∫

M
ftr
(
∗DC ∧ δ

δA

)
+

+
1

2

∫

M
dvolM f [C,C]

δ

δC
− i
∫

M
dvolM fB

δ

δC̄
, (5.84)

where γg is the BRST operator. The full BV operator is the sum s = δg + γg. Using
formula (4.47) we see that the gauge invariant observables are encoded in the cohomology
of s. If we denote by θg the natural transformation that implements γg locally, we can
rewrite formula (5.84) on the level of natural transformations as:

Sext = S + {θg,Ψ}+ θg . (5.85)

This is the starting point for the quantization. Note that the gauge is not yet fixed, since
we don’t put antifields equal to 0. It is usefull to expand equation (5.85) in the free and
interacting part:

Sext = S0 + S1 + θ0 + θ1 , (5.86)

where S0 and S1 have the total antifield number equal to 0 and θ0 θ1 are of #ta = 1. As
suggested by the notation S0 is the free action quadratic in fields and θ0 implements the
free BRST differential γ0, which is linear in fields and antifields. Also the Koszul differen-
tial can be expanded into the free and interacting part δg = δ0 + δ1. With this structure
we can now apply the results presented in previous sections. From the construction we
know that S0 provides a hyperbolic system of equations and we can construct the cor-
responding Hadamard solution H [103]. The ⋆-product and time ordered product ·T are
constructed basing on the free action S0. Note that algebra BV(M) is graded, so the
axioms for the renormalized time-ordered products have to be replaced by their graded
counterparts. Details of the construction can be found in [103], including the definitions
of Wick powers and time-ordered products of ghosts, antighosts and Nakanishi-Lautrup
fields. We understand the time ordering of antifields, corresponding to all these vari-
ables, similarly to the scalar case, i.e. by means of (5.63). The time-ordered free Koszul

operator is defined again as δ
Tr,H

S0
. The time-ordered free BRST operator is given by:

γ
Tr,H

0 F
.
= {F, θ0M (f)}Tr,H .

where F ∈ Tr,H(BV(M)) with #ta(F ) = 0 f is a test function equal to 1 on the support
of F . Again we drop at this point the subscript H for the clearer notation. It is also
convenient to go one level of abstraction higher and work with the natural transforma-
tions, along the lines of the section 5.3.2. It was proved in [103] that the mwi holds in
the form:

e
−i(S1+θ1)M (f)/~
Tr

·Tr
(
{ei(S1+θ1)M (f)/~

Tr
·Tr X, (S0 + θ0)M (f)}⋆

)
=

= {X,Sext
M (f)}Tr −△(S1+θ1)M (f)(X) , (5.87)

where f ≡ 1 on the support of X. In [103] it is also argued that using consistency
conditions on the anomaly term one can use the renormalization freedom to redefine time-
ordered products and obtain △S1+θ1(S1 + θ1) = 0. With this time-ordering prescription
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from equation (5.87) follows that:

ŝ
(
e
i(S1+θ1)/~
Tr

)
= e

i(S1+θ1)/~
Tr

·Tr {Sext, Sext}Tr ,

in the sense of natural transformations, where ŝ
.
= {., S0 + θ0}⋆. Since the cme holds for

the extended action, i.e. {Sext, Sext}Tr ∼ 0, we obtain:

ŝ
(
e
i(S1+θ1)/~
Tr

)
∼ 0

To see that this is the on-shell gauge invariance of the S-matrix in the adiabatic limit,
note that the BRST operator in the quantized algebra is given by {., θ0}⋆ and we can
rewrite the above equation as:

{
e
i(S1+θ1)/~
Tr

, θ0

}
⋆
∼ 0 on-shell .



CONCLUSIONS

(...) всегда останется нечто, что ни за что не захочет вый-
ти из-под вашего черепа (...) с тем вы и умрете, не передав
никому, может быть, самого-то главного из вашей идеи.

Ф. М. Достоевский, «Идиот»

(...) There is always a something, a remnant, which will
never come out from your brain (...) and you will die, per-
haps, without having imparted what may be the very essence
of your idea to a single living soul.

F. M. Dostoyevsky, The Idiot

It is always challenging to transform ideas into words and words into formulas. The dif-
ficulty in mathematical physics lies in finding the right concepts to describe the physical
phenomena and it is often hard to judge which formulation would be more convenient
in practice. We are of the opinion that introducing new mathematical structures is al-
ways worth the effort, if it allows for the conceptual understanding of physical theories.
Therefore we advocated in this thesis the application of infinite dimensional calculus to
classical and quantum field theory. We showed that by using these concepts many struc-
tures become more natural. For example the consequent treatment of antifields as infinite
dimensional vector fields sheds light on the functional analytic aspects of the classical
BV complex, but also allows for a systematic treatment of the BV quantization. The
main result we obtained is the precise formulation of the renormalized quantum master
equation and definition of the quantum BV operator, that doesn’t involve an explicit
regularization scheme. As an intermediate step, we also proved that the renormalized
time-ordered product can be indeed defined as an algebraic product on a certain subspace
of the quantum algebra. We showed that the BV quantization can be applied successfully
without reference to the path integral approach and can be incorporated as an important
tool in algebraic quantum field theory. All the constructions we presented were done in a
completely covariant way and could be therefore applied to quantize theories on general
globally hyperbolic spacetimes. This is important in the locally covariant approach to
classical and quantum field theory.

The principle of local covariance was the guiding principle throughout the whole the-
sis and it justifies many of the constructions we proposed. Already at the classical level
the formulation in terms of category theory motivates the choice of the subspace of the
space of infinite dimensional vector fields, that is identified with the antifields’ space. The
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same is true also for the definition of the (modified) Chevalley-Eilenberg complex 4.4.2.
A very clear advantage of the locally covariant framework is an interpretation of the clas-
sical master equation as a condition formulated on the level of natural transformation.
Another important consequence of incorporating the local covariance principle is the pos-
sibility to treat theories with diffeomorphism invariance, including general relativity. In
section 4.5 we showed that the natural notion of physical quantities in gravity is provided
by the concept of locally covariant fields. This involves again a use of category theory and
moves the discussion to a little bit more abstract level. There is however a major gain
coming from this construction. Treating physical fields as natural transformations allows
us to recover structures known from classical GR and provides us also with a generalized
notion of a symmetry transformation. On this more abstract level also the structure of
the BV complex has to be modified, but this modification follows straightforwardly from
the framework itself. We proved that the modified BV operator has a nontrivial coho-
mology which contains all the quantities, that one would intuitively consider as physical,
for example scalars constructed covariantly from the metric. This way we can describe
the space of physical observables of general relativity as a cohomology of the BV complex
extended to the level of natural transformation.

The motivation for this is of course the perspective for quantum gravity. The BV
resolution is an algebraic structure, that can be quantized using the well known methods
of deformation quantization. We developed a framework needed for this task in chapter
5 and showed that it works for the better understood example of the Yang-Mills theory.
We expect that the same can be done also for gravity and the resulting theory can be
treated as an effective theory in physical situations where the quantum gravity effects are
small. This thesis is the first step to fulfill this program and we hope that the conceptual
understanding of the classical structure, that we gained, will allow us to successfully
proceed in our quest to understand better the phenomena happening at the intersection
of the quantum world and general relativity.

Although the main motivation for the present work was the possibility to apply it in
quantum gravity, the results that we obtained are of interest on their own. The frame-
work we present unifies in a consistent mathematical language three important physical
principles: locality, covariance and gauge invariance. We argue, that it provides means
to investigate the structure of quantum field theories in the presence of symmetries, using
modern mathematical tools. This is important not only from a purely conceptual point of
view, since often a fresh look at the underlying structure allows one to simplify also some
practical calculations. Besides, from the mathematical side, it is interesting, that the
infinite dimensional differential geometry, a relatively new research field of mathematics,
has also a nice application in physics. The constant exchange of ideas and concepts was
always leading to progress both in mathematics and in physics. We hope, that our work
will eventually become at least a small stone in this phantastic construction of human
knowledge and creativity. With this thought we want to end this thesis, since no book,
no paper and no lecture can give justice to the infinite complexity of nature. Even in a
very long work, after a finite number of words, there always has to came the moment to
put the final dot.
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