Попов В.В., Зубавичус Я.В.*, Петрунин В.Ф., Менушенков А.П., Кашурникова О.В., Коровин С.А., Черников Р.В., Ярославцев А.А. ИССЛЕДОВАНИЕ ПРОЦЕССА ОБРАЗОВАНИЯ НАНОКРИСТАЛЛИТОВ

 $Ln_{2+x}Me_{2-x}O_{7-x/2}$ (Ln = Gd, Dy; Me = Zr, Hf)

Национальный исследовательский ядерный университет «МИФИ»,

115409, г. Москва, Каширское шоссе, д. 31

*РНЦ "Курчатовский институт", 123182, г. Москва, пл. Акад. Курчатова, д.1 Поступила в редакцию « 10_» декабря_2010 г.

Установлено, что процесс образования нанокристаллитов $Ln_{2+x}Me_{2-x}O_{7-x/2}$ (Ln = Gd, Dy; Me = Zr, Hf), получаемых в результате прокаливания рентгеноаморфных смешанных гидроксидов, синтезируемых методом соосаждения солей металлов, протекает в несколько стадий. Первоначально в ходе дегидратации прекурсоров сохраняется рентгеноаморфная структура, дальнейшее упорядочение которой при 600 ÷ 700 °C приводит к началу формирования нанокристаллитов со структурой разупорядоченного флюорита. Увеличение температуры > 700 °C вызывает рост размера кристаллитов (ОКР) сопровождается существенным изменением локальной структуры И термообрабатываемых веществ. В нанокристаллических порошках Gd₂Hf₂O₇ и Gd₂Zr₂O₇, синтезированных при 1200 °C/6 ч, обнаружено наличие сверхструктуры пирохлорного типа с удвоенным периодом решетки относительно флюорита, а также возможно модулированной структуры в образце Dy_2HfO_5 при 1600 °C/3 ч.

ВВЕДЕНИЕ

В настоящее время золь-гель метод в сочетании с последующей термообработкой прекурсоров является основным методом синтеза оксидных нанокристаллических соединений различного химического и фазового состава [1]. Бинарные соединения с общей формулой $Ln_{2+x}Me_{2-x}O_{7-x/2}$, образующиеся в двухкомпонентных системах « Ln_2O_3 -

MeO₂» (где Ln - катионы P3Э; Me - катионы подгруппы IVB: Ti, Zr, Hf), представляют собой большую группу неорганических соединений интересных как с научной (фазовый переход флюорит \Leftrightarrow пирохлор) [2, 3], так и практической точки зрения, поскольку являются перспективными теплоизоляционными [4] и нейтронопоглощающими [5] материалами, ионными проводниками [3], матрицами для хранения радиоактивных отходов [6]. Данные вещества в зависимости от условий могут иметь две кристаллические структуры: пирохлор ($Fd\overline{3}m$) (упорядоченная) и флюорит ($Fm\overline{3}m$) (разупорядоченная) [2, 3, 7]. Одним из главных условий, определяющих тип образующейся кристаллической фазы, является соотношение радиусов R_{Ln}^{3+}/R_{Me}^{4+} . При этом наиболее интересными являются вещества $Ln_{2+x}Me_{2-x}O_{7-x/2}$ с $R_{Ln}^{3+}/R_{Me}^{4+}\sim 1,45$, которые при комнатной температуре могут иметь как кристаллическую структуру пирохлора, так и флюорита [2, 8]. Следует отметить, что несмотря на большое количество работ, посвященных синтезу и исследованию свойств соединений, образующихся в двухкомпонентных системах «Ln₂O₃ -MeO₂» [1 - 8], в них отсутствуют данные о размерах кристаллитов образующихся веществ. В связи с вышеизложенным целью данной работы было исследование закономерностей образования нанокристаллитов $Ln_{2+x}Me_{2-x}O_{7-x/2}$ (Ln = Gd, Dy; Me = Zr, Hf) в результате упорядочения структуры соответствующих аморфных смешанных гидроксидов путем их изотермического отжига.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных реагентов использовали: $ZrOCl_2 \cdot 8H_2O$ (х.ч.), $HfOCl_2 \cdot 8H_2O$ (х.ч.), $Dy(NO_3)_3 \cdot 5H_2O$ (х.ч.), $Gd(NO_3)_3 \cdot 6H_2O$ (х.ч.), 25,5 % водный раствор NH_4OH (ос.ч.) и дистиллированную воду. Смешанные гидроксиды получали методом обратного соосаждения путем дозирования смеси солей металлов в атомном отношении Ln^{3+} : Me^{4+} (1÷2): 1 в водный раствор NH_4OH при pH 9,5 – 10,0. Образующиеся творожистые осадки белого цвета промывали дистиллированной водой (до отсутствия в промывных водах

анионов). Часть свежепромытых осадков промывали изопропиловым спиртом для уменьшения размера образующихся агрегатов [9]. Полученные пасты далее сушили до постоянного веса при комнатной температуре. Высушенные порошки (ксерогели) растирали в ступке и прокаливали на воздухе при постоянной температуре в интервале 400 - 1600 °C в течение 3 - 6 час [10].

Контроль синтеза прекурсоров осуществляли методами рН-метрии (с использованием иономера И-160) и фотонно-корреляционной спектроскопии (ФКС) на спектрометре «ФотоКор Комплекс 1». Синхронный термический анализ (СТА), включающий одновременно термогравиметрию (ТГ) и дифференциально-сканирующую калориметрию (ДСК), гидроксидов проводили на термоанализаторе «Netzsch STA-409 PC Luxx» в диапазоне температур 30 – 1400 °С при скорости нагрева образцов 10 °С/мин в токе аргона. Размер и форму образующихся частиц контролировали методом сканирующей электронной микроскопии на микроскопе «LEO 1455VP».

Рентгенографический анализ образцов осуществляли на дифрактометре «ДРОН – УМ1» (монохроматизированное CuK_a — излучение, монохроматор — кварц, съёмка по точкам с интервалом 0.05 °, экспозиция 10 с на точке) с компьютерной регистрацией спектра. Фазовый состав определяли с помощью компьютерной базы данных «JCPDS — ICDD 2000». Полученные экспериментальные дифрактограммы были обработаны методом полнопрофильного анализа по Ритвельду. Для этого использовалась программа GSAS [11] с графическим интерфейсом пользователя ExpGUI [12]. Уточнялись кристаллографические параметры, а также параметры уширения дифракционных рефлексов для определения размеров ОКР и микронапряжений. Для упрощения расчета во всех случаях использовалась структурная модель флюорита. Параметры аппаратной функции дифрактометра были получены в аналогичной процедуре полнопрофильного анализа экспериментальной дифрактограммы высококристаллического стандарта - кварца.

Моделирование дифрактограмм для практически рентгеноаморфных образцов порошков $Ln_{2+x}Me_{2-x}O_{7-x/2}$, отожженных при низких температурах, было проведено по формуле Дебая [13]. Для расчета использовался сгенерированный на базе объемной кристаллической структуры кластер (Ln,Me) O_2 со структурой флюорита диаметром около 2 нм, состоящий из приблизительно 250 атомов.

Для получения дополнительной информации о характере упорядочения катионов в нанокристаллических порошках гафната гадолиния были проведены измерения методом аномальной дифракции [14] синхротронного излучения, позволяющим существенно повысить контраст между близкими по Z элементами в дифрактограмме. Измерения были выполнены на станции «Структурное материаловедение» Курчатовского центра синхротронного излучения и нанотехнологий в геометрии пропускания с использованием двухкоординатного детектора FujiFilm ImagingPlate [15]. Для измерений были выбраны две длины волны: λ_1 =0,69072 Å вдали от краев поглощения гадолиния и гафния и λ_2 =1,29677 Å в непосредственной близи от L_3 -края поглощения Hf. Изменение интенсивностей слабых пирохлорных рефлексов в дифрактограмме в условиях аномального рассеяния было рассчитано с помощью программы Tkatoms из пакета IFEFFIT [16] с теоретическими аномально-дисперсионными поправками из таблиц Хенке и соавт. [17].

Локальную структуру образцов исследовали методом рентгеновской спектроскопии поглощения (EXAFS - спектроскопии). Измерения EXAFS - спектров были проведены выше L_3 -краев поглощения Dy, Gd, Hf и K-края поглощения Zr на линиях E4 и A1 синхротронного центра HASYLAB, DESY и линии i811 синхротронного центра MAX-lab университета г. Лунд (Швеция) при температурах 10 К (77 К для системы Dy₂O₃ – HfO₂) и 300 К по методике «на пропускание». Обработка и моделирование EXAFS - спектров проводились по программам VIPER [18] и IFEFFIT [16]. Амплитуды и фазы обратного

рассеяния рассчитывались по программе FEFF- 8.20 [19] с использованием известных параметров кристаллических структур пирохлора и флюорита и данных дифракции.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Было установлено, что уже на начальных стадиях процесса соосаждения происходит образование частиц (рассеивающих центров, наблюдаемых с помощью ФКС), имеющих средний гидродинамический радиус ~ 200 - 300 нм. По мере дальнейшей нейтрализации суспензий и приближения рН к значениям, соответствующим точке нулевого заряда для данных систем, в них происходит резкий рост как размера, так и рассеивающих центров, сопровождаемый увеличением образованием гелеобразных осадков белого цвета. Свежепромытые осадки гидроксидов были сильно гидратированы и имели состав, отвечающий эмпирической формуле $Ln_2O_3 \cdot 2MeO_2 \cdot (200-250)H_2O$. Промывка спиртом данного осадка приводила дополнительному образованию устойчивого (в течение нескольких месяцев) водноспиртового золя смешанного гидроксида с размером частиц ~ 100 нм.

Рентгенофазовый анализ высушенных порошков показал, что во всех случаях, независимо от вида катионов, получаемые частицы смешанных гидроксидов металлов являются рентгеноаморфными. При этом следует отметить, что атомно-кристаллическое строение частиц прекурсоров нельзя считать полностью разупорядоченным, поскольку на рентгенограммах наблюдалось два широких максимума в области двойных брэгговских углов ~ 30 - 31° (межплоскостное расстояние 0,288 – 0,296 нм) и ~ 50 - 52° (межплоскостное расстояние 0,176 - 0,182 нм). Точное определение размера кристаллитов затруднено из-за большой ширины пиков (значение полуширины первого максимума ~ 7,6 – 8,0°), оценочное значение составляло порядка 1 нм. Исследование локальной структуры методом ЕХАFS-спектроскопии показало, что на всех EXAFS-спектрах образцов прекурсоров независимо от их химического состава фиксируется также наличие двух

пиков: первого, соответствующего кислородному окружению катионов (металл – кислород), и второго – катионному (металл – металл).

Проведение СТА показало, что независимо от вида катионов металла в области температур от 40 - 50 °C до 300 - 330 °C во всех образцах протекает эндотермический процесс с минимумом в области 140 - 160 °C (на кривых ДСК). Одновременно на кривых ТГ отмечается значительное изменение массы образцов (55 - 73 % от общего изменения) за счет дегидратации, соответствующей удалению неструктурной воды (до 150-200 °C) и далее структурной составляющей в форме ОН-групп (выше 150 - 200 °C). Повышение температуры до 700 – 800 °C приводит к появлению отчетливого максимума на кривой ДСК при постоянно уменьшающейся массе образцов. При этом максимальная величина экзоэффекта наблюдалась для систем, содержащих Gd-Hf (рис. 1), минимальная – Dy-Zr и Dy-Hf (табл. 1). Дальнейшее увеличение температуры приводит к появлению размытых экстремумов на кривых ДСК в области ~ 1100 °C. Уменьшение массы образцов (до 7 - 10 % от общего изменения) наблюдалось выше температур 900 - 1000 °C вплоть до предельного значения температуры 1400 °C (рис. 1, табл. 1). Обращает на себя внимание высокая степень гидратации синтезируемых образцов и прочное удерживание кристаллизационной влаги в образующейся кристаллической решетке. Обработка данных СТА позволила определить эмпирический состав исходных смешанных гидроксидов (прекурсоров), энтальпии их дегидратации и кристаллизации с образованием бинарных соединений $Ln_{2+x}Me_{2-x}O_{7-x/2}$, а также изменения массы порошков на всех этапах процесса термообработки (табл. 1).

Моделирование рентгенограмм порошков, полученных изотермическим отжигом смешанных гидроксидов Dy-Hf (атомное отношение 2 : 1) при 400 - 600 °C в течение 3 ч, по формуле Дебая показало, что в этих образцах уже наблюдается образование частично упорядоченных кластеров с флюоритоподобной структурой размером ~2 нм (рис. 2). Рост

температуры до 700 °С приводит к появлению нанокристаллитов в системах, содержащих гадолиний. Дальнейшее увеличение температуры приводит к увеличению размера ОКР для всех изученных систем «Ln₂O₃ - MeO₂», сопровождаемому незначительными изменениями параметров кристаллической решетки (табл. 2). Следует отметить, что наиболее значительный рост ОКР наблюдается в интервале 1000 - 1200 °С и выше, при этом размер кристаллитов увеличивается в ряду $Dy_2Zr_2O_7 > Dy_2HfO_5 > Dy_2Hf_2O_7 >$ $Gd_2Zr_2O_7 > Gd_2Hf_2O_7$. По температурным зависимостям величины ОКР в Аррениусовых были рассчитаны значения энергии активации процессов роста координатах нанокристаллитов, которые составили: $Dy_2Zr_2O_7$ 7,8 кДж/моль (в интервале 500 - 700 °C) и 33,5 кДж/моль (в интервале 700 - 1000 °C); Dy₂Hf₂O₇ 32,8 кДж/моль (600 - 900 °C) и 87,0 кДж/моль (900 - 1200 °C); Dy₂HfO₅ 51,0 кДж/моль (600 - 1000 °C) и 102,4 кДж/моль (1000 -1600 °C); Gd₂Zr₂O₇ 50,9 кДж/моль (800 - 1000 °C) и 117,7 кДж/моль (1000 - 1200 °C); $Gd_2Hf_2O_7$ 44,8 кДж/моль (700 - 900 °C) и 97,7 кДж/моль (900 - 1490 °C). Относительно невысокие значения полученных величин энергий активации в низкотемпературной области (до 900 - 1000 °C) указывают на то, что лимитирующей стадией роста нанокристаллитов, по-видимому, является диффузионный процесс. Повышение температуры более 1000 °C приводит к увеличению соответствующих значений энергий активации примерно в два раза, что вероятно свидетельствует о возможной смене механизма процесса.

РФА показал, что для всех изученных систем прокаливание смешанных гидроксидов в интервале температур 600-1200 °C в течение 3 ч приводит к образованию $Ln_{2+x}Me_{2-x}O_{7-x/2}$ в виде нанокристаллических порошков, имеющих флюоритоподобную ГЦК структуру. Увеличение продолжительности обработки до 6 ч при 1200 °C приводит к появлению слабых дифракционных рефлексов на рентгенограмме $Gd_2Zr_2O_7$,

соответствующих структуре пирохлора, а также возможно модулированной структуры в Dy_2HfO_5 при 1600 °C/3 ч (рис. 3).

Точная идентификация характера катионного упорядочения осложнено тем фактом, что атомы Ln и Me имеют относительно близкие атомные номера и, соответственно, характеризуются слаборазличающимися атомными факторами рассеяния. В особенности это справедливо для Ln=Dy, а Me=Hf. Это приводит к тому, что на рентгеновских дифрактограммах доминируют рефлексы усредненной флюоритной структуры, а сверхструктурные рефлексы, связанные с упорядочением катионов, не превышают по интенсивности нескольких процентов OT флюоритных пиков даже ДЛЯ крупнокристаллических образцов, полученных высокотемпературным твердотельным синтезом из оксидов [3, 20].

Для повышения контраста между атомами Ln и Ме в дифракции был использован метод аномального рассеяния синхротронного излучения, основанный на том, что атомный фактор рассеяния элемента скачкообразно изменяется вблизи краев его рентгеновского поглощения из-за аномально-дисперсионных поправок, и это изменение может достигать 10-15% [14]. На рис. 4 приведены дифрактограммы образца Gd₂Hf₂O₇, прокаленного при 1200 °C, в условиях нерезонансной и резонансной (аномальной) дифракции. Использование высокоинтенсивного синхротронного излучения в сочетании с добиться двухкоординатным детектором позволило существенного улучшения статистического соотношения сигнал/шум сравнению традиционным ПО c дифрактометром. В нерезонансной дифрактограмме достаточно четко проявляются сверхструктурные рефлексы пирохлорной структуры с удвоенным по отношению к базовой флюоритной структуре параметром элементарной ячейки. Наиболее сильные рефлексы пирохлорной структуры (111) и (511) имеют интенсивность около 0,3% от интенсивности основного рефлекса (222). В условиях аномальной дифракции интенсивность пирохлорных рефлексов возрастает в несколько раз (а самым интенсивным сверхструктурным рефлексом становится (331), высота которого приближается к 2%), что существенно больше экспериментальной ошибки. Характер изменения интенсивностей суперструктурных рефлексов в условиях резонансной дифракции хорошо воспроизводится в теоретическом расчете (рис. 4), что не оставляет сомнений в формировании пирохлорной структуры в ходе отжига при 1200 °C в образце нанокристаллического $Gd_2Hf_2O_7$. Измерение аномальной дифракции на образце гафната гадолиния, прокаленного при 1000 °C (с меньшим размером ОКР), не выявило пирохлорных рефлексов в пределах точности эксперимента.

Информация о параметрах локального окружения катионов со специфичностью по элементу может быть получена из анализа спектров EXAFS. На рис. 5а и 5б приведены модули фурье-преобразования (FT) EXAFS-функций $\chi(k)k^2$, измеренных выше краев поглощения катионов, для образцов гафната гадолиния, полученных прокаливанием прекурсора при различных температурах. Для всех образцов, включая рентгеноаморфный прекурсор, наблюдается значимая разница расстояний $Gd^{3+}-O^{2-}$ (2.4 Å) и $Hf^{4+}-O^{2-}$ (2.1 Å). существенно превышающая стандартную ошибку определения межатомных расстояний методом EXAFS. Расстояния Ln-O и Me-O для идеальной флюоритной структуры должны быть равными (\sim 2.27 Å, $\sqrt{3}$ a/4, где а – параметр кубической ячейки), поскольку эти атомы занимают одну и ту же кристаллографическую позицию. Это означает, что во всем исследованном диапазоне температур отжига локальное окружение двух типов катионов не описывается идеальной флюоритной моделью, а характерно скорее для структуры пирохлора с неэквивалентными позициями катионов Ln и Me. При повышении температуры отжига амплитуда пика Gd - О уменьшается по сравнению с аналогичной величиной для рентгеноаморфного прекурсора, а амплитуда второй координационной сферы Gd – металл растет. В тоже время изменения, наблюдаемые в спектре гафниевого

края поглощения, минимальны: во всех случаях наблюдается достаточно интенсивный пик координационной сферы Hf - О и слабо выраженный пик второй координационной сферы Hf – металл. На качественном уровне эти наблюдения могут быть проинтерпретированы следующим образом. Катионы Gd и Hf искажают кислородную соответствии своими размерами и co кристаллохимическими предпочтениями. Более крупный катион Gd³⁺ «расталкивает» близлежащие атомы кислорода относительно их позиций во флюоритной структуре. Смещения атомов кислорода анизотропны (энергетически наиболее выгодны смещения в сторону ближайшей кислородной вакансии), что приводит к формированию неэквивалентных по длине связей (появлению кажущейся разупорядоченности координационной сферы Gd-O) и координационного полиэдра типа искаженного куба «6+2». Катионная подрешетка (в смысле расстояний металл-металл) при этом остается жесткой. В случае катионов Hf^{4+} ситуация обратна. Смещения атомов кислорода должны быть направлены в сторону ионов относительно флюоритной структуры, предпочтительным гафния при ЭТОМ координационным полиэдром гафния является октаэдр. Это означает, что вблизи гафния энергетически выгодно концентрироваться кислородным вакансиям, так что относительно жесткие октаэдрические группировки HfO_6 получают возможность случайным образом смещаться, что формально приводит к разупорядоченности катионной подрешетки Hf. Повышение температуры отжига повышает вероятность диффуционно-ограниченного упорядочения атомов и вакансий в регулярную структуру с чередованием неэквивалентных позиций GdO₈ и HfO₆.

Характер изменения локального окружения при отжиге в системах « $Gd_2O_3 - ZrO_2$ » и « $Dy_2O_3 - HfO_2$ » по данным EXAFS весьма сходен с кривыми, полученными для системы « $Gd_2O_3 - HfO_2$ ». Таким образом, можно сделать вывод, что структура нанокристаллических гафнатов и цирконатов гадолиния и диспрозия, образуемая при

температурах 600 - 700 °C, отличается от идеального флюорита (что проявляется, прежде всего, в существенном различии расстояний Ln^{3+} - O^{2-} и Me^{4+} - O^{2-} , несовместимом с катионно-разупорядоченной флюоритной структурой). Упорядоченная сверхструктура пирохлора образуется постепенно (по мере увеличения величины области с совершенной кристаллической решеткой - OKP), когда регулярный мотив чередования Ln^{3+} и Me^{4+} начинает распространяться на всё более протяженную область, что в конечном итоге формирует характер дальнего порядка из особенностей ближнего порядка.

В связи с этим можно предположить, что даже для гафната диспрозия, отожженного при температуре выше 1200 °C, будет возможно обнаружить проявление суперструктурного упорядочения пирохлорного типа при использовании аномальной дифракции синхротронного излучения, что является предметом дальнейших исследований.

Сравнение размеров частиц, полученных методом рентгенографии и сканирующей электронной микроскопии, позволило сделать вывод, что синтезируемые частицы являются поликристаллическими и представляют собой агрегаты микронного размера, состоящие из нанокристаллитов $Ln_{2+x}Me_{2-x}O_{7-x/2}$ (рис. 6).

ВЫВОДЫ

Таким образом, проведенное исследование позволило выявить многоступенчатость процесса образования нанокристаллитов $Ln_{2+x}Me_{2-x}O_{7-x/2}$ (Ln=Gd, Dy; Me=Zr, Hf), получаемых изотермическим отжигом рентгеноаморфных смешанных гидроксидов, синтезированных методом соосаждения солей металлов. В ходе дегидратации прекурсоров до 600 °C сохраняется рентгеноаморфная структура, дальнейшее повышение температуры (до 700 °C) приводит к началу формирования нанокристаллитов со структурой разупорядоченного флюорита. Рост температуры выше 700 °C вызывает увеличение размера кристаллитов (ОКР) и сопровождается существенным изменением локальной структуры термообрабатываемых веществ.

В нанокристаллических порошках $Gd_2Hf_2O_7$ и $Gd_2Zr_2O_7$, синтезированных при 1200 $^{\circ}$ C/6 ч, обнаружено наличие сверхструктуры пирохлорного типа с удвоенным периодом решетки относительно флюорита, а также в образце Dy_2HfO_5 при 1600 $^{\circ}$ C/3 ч. - модулированной структуры.

Данная работа была частично профинансирована в рамках государственного контракта № Н.4в.44.90.10.1104 и гранта РФФИ № 09-02-12257-офи_м.

СПИСОК ЛИТЕРАТУРЫ

- 1. Pierre A.C. Introduction to sol-gel processing. Boston: Kluwer Acad. Publ., 1998. 408 p.
- 2. Stanek C.R. Atomic scale disorder in fluorite and fluorite related oxides. Ph. D. dissertation. London, UK, 2003. 195 p.
- 3. Шляхтина А.В. Синтез и свойства кислородпроводящих соединений семейства редкоземельных пирохлоров. Дисс. д.х.н. Новосибирск, 2010. 257 с.
- 4. Xu Q., Pan W., Wang J., et al. Rare-earth zirconate ceramics with fluorite structure for thermal barrier coatings // J. Amer. Ceram. Soc. 2006. V. 89. № 1. P. 340 342.
- 5. Risovany V.D., Zakharov A.V., Muraleva E.M., et al. Dysprosium hafnate as absorbing material for control rods // J. Nucl. Mater. 2006. V. 355. № 1. P. 163 170.
- 6. Sickafus K.E., Minervini L., Grimes R.W., et al. Radiation tolerance of complex oxides // Science. 2000. V. 289. № 5480. P. 748 751.
- 7. Subramanian M.A., Aravamudan G., Subba Rao G.V. Oxide pyrochlores a review // Prog. Solid State Chem. 1983. V. 15. № 2. P. 55 143.
- 8. Ushakov S.V., Navrotsky A. Energetics of defect fluorite and pyrochlore phases in lanthanum and gadolinium hafnates // J. Amer. Ceram. Soc. 2007. V. 90. № 4. P. 1171.
- 9. Mercera P.D.L., Van Ommen J.G., Doesburg E.B.M., et al. Influence of ethanol washing of hydrous precursor on the textural and structural properties of zirconia // J. Mater. Sci. 1992. V. 27. № 18. P. 4890 4898.
- 10. Петрунин В.Ф., Попов В.В., Федотов А.В., и др. закономерности образования нанокристаллических соединений в системах Ln_2O_3 MeO_2 // Физикохимия ультрадисперсных (нано-) систем. Тр. VII Всерос. конф. М.: МИФИ. 2006. С. 98 101.
- Larson A.C., Von Dreele R.B. General Structure Analysis System (GSAS) // 2000. Los
 Alamos National Laboratory Report LAUR 86-748.

- 12. Toby B. H. EXPGUI, a graphical user interface for GSAS // J. Appl. Cryst. 2001. V. 34. № 2. P. 210-213.
- 13. Belyakova O.A., Zubavichus Y.V., Neretin I. S., et al. Atomic structure of nanomaterials: Combined X-ray diffraction and EXAFS studies // J. Alloys Compounds. 2004. V. 382. № 1 2. P. 46-53.
- 14. Waseda Y. Anomalous X-ray scattering for materials characterization. Atomic-scale structure determination. Berlin: Springer. Germany. 2002.
- 15. Chernyshov A.A., Veligzhanin A.A., Zubavichus Y.V. Structural Materials Science" endstation at the Kurchatov synchrotron radiation source: recent instrumentation upgrades and experimental results" // Nucl. Instr. Meth. Phys. Res. A. 2009. V. 603. № 1 2. P. 95-98.
- 16. Ravel D., Newville M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT // J. Synchrotron Rad. 2005. V. 12. № 2. P. 537-541.
- 17. Henke B.L., Gullikson E.M., Davis J.C. X-ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E=50-30,000 eV // Atom. Data Nucl. Data Tables. 1993. V. 54. P. 181-342.
- 18. Klementiev K.V. VIPER for Windows // J. Phys. D: Appl. Phys. 2001. V. 34. № 2. P. 209-217.
- 19. Ankudinov A.L., Ravel B., Rehr J.J., et al. Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure // Phys. Rev. B. 1998. V. 58. № 12. P. 7565-7576.
- 20. Minervini L., Grimes R.W., Sickafus K.E. Disorder in Pyrochlore Oxides // J. Amer. Ceram. Soc. 2000. V.83. № 8. P. 1873-1878.
- 21. Frenkel A.I., Kolobov A.V., Robinson I.K., et al. Direct Separation of Short Range Order in Intermixed Nanocrystalline and Amorphous Phases // Phys. Rev. Lett. 2002. V.89. № 28. P. 285503.

ПОДПИСИ К РИСУНКАМ

Рис. 1. Кривые синхронного термоанализа порошка прекурсора в системе $(Gd_2O_3 - HfO_2) = 1 : 2 (MOJ.): 1 - TG; 2 - DSC; 3 - DTG.$

Рис. 2. Слева: экспериментальные дифрактограммы образцов Dy₂HfO₅, отожженных при температурах 400 и 600°С, в сравнении с теоретической дифрактограммой разупорядоченного нанокластера с флюоритной структурой диаметром около 2 нм. Справа: вид нанокластера, для которого проводился расчет дифрактограммы.

Рис. 3. Дифрактограммы порошков, полученных изотермическим отжигом рентгеноаморфного смешанного гидроксида Dy_2O_3 · HfO_2 ·11,9 H_2O при различных температурах в течение 3 ч: 1 – 600; 2 – 800; 3 - 1000; 4 - 1400; 5 – 1600 °C. На вставке дифрактограмма образца, прокаленного при 1600 °C/3 ч, в интервале $2\Theta = 25 - 40^\circ$.

Рис. 4. Вверху: экспериментальные синхротронные дифрактограммы образца $Gd_2Hf_2O_7$, синтезированного прокаливанием прекурсора при 1200 °C, в области слабых пирохлорных суперструктурных рефлексов, измеренные при двух длинах волн - λ_1 =0,69072 Å вдали от краев поглощения гадолиния и гафния (сплошная линия) и λ_2 =1,29609 Å в непосредственной близи от L_3 -края поглощения Hf (точки). Приведены индексы, соответствующие пирохлорной структуре. Интенсивность самого сильного рефлекса (222) нормирована на 1. Внизу: теоретические дифрактограммы, рассчитанные для полностью упорядоченной пирохлорной структуры: с учетом аномально-дисперсионных поправок.

Рис. 5. Модуль Фурье-образа EXAFS-функции для нанокристаллических порошков $Gd_2Hf_2O_7$ полученных прокаливанием соответствующих прекурсоров при различных температурах: а) выше L_3 -края Gd; б) выше L_3 -края Hf: 1 – прекурсор, 2 – $T_{прок}$ = 600 °C, 3 – $T_{прок}$ = 700 °C, 4 – $T_{прок}$ = 800 °C, 5 – $T_{прок}$ = 900 °C, 6 – $T_{прок}$ = 1000 °C, 7 – $T_{прок}$ = 1200 °C;

Рис. 6. СЭМ микрофотографии порошка $Dy_2Hf_2O_7$, полученного прокаливанием прекурсора при $800~^{\circ}C$ в течение 3 ч.

Таблица 1 Результаты СТА исследований порошков смешанных гидроксидов РЗЭ и металлов подгруппы IV В.

	Эмпирический состав смешанного гидроксида (прекурсора)	Общее	Дегидратация			Кристаллизация		Высокотемп. область (800-1400°C)	
		изменение массы $\Delta m_{ m o ar m_{ m o}}, \%$	T _{min} , °C	$\Delta m/\Delta m_{ m o m}$, %	Δ Н, Дж/г	T _{max} , °C	Δ Н, Дж/г	Т _{эктремума} , °С	$\Delta m/\Delta m_{ m o m}$, %
	Gd ₂ O ₃ ·2HfO ₂ ·14,4 H ₂ O	- 24,88	138,8	- 59,0	- 409,2	792,5	37,1	1034,0 (min)	- 10,7
	Gd ₂ O ₃ ·2ZrO ₂ ·13,8 H ₂ O	- 29,00	152,2	- 61,7	- 476,0	732,5	10,8	1118,9 (max) 1168,6 (min)	- 6,8
	Dy ₂ O ₃ ·2HfO ₂ ·14,0 H ₂ O	- 24,04	147,1	- 73,5	- 415,2	712,6	17,8	1095,0 (max)	- 9,2
	Dy ₂ O ₃ ·HfO ₂ ·11,9 H ₂ O	- 26,90	142,4	- 73,5	- 392,4	775,0	-	$\sim 1100 - 1150 (\text{max})$	- 10,0
	Dy ₂ O ₃ ·2ZrO ₂ ·11,6 H ₂ O	- 26,05	156,1	- 54,5	- 404,7	705,7	5,8	$\sim 1100 - 1150 (\text{max})$	- 7,8

Образец	a, Å	ОКР, нм	Микронапряжения, %						
$\mathrm{Gd_2Hf_2O_7}$									
700°C	5.236(2)	7	0.8						
800°C	5.2317(8)	12	1.1						
900°C	5.2364(6)	18	1.2						
1000°C	5.2396(3)	35	0.8						
1200°C	5.2505(2)	160	0.3						
$ m Gd_2Zr_2O_7$									
800°C	5.259(2)	9	1.5						
1000°C	5.2616(6)	22	0.5						
1200°С/3 ч	5.2497(4)	100	0.3						
1200°С/6 ч	5.2636(4)	170	0.4						
1490°C	5.2468(3)	> 1000	0.3						
$\mathrm{Dy_2Hf_2O_7}$									
600°C	5.239(6)	(5)	(8.3)						
700°C	5.204(2)	8	1.8						
800°C	5.205(1)	13.5	2.4						
900°C	5.2055(7)	15	1.0						
1000°C	5.2049(5)	21	0.8						
1200°C	5.2056(3)	87	0.3						
Dy ₂ HfO ₅									
400°C	~5.25	<2	-						
600°C	~5.25	<2	-						
800°C	5.258(2)	8	1.6						
1000°C	5.2570(6)	18	0.6						
1200°C	5.2602(2)	62	0.3						
1400°C	5.2604(1)	270	0.1						
1600°C	5.2622(1)	330	<0.1						
$\mathrm{Dy_2Zr_2O_7}$									
500°C	5.200(3)	(5.5)	(12)						
600°C	5.234(3)	7	3.5						
700°C	5.227(1)	7	1.5						
800°C	5.2220(9)	11	1.6						
900°C	5.2176(7)	16	1.0						
1000°C	5.2181(4)	17	0.6						

Таблица 2

Рис. 1.

I, отн. ед

Рис. 2.

Рис. 3.

Рис. 4.

Рис. 5.

Рис. 6.