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Villetaneuse, France
2Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas (IESL-FORTH),
P.O. Box 1385, GR-71110 Heraklion, Crete, Greece
3Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete, Greece
4Laboratoire des Sciences des Procédés et des Matériaux, LSPM CNRS, Institut Galilée,
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Strong modifications of semiconductors can be provoked by high-density electronic excitation.

We report on surface structuring of monocrystalline wurtzite O-face (0001) ZnO excited by UV

femtosecond laser pulses (248 nm) below the ablation threshold. At fluences above 11 mJ/cm2,

nanoholes of D¼10 nm diameter appear quasi-periodically separated by a distance �30 nm

(¼3 D). Dual-pulse (pump-pump) experiments permit estimation of the electronic excitation

lifetime responsible for this nanostructuring, which is in agreement with the electron-hole plasma

lifetime 220 ps. The nanostructuring results in a smaller monocrystalline domain of �0.1 lm size

and increases the crystalline interplane c-distance by 0.11%. The excitonic luminescence of the

irradiated sample is found to increase by about 10 times. The nanostructuring remains stable in a

limited range of laser fluences: above 40 mJ/cm2 the surface melts, which accelerates the

photoinduced bonds breaking leading to surface erosion. We tentatively ascribe the related

mechanism to the nucleation-growth of cluster vacancies at crystal dislocations accelerated by

the non-thermal (electronic) melting of the surface layer. At fluences lower than 11 mJ/cm2,

larger volcano-like features of 60-nm diameter were observed. The characteristic crater shape

and irregular surface repartition permit their assignment to thermal explosion of impurities due to

multiple exciton condensation. VC 2011 American Institute of Physics. [doi:10.1063/1.3671006]

I. INTRODUCTION

Optical excitation of semiconductor crystals at or near

their bandgap by use of low-intensity radiation (low-I) has

been shown to produce macroscopic mechanical modifica-

tions on the crystal surface. This type of effect is often called

single-photon damage or etching and is principally related to

the breaking of chemical bonds, following photoexcitation

into anti-bonding states, and the formation of single and

cluster vacancies that in turn lead to lattice instabilities,

which eventually manifest themselves as macroscopic sur-

face modifications.1,2 The anti-bonding states can be reached

even when the incident photon energy is not sufficient for

direct excitation, via the so-called two-hole surface states,

whose formation competes with the relaxation process taking

place on the sub-nanosecond time scale. In fact, transition to

the anti-bonding state can be achieved by successive excita-

tion events. Finally, in this low-I irradiation regime, desorp-

tion of excited products may also appear as a result of the

negative electron affinity of solids.3

In contrast, at the high intensity irradiation (high-I) re-

gime, with photon energy either above or below the bandgap,

thermal ablation of the semiconductor takes place producing

extensive surface modifications as a result of mass loss in the

form of ionized and neutral species: atoms, molecules and

small clusters.4 Surface structuring observed in the ablation

regime is generally related to the backscattering of the ejected

products in collisions with the surrounding atmosphere.5

It is noteworthy that considerably less attention has been

directed to studies of semiconductor surface modifications

induced by irradiation at the intermediate-I regime, which

produces high density of electronic excitation in the solid but

leads to deposited energy that is well below the thermal abla-

tion threshold. In this case surface modifications may appear

as a result of local expulsion of neutrals and excited species

at the nanoscale because of electronic energy transfer from

excitons or electron-hole plasma (EHP). The critical excita-

tion density of the bulk solids can be compared to the Mott

density, which corresponds to the semiconductor-metal tran-

sition.6 Above the Mott density, excitons lose their individ-

ual character, resulting in EHP formation.

A relevant effect in bulk solids, which has received

much attention during recent years, is the so-called “cold

melting”7–9 observed upon irradiation of solids with ultra-

short laser pulses and studied by means of time-resolved

reflectivity and x-ray diffraction measurements. A non-

classical mechanism has been proposed, in order to explain

“cold melting” that involves solid matrix destabilisation via

a transfer of approximately 15% of bound valence-band

(VB) electrons to the conduction band (CB).10 Such an

extensive electronic excitation can take place by use of
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excitation pulses with durations shorter than the characteris-

tic time of electron-phonon relaxation: sL� se-ph� 1–10 ps.

In this context, processes involving high density elec-

tronic excitation of semiconductors appear quite interesting

both in terms of understanding a number of fundamental

phenomena, for example, electronically induced non-

equilibrium phase transitions and in terms of exploring new

technological regimes for materials processing or photonic

applications.11

Recently, Shih et al.12 have reported on the fast dielec-

tric function analysis of mono-crystalline ZnO that was

found to be strongly perturbed by a high charge-carrier den-

sity. Employing femtosecond pulses from a Ti:sapphire laser

(800 nm) with energy density 240 mJ/cm2, slightly below

the ablation threshold (300 mJ/cm2) they observed interest-

ing features related to charge and exciton relaxation mecha-

nisms. No systematic observations concerning crystal

surface structure, following irradiation in this regime, were

reported, while ripples were observed for irradiation above

the ablation threshold. Considering that the bandgap energy

for ZnO is much higher than the photon energy employed, it

is understood that the density of electronic excitation

achieved in these experiments was rather limited because of

a low-probability inherent to multiphoton transitions; absorp-

tion by impurities and structural defects in these conditions

results in thermal ablation. Clearly, a higher electronic exci-

tation density regime can be better attained through a direct

interband excitation of ZnO with UV photons at k� 360 nm.

Using direct interband excitation of a femtosecond KrF

laser (248 nm; 450 fs), we have recently observed a giant

photoluminescence (PL) enhancement upon irradiation of

monocrystalline ZnO samples. This PL enhancement corre-

lates with the surface roughness modifications which were

found to appear even at irradiation energy density (fluence)

values being as much as 10 times lower than the ablation

threshold fluence (Ea ¼ 115 mJ=cm
2
).13 Although PL emis-

sion is often sample-dependent (because of the different

trace impurities profile in differently prepared crystals), the

enhancement of photoluminescence, produced upon ultra-

fast irradiation of ZnO crystals, can serve as a sensitive

probe of the induced surface micro- and nano-structuring.

We have addressed the macroscopic response of irradiated

ZnO samples, while the microscopic picture of the effect

was beyond the scope of those studies.

In this communication, we show that irradiation of ZnO

leading to high-density electronic excitation, above the Mott

density but well below the ablation and even melting thresh-

olds, can strongly affect the surface and bulk morphology of

the crystalline samples. We show a correlation of PL emis-

sion with the extent of the observed surface nanostructuring,

which has a characteristic unit size much below the diffrac-

tion limit (1/25k). Notably, the observed effects are repro-

ducible for different ZnO samples and seem to be of

universal character for semiconductor solids.

II. EXPERIMENT

Laser experiments were carried out at the Ultraviolet

Laser Facility operating at IESL FORTH (Heraklion, Greece)

on a hybrid system comprising a distributed feedback dye

laser/KrF excimer laser delivering 450 fs pulses at 248 nm

at a repetition rate of 1–10 Hz and energy of 10 mJ spatially

distributed across an area of 3 cm2� 2 cm2 (Ref. 14). Mono-

crystalline ZnO samples with h0001i orientation (tolerance

6 0.5�) and O-terminated were fabricated by a hydrothermal

method and supplied by Semiconductor Wafer Inc. in pellets

10 mm3� 10 mm3� 0.5 mm3 in size with both sides polished

(surface roughness 1.0 nm). The laser beam was gently

focused onto the sample surface at normal incidence into a

circular spot of 1 mm or 50 lm diameter. The energy on the

sample was varied by using two reflective attenuators and

measured using an energy meter. The fluence was carefully

calculated taking into account the spot geometry. As a result,

the samples were irradiated with fluence in the range of 0.3 to

150 mJ/cm2 under ambient atmosphere and at room tempera-

ture. The number of irradiation pulses was 1–104 in the pres-

ent experimental series.

Besides single laser pulse irradiation experiments, a se-

ries of double-pulse measurements was carried out, termed

“pump-pump” experiments in order to clarify the energy

threshold for surface modification. By use of a Michelson-

type interferometer, the original laser beam was split into

two beams of equal intensity, which were collinearly super-

imposed on the sample surface. A time delay between the

two laser pulses of 0–1000 ps was introduced by translating

one interferometer arm.

Irradiation experiments were performed in two modes:

with large beam opening and with spatial beam selection.

Using the large beam opening mode permits irradiation of a

larger sample area (diameter 1 mm) suitable for ex situ bulk

characterizations: PL measurements, x-ray diffraction, etc.

In contrast, the fine surface analysis by emission scanning

electron microscopy (FESEM) was performed on a much

smaller area of the sample, approximately 50 lm in diameter

irradiated using the spatial beam selection mode. This per-

mits accurate laser fluence control at the expense of energy

and, hence, modified ZnO mass. The beam profiles corre-

sponding to the two irradiation modes are shown in Fig. 1.

The focused beam homogeneity was monitored on a

UV-CCD camera (Fig. 1). The spatial distribution of the

energy in the 1 mm laser spot was reproducible consisting of

a relatively smooth plateau with several local maxima of av-

erage diameter around 50–100 lm and energy at 60% or

higher relative to the mean intensity measured across the

whole laser spot. Additionally the uncertainty related to the

pulse-to-pulse laser energy fluctuations was estimated to be

approximately 20%. Summing up, in experiments performed

at the large beam opening mode, the absolute fluence error

bar at approximately 80% was estimated as the sum of local

and temporal fluctuations. For experiments performed at the

spatial beam selection mode, a small part of the laser beam

filtered by an iris diaphragm was focused on the sample: the

energy distribution over the irradiated spot of �50 lm diam-

eter was having a smooth Gaussian shape with no spikes.

The laser fluence definition in this mode was only related to

the pulse-to-pulse laser energy fluctuations being about 20%.

The level of sample excitation was controlled through

the PL spectra intensity. The photoluminescence was

124310-2 Museur et al. J. Appl. Phys. 110, 124310 (2011)
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collected by a quartz lens and focused on a multimode quartz

optical fiber. A compact spectrograph (TRIAX-320, Horiba

Jobin-Yvon) equipped with a concave holographic grating

(600 grooves/mm), combined with an ICCD detector

(DH520-18 F, Andor Technology) was used to record the

time-integrated emission spectrum from 200 to 800 nm with

a resolution of about 0.4 nm. A picosecond-resolution streak

camera (C5680 series by Hamamatsu Photonics) was used

for PL lifetime measurements.

Low temperature PL spectra were measured ex situ at

SUPERLUMI experimental station of HASYLAB (synchro-

tron DESY, Hamburg).15 Briefly, samples were cooled down to

8 K and irradiated by monochromatized synchrotron radiation

(SR) with D k ¼ 3:3 Å under high vacuum (�10�9 mbar). The

measurements of luminescence spectra were carried out using a

visible 0.275-m triple-grating ARC monochromator equipped

with a CCD detector or a photomultiplier operating in the pho-

ton- counting mode. The pulse structure of SR (130 ps, 5 MHz

repetition rate) enables time-resolved luminescence analysis at

time-scale of 200 ns with sub-nanosecond temporal resolution

and corrected for the primary monochromator reflectivity and

SR current. Spectra can be recorded within a time gate Ds
delayed after the SR excitation pulse. Typically two time gates

have been used simultaneously: a fast one of D s1 ¼ 2� 8 ns

and a slow one of D s3 ¼ 50� 200 ns.

The samples were structurally characterized by using x-

ray diffraction (XRD) installation INEL XRG 3000 with

CuKa radiation with Nickel filter.

The surface morphology was examined on a Jeol Scan-

ning Microscope JSM 7000 F, which employs a Schottky

type field-emission (T-FE) gun for the electron source oper-

ating at pressure 10�8 Pa, with a function for high-resolution

image observation. The spatial resolution achieved is 1.2 nm

at 30 kV (max accelerating voltage).

III. RESULTS AND DISCUSSION

A. Nanostructuring of monocrystalline ZnO

The characteristic UV photoluminescence emission of

ZnO is employed as an indirect probe to determine the nature

and the extent of electronic excitation. For this reason, room-

temperature luminescence spectra of the ZnO monocrystal

were collected for different values of excitation fluence fol-

lowing excitation with 450 fs laser pulses at 248 nm (Fig. 2).

The low-density excitation regime was realized at fluence

values E� 0.3 mJ/cm2 giving rise to exciton luminescence

emission with a spectral maximum at 379 nm (Fig. 2, curve

a). As excitation density increases, more and more electron-

hole pairs are created within the excitation volume. In fact,

since both the exciton and the EHP lifetimes are long com-

pared to the laser pulse duration (450 fs), their instantaneous

number density ne-h can be considered as proportional to the

laser fluence. When ne-h increases above the Mott density,

excitons are no longer a stable elementary excitation and the

electron-hole plasma is produced. The critical Mott density

of ZnO crystals nMott can be evaluated according to:

nMott ¼
kBT

2a3
BEB
� 4� 1019 cm�3; (1)

where kB is the Boltzmann constant, T is temperature and EB

¼60 meV and aB ¼ 1:8 nm are, respectively, the exciton

binding energy and Bohr radius.16,17 The EHP luminescence

continuum is broad and has its emission maximum at about

400 nm. It shows up in the measured spectra (Fig. 2, curve b)

as the long-wave shoulder of the principal exciton band.

The growth of the EHP is shown in Fig. 3, where the inte-

gral intensity of the EHP continuum is plotted as a function of

the laser fluence. The EHP band appears at fluence values

E�0.5 mJ/cm2 and continues growing for E up to �4 mJ/cm2.

This result clearly demonstrates the onset of the EHP regime

at EEHP¼0.4 6 0.1 mJ/cm2. Taking into account the intrinsic

material absorption, this value corresponds to the instantane-

ous density of photoinduced charges nMott from Eq. (1). We

therefore assign the threshold fluence EEHP to the Mott transi-

tion. Above the Mott density, the exciton PL intensity is no

longer linearly dependent on laser fluence reaching saturation

at E� 4 mJ/cm2. This is a strong indication that non-radiative

FIG. 2. (Color online) Room temperature PL emission spectra of 0001 ZnO

monocrystal at fluences (a) 0.3 mJ/cm2 and (b) 3 mJ/cm2. Inset: PL emission

decay at fluences (a) EL¼1 mJ/cm2 and (b) 18 mJ/cm2.

FIG. 1. (Color online) Spatial profile of the KrF laser beam (single shot) on

the sample in two irradiation regimes (a and b) with large beam opening and

(c) with spatial beam selection of one beam and (d) of two superimposed

beams. The spot diameters are (a and b) �1 mm and (c and d) �50 lm (full

width half maximum), respectively.

124310-3 Museur et al. J. Appl. Phys. 110, 124310 (2011)
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processes involving exciton quenching become dominant in

these conditions.

The PL decay of EHP shows a major component with

lifetime 140 ps at low irradiation fluences (Fig. 2, curve a in

inset). However, under highly saturating conditions (E¼ 18

mJ/cm2) it becomes somewhat longer s � 220 ps (Fig. 2,

curve b in inset).

Upon exposure of the monocrystalline ZnO sample to

the UV femtosecond pulses structural modifications were

observed as shown in Fig. 4 that could be correlated with the

irradiation fluence. In fact three types of structuring can be

evidenced. (1) At fluence levels below 11 mJ/cm2 rare

volcano-like nanoholes, randomly distributed across the

sample surface, were observed [Fig. 4(a)] having a diameter

of D1 � 60 nm and showing clear melt-like features around

their rims. With prolonged irradiation, the initial D1-holes

disappear while new ones appear of the same size. The

D1-holes formation process terminates at high doses giving

rise to just flat featureless surfaces. (2) At higher fluence

levels, but below 40 mJ/cm2, extensive nanostructuring

appears all across the sample surface [Fig. 4(b) and 4(c)].

The smaller nanoholes of D2 � 10 nm diameter appear

quasi-periodically separated by a distance of approximately

30 nm. They are aligned either along straight or zigzag-type

lines. As a result, the monocrystalline surface breaks down

to domains of size �102 nm surrounded by the intercon-

nected D2-nanoholes. The contrast of this remarkable pattern

initially improves with irradiation time. The structure stabil-

izes at irradiation doses above �1 J/cm2; no more changes

were observed in the dose range between 1 and 102 J/cm2.

(3) At laser fluences above 40 mJ/cm2 the nanostructuring

pattern of regime (2) remains, however the surface becomes

unstable [Fig. 4(d)]. Swelling, detachment of small nano-

layers and formation of metal (Zn) nanoparticles can be

observed.

We remark that the laser fluence levels corresponding to

regimes (1)–(3) are well below the ablation threshold measured

to be Ea¼115 mJ/cm2. The critical laser fluence E12 separating

regimes (1) and (2) corresponds to the threshold of the PL

emission enhancement E*¼11 mJ/cm2 reported by Museur

et al.13 Moreover, the critical laser fluence E23¼40 mJ/cm2

separating regimes (2) and (3) corresponds to the beginning of

the surface melting: E23 � Em. Indeed, this fluence can be esti-

mated on the basis of known properties of ZnO: specific heat

cp ¼ 0:40 J=gK, mass density q¼ 5.7 g/cm3, melting tempera-

ture Tm¼ 2275 K and optical penetration depth d � 100 nm at

248 nm. Neglecting material thermal conductivity, one obtains

the melting threshold fluence as: Em ¼ cpqd DT � 45 mJ=cm
2

(with DT¼ Tm�Troom¼ 1982 K).

The PL emission enhancement has been confirmed in our

monocrystalline samples irradiated at fluence values above

E12. An example of the low-temperature PL spectra before and

after irradiation is shown in Fig. 5. The analyzed ZnO sample

was laser irradiated at 16 regularly spaced spots of �1 mm di-

ameter. The mean fluence was maintained at �24 mJ/cm2.

This value bears an uncertainty of about 6 19 mJ/cm2 (80%)

that reflects the spatial and temporal inhomogeneities of the

laser beam, as detailed in the experimental section. Therefore,

we can assign the related structuring mainly to regime (2),

however, the surface erosion characteristic of regime (3) is

attributed to irradiation at fluence levels corresponding to the

positive extremes of the beam energy fluctuations. The inte-

grated PL from the modified surfaces is found enhanced 10

times relative to that of the unexposed crystal. Moreover, the

PL spectral shape changes becoming more symmetric as a

result of an apparent low-energy tail extension.

The PL emission line shape of the fresh ZnO monocrys-

tal, with a full width at half maximum (FWHM) of about 6

meV, is defined by the A excitons bound to neutral donors

(DBE): D0
1XA at 3.3598 eV, D0

2XA at 3.3605 eV, D0
3XA at

3.3618 eV, D0
4XA at 3.3650 eV and D0

5XA at 3.3664 eV

with D0
2XA being the most intense, which is in agreement

with Teke et al.18 The low-energy tail of PL is formed by

transitions previously assigned to the acceptor-bound exci-

tons (ABE): stronger A0
1XA at 3.3564 eV and weaker A0

2XA

at 3.3530 eV and A0
3XA at 3.3481 eV (see review in Ref.

16). These ABE transitions seem to intensify after laser irra-

diation of the monocrystal. In contrast, two-electron satellite

FIG. 3. (Color online) Intensity of the 0001 ZnO monocrystal exciton (a)

PL and (b) EHP emissions as a function of laser fluence (248 nm, 450 fs).

The vertical dashed line indicates the onset of the EHP emission continuum.

FIG. 4. FESEM images of the irradiated 0001 ZnO monocrystal (248 nm,

450 fs) at fluences (a) 10 mJ/cm2, (b and c) 20 mJ/cm2, and (d) 40 mJ/cm2;

corresponding irradiation dose is (a) 2.5 J/cm2 and (b–d) 102 J/cm2.

124310-4 Museur et al. J. Appl. Phys. 110, 124310 (2011)
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TES transitions in the lower-energy spectral region of

3.32–3.34 eV were not observed. The chemical origin of the

ABE peaks is not yet understood, however, the A0
1XA one

has been suggested to be due to the presence of Na or Li

atoms. Because the impurities content is not expected to

increase upon irradiation, the intensified ABE transitions

may be related to surface states, whose density increases

upon structuring.

The intensification of the exciton PL is accompanied by

an intensity decrease of a broad-band red PL at �1.8 eV by

almost 10 times (Fig. 5, inset). This PL is characteristic of

non-doped bulk ZnO and has not been yet identified.16 We

remark that the green luminescence band commonly

observed in both non-doped and n-type ZnO at 2.5 eV does

not show up in the PL emission spectra of our samples. Both

oxygen, VO, and zinc, VZn, vacancies were previously evi-

denced as origins of this band. This fact indicates that the

monocrystalline ZnO sample does not lose its excellent stoi-

chiometry upon irradiation. As we will see in the following,

the photoinduced bond breaking does not lead to isolated

vacancies but to nanostructuring.

Results from XRD studies performed on the fresh and irra-

diated ZnO monocrystal (same sample as the one used in the

PL studies (Fig. 5) are shown in Fig. 6. The main 0001 peak of

the oriented monocrystalline ZnO is at 2h¼34.456� with

Dfwhm¼0.067�. The peak position and linewidth change after

irradiation and become respectively 34.418� and 0.147�. Since

the characteristic penetration depth of the x-ray is �100 lm,

this indicates profound bulk modification of the irradiated ma-

terial. The nanostructuring results in a smaller monocrystalline

domain of�0.1 lm size and increases the crystalline interplane

c-distance by Dd=d ¼ Dh= tanðhÞ ¼ 1:1� 10�3. At the same

time, the surface erosion of regime (2) may produce disoriented

secondary crystallites at the sample surface, whose diffraction

pattern resembles that of ZnO powders. However, the mass of

the disoriented matter is extremely low. It is noted that collect-

ing the XRD data from this disoriented matter takes about two

days, while the main Bragg bulk reflection 0001 peak shows up

after just several seconds.

Apparently, the sample modification in this irradiation

regime, E12 � EL � E23 (E12 ¼ 11 mJ=cm
2

and E23

¼ 40 mJ=cm
2
) is not related to thermal effects. This was

confirmed by the pump-pump experiments. The fluence of

each beam was fixed to 9 mJ/cm2, which (including

fluctuations 61.8 mJ/cm2) remains below the nanostructur-

ing threshold energy, E12. On the other hand when the two

beams are superimposed, the total fluence falls into regime

(2) in which nanostructuring takes place. The delay between

the two pulses, Dt, thus evidences the lifetime of the transi-

tory state, which permits the two contributions to be additive.

FESEM images of the monocrystal surface following two-

pulse irradiation corresponding to different delay times, in

the range of 0–500 ps, are shown in Fig. 7. It is quite evident

that nanostructuring does not change appreciably for as long

as Dt� 200 ps while it gradually reduces and eventually

disappears at longer delays. This result suggests the lifetime

of a hypothetical excited state responsible for the nanostruc-

turing (NS) to be 200 ps< sNS< 250 ps.

Notably, this value sNS is characteristic of the photolu-

minescence decay of EHP in our high-quality monocrystal-

line ZnO at the relevant fluences E12 < EL < E23, whose

dominant component lifetime is s¼ 220 ps (see Fig. 2, curve

b of inset). This value is in agreement with PL decay lifetime

previously measured on monocrystalline ZnO samples,

which vary from 116.5 ps to 170 ps depending on whether

the fs-laser irradiation fluence was corresponding to excita-

tion below or above the Mott density.18 A detailed analysis

of the PL decay also evidences a very short component with

a lifetime of 36 ps. This minor, short-lived component of

EHP (�8% energy) corresponds to that reported in measure-

ments performed under similar experimental conditions (300

fs, 273 nm) in monocrystalline (0001) ZnO;20 it implies a

competing thermal cooling of conduction-band electrons and

valence-band holes toward the exciton band bottom (renor-

malized bandgap) through multiple LO-phonon emissions.17

The samples used in the present experiments exhibit very

strong exciton PL (that further improves after irradiation),

which is important but seems not to be the major energy

FIG. 5. (Color online) Low temperature (8 K) UV PL emission spectra of

the (a) fresh and(b) irradiated 0001 ZnO monocrystal (sample irradiation:

248 nm, 450 fs, fluence 24 6 12 mJ/cm2, mean dose 360 J/cm2). The inten-

sity of spectrum (a) is multiplied by a factor of 10. Inset: full UV-visible

emission spectrum of the irradiated sample.

FIG. 6. (Color online) XRD pattern of the (a) fresh and (b) irradiated 0001

ZnO monocrystal recorded with the same accumulation time of 38 s (sample

irradiation: 248 nm, 450 fs, fluence 24 6 12 mJ/cm2, mean dose 360 J/cm2).
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relaxation channel. This is confirmed in recent studies by

Ucer et al.19 who have reported 38% quantum efficiency for

the D0X luminescence of in c-axis oriented monocrystalline

ZnO samples at low excitation, below the Mott density.

The PL saturation observed with an increase of excita-

tion fluence above the Mott limit (see Fig. 3) proves that

most of the photoinduced EHP relaxes through a non-

radiative channel. The measured sNS � 200–250 ps in the

pump-pump experiments corresponds to the lifetime of the

EHP decay s¼ 220 ps. We therefore believe that the meas-

ured decay time belongs to a transient state involved in the

relevant EHP energy relaxation channel. The high EHP den-

sity of qeh�1021 cm�3, which corresponds to the nanostruc-

turing threshold E12¼ 11 mJ/cm2, opens an additional

energy dissipation channel leading to the nanostructuring.

B. Mechanism of nanostructuring

Possible mechanisms of the PL enhancement have been

recently discussed by Museur et al.,13 who concluded that

the origin for the enhanced emission was most likely a finest

nanostructuring at the scale below 100 nm. Indeed, the rele-

vant nanostructuring is evidenced by the present experiments

and its mechanism is discussed in the following.

A correlation between PL improvement and conductivity

increase has been reported in monocrystalline ZnO upon laser

irradiation.21,22 This effect has been earlier attributed to the

redistribution of point defects, shallow interstitial Zn donors,

migrating from decorated dislocations into the crystal bulk.

This mechanism, however, does not seem to be appropriate in

our case, since n-doped ZnO exhibit strong characteristic

green PL, which was not observed in our samples.

It is known that damage in crystals involves energy

localization, since the maximum elastic energy per atom

which can be stored in a solid before plastic deformation, is

considerably lower than that required for bonds breaking.23

The dislocation density in monocrystalline ZnO grown using

a hydrothermal method is expected to be below �106 cm�3

(see Ref. 24). This value can be considerably increased upon

irradiation becoming as high as �1010 cm�2, which would

explain the observed structuring with the mean period of 100

nm. However, it is known that dislocations act as nonradia-

tive recombination centers producing significant quenching

of the exciton PL in non-doped ZnO crystals,25,26 which is

not our case.

The observed nanostructuring can be due to cluster

vacancies, which accumulate on dislocation sites. The related

mechanism of Cottrell atmosphere is well known in materials

elasticity theory and explains the residual stress reduction on

the basis of interstitials migration to dislocations.27,28 Accord-

ingly, we propose that point defects migrate toward disloca-

tions following sample irradiation thus producing nucleation

and growth of cluster vacancies. This phenomenon may be

amplified by the local melt state along these dislocations,

which provides to it the threshold character.

In fact, the formation of vacancies by bonds breaking is

observed at much lower irradiation fluences and yields.1,2

The reason of the net acceleration and threshold behavior of

the observed phenomenon may be so-called electronic “cold

melting,” which accompanies the formation of vacancies.

This effect can be observed in bulk semiconductors when

�15% of the valence band electrons are transmitted into the

conduction band,7,29 which requires laser fluences close to

the ablation threshold. On the other hand, Kwak et al. have

observed surface disorder of non-thermal nature at much

lower excitation level than that needed for global instabil-

ity.30 This electronic melting would intensify mass transfer

in the surface layer accelerating the nucleation-growth of

cluster vacancies. The threshold fluence of nanostructuring

11 mJ/cm2 indeed corresponds to the excitation �2.5% of

conduction band electrons in ZnO.

A tentative scheme for the structuring mechanism is

depicted in Fig. 8. The EHP is created into the ZnO crystal

with laser excitation density above the Mott density. The

valence-band holes can be localized onto the short-lived (typi-

cally subnanosecond31) states resulting in bond breaking and

surface atoms desorption according to the known two-hole

mechanism. This can be observed as a random removal of sur-

face atoms and clustering of vacancies. However, when laser

fluence is EL � E12 ¼ 11 mJ=cm
2
, the electronically melt

state is reached, which can accelerate transport of vacancies

resulting in the observed intense nanostructuring. This melt

state, however, is significantly different from the thermally

melt state, which induces strong surface deformation and ero-

sion [the beginning of this process is seen in Fig. 4(d)].

The observed surface structuring in the pump-pump

experiments can be satisfactorily described by a simple model

taking into account vacancies formation and clustering:

FIG. 7. FESEM images of the 0001 ZnO monocrystal surface irradiated

with a pair of pulses at different inter-pulse delays Dt: (a) 0, (b) 100 ps, (c)

200 ps, (d) 300 ps, (e) 400 ps, and (f) 500 ps (sample irradiation: 248 nm,

450 fs, fluence in each pulse 9 mJ/cm2, dose 18 J/cm2).
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S / Nvac � pnucl; (2)

where S is structure density, Nvac is vacancies number den-

sity, and pnucl is probability of cluster vacancies nucleation.

In the pump-pump experiments: Nvac / EL1 þ EL2 ¼ 2EL

and pnucl ¼ s�1
nucl=ðs�1

nucl þ s�1
q Þ, where snucl and sq represent

the characteristic nucleation and nucleation quenching life-

times, respectively. The latter is attributed to the lifetime of

a hypothetical transient melt state enabling high mobility of

vacancies: sq ¼ smelt. It can be represented by

smelt 	 tEL�E12
¼ s� ln 1þ eDt=s

� �
EL=E12

� �
; (3)

where s is the EHP lifetime, obtained from the luminescence

decay in Fig. 2 (inset). The expression describing nanostruc-

turing as a function of the delay Dt between two laser pulses,

each with a fluence equal to EL, is

S ¼ kEL 

ln 1þ eDt=s
� �

EL=E12

� �

snucl=sþ ln 1þ eDt=sð ÞEL=E12ð Þ : (4)

The dependence of S on Dt for the experimental values of

E12=EL ¼ 1:3 and s¼ 220 ps is shown in Fig. 9 for different

snucl. This model explains the absence of structuring in Fig. 7

for Dt> 200 ps. Moreover since the experimentally observed

nanostructuring density is not very different for short delays,

Dt� 200 ps (see Fig. 7), it better corresponds to the case

snucl � s in Fig. 9. Thus, it can be concluded that the vacan-

cies nucleation time is of the order of 10 ps or shorter.

We remark that at laser fluence of 20 mJ/cm2 and irradi-

ation dose of 100 J/cm2 we observe the surface having 5% of

void space in the form of nanoholes [Fig. 4(b) and 4(c)].

This value is typical of the total number of vacancies pro-

duced with similar irradiation doses according to the

two-hole mechanism.1,2 However, no acceleration of the

structuring kinetics was observed, which implies that the va-

cancy production is not enhanced by the existing vacancies.

Moreover, the nanoholes maintain their size while their den-

sity saturates at long irradiation times. The nanostructured

surface may therefore be more stable against defect creation

than the initial one.

In support of the proposed mechanism, we refer to the

size-dependent pore formation in GaSb nanoparticles that has

been recently observed.32 The suggested mechanism involves

vacancies cluster growth forming a void whereas surface

segregation of interstitials causes a two-phases separation.

According to that work, void formation can only be observed

in particles larger than 10 nm. The underlying mechanism

seems to be similar to that in the present experiments. Unlike

GaSb, oxygen in ZnO can form gaseous molecules, which

escape from the sample. The remaining element, Zn, is sub-

jected to aggregation leading to formation of Zn-nanoparticles

at prolonged irradiation; the beginning of this process can

be observed in Fig. 4(d). It is noted that a complete surface

coverage by Zn-nanoparticles was observed at higher fluences

and irradiation doses above 300 J/cm2.

We remark that the majority of dislocations in mono-

crystals are formed close to the surface and their density in

the nearest 100-lm layer beneath the surface can be consid-

erably higher than that in the bulk. Since dislocations serve

as nucleation sites for vacancies, it is not surprising that

nanostructuring begins at the sample surface. The issue of

the vacancies mobility in the melt layer and the reason of

their quasi-periodic clustering remain unclear.

As a result of the nanostructuring, the density of disloca-

tions may decrease, which leads to an increase of the exciton

PL efficiency, in agreement with our experimental results. In

parallel the decrease of the red PL band intensity allow us to

assume that this band can be dislocation-related.

IV. CONCLUSION

We report on surface modifications of monocrystalline

wurtzite (0001) ZnO excited by femtosecond laser pulses

(248 nm) above the Mott density (EMott�0.4 mJ/cm2) but

well below the ablation threshold fluence (Ea¼115 mJ/cm2).

Three types of structuring can be evidenced based on the

laser fluence, EL, defining three irradiation regimes. (1) At

FIG. 8. (Color online) Tentative scheme of the processes and states

involved in the nanostructuring mechanism.
FIG. 9. (Color online) Surface structure density vs inter-pulse delay Dt in

pump-pump experiments, according to Eq. (4) (E*/EL¼ 1.3, s ¼220 ps).
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fluence levels EMott < EL < E� ¼ 11 mJ=cm
2

rare volcano-

like nanoholes form randomly across the sample surface hav-

ing a diameter of D1 � 60-nm and a clear melt-shape crater

rim. We assign the formation of this type of nanoholes to

deep impurity explosion by multiple excitons condensation.

(2) At fluence levels E� < EL < Emelt ¼ 40 mJ=cm
2

exten-

sive nanostructuring appears all across the sample surface.

Nanoholes with a diameter of 10 nm and inter-hole distance

�30 nm are arranged along straight and zigzag-type lines.

This nanostructuring results in the formation of smaller

monocrystalline domains of �102 nm and increases the crys-

talline interplane c-distance by 0.11%. The excitonic PL of

the irradiated sample is found to increase by about 10 times.

We tentatively assign the observed structuring to the

nucleation-growth of cluster vacancies at dislocations accel-

erated by the non-thermal (electronic) melting of the surface

layer, which provides threshold character to this phenom-

enon. On the basis of dual pulse irradiation (pump-pump

experiments) the melt state lifetime is estimated to be quite

similar to the EHP lifetime (s¼ 220 ps). A simple model is

presented permitting a conclusion about the short nucleation

time of the photoinduced vacancies in the melt state,

snucl � s. (3) At laser fluence levels Emelt < EL the surface

becomes unstable and subjects to swelling, detachment of

small nanolayers and formation of zinc nanoparticles.
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