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Abstract: We numerically investigate the influence of plasma defocusing in 
high harmonic generation (HHG) by solving the first-order wave equation 
in an ionized medium and defining an enhancement factor to quantitatively 
analyze the influence of plasma defocusing. While degrading the driver 
pulse intensity, plasma also has a strong impact on HHG phase-matching. 
Combined with the HHG wavelength scaling law, our results give an 
estimate of HHG efficiencies with different driver wavelengths and show a 
limited HHG efficiency in high density media. 
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1. Introduction 

High harmonic generation (HHG) has become a promising way towards table-top coherent 
EUV and soft X-ray light sources [1–3]. In recent years, it has been shown theoretically and 
experimentally, that the maximum available photon energy from HHG based sources can be 
extended to the water window, and even keV photons are achievable by using longer driver 
wavelengths [4]. Therefore, techniques, such as optical parametric amplification (OPA), have 
been developed to generate high intensity IR pulses with wavelengths longer than the 
conventional 800nm wavelength from Ti:Sapphire amplifiers [5]. Several groups have already 
demonstrated HHG results with different IR driver pulses [3,6,7] and keep pushing OPA 
systems to higher pulse energy and longer wavelengths in pursuit of more efficient HHG and 
higher photon energy [8]. 

However, both theory and experiment show a severe drop of the single atom efficiency 

(SAE) of HHG that is proportional to λ1
−(5~6)

, at a given HHG driver wavelength λ1 [9–11]. To 
compensate the low single atom efficiency, one straight forward way is to increase the 
number of participating atoms by applying higher pressure to the interaction region or 
equivalently extending its length. This approach especially improves the low HHG efficiency 
of helium [9]. For low atomic density, the efficiency is enhanced quadratically with pressure 
[12], but plasma defocusing starts to become important as the free electron density increases. 
A previous study has shown that plasma defocusing in neon at 80mbar can significantly 
reduce the peak intensity of an 800nm driver pulse and diverges the driver pulse energy 
within a few hundred microns [12]. This effect not only decreases the cutoff photon energy 
but also shortens the interaction length for HHG. Although many HHG works have 
emphasized the importance of plasma defocusing and attributed many experimental 
phenomena to it [12–16], a quantitative discussion about the influence of plasma defocusing 
in HHG efficiency is missing. 
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In this work, we numerically investigate plasma defocusing on IR pulse propagation in Ne 
and He and discuss how it affects HHG by defining an enhancement factor, which is a 
generalization of the analysis of Ref [17]. For different pressure, the pulse intensity and 
ionization level may then show quite different distributions that strongly impact the phase-
matching condition and HHG efficiency. The enhancement factor shows how HHG efficiency 
varies when the medium pressure changes or different gases and medium geometries are used. 
According to our result, plasma defocusing has strong impact on both the phase-matching 
condition and the driver pulse intensity. Increasing medium pressure only results in a limited 
enhancement of the HHG efficiency even if reabsorption is negligible, and it can only 
partially compensate the loss of SAE when using longer wavelength driver pulses. 

2. Numerical model for plasma defocusing 

Our numerical analysis first calculates how an optical pulse propagates and interacts with 
HHG gas media. In our situation, the model equation should include the effects of diffraction, 
self-focusing, plasma defocusing, and ionization loss. Dispersion and other nonlinear effects 
can be neglected because the medium under consideration is either a short gas jet or a low-
pressure 1cm-long gas cell. In the slowly evolving wave approximation, a first order 
propagation equation adapted from Ref [18]. is employed in our model: 
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where, E is the complex representation of the electric field; z and τ are the propagation 
distance and the retarded time in the retarded time frame respectively; k is the wave-vector at 

the carrier frequency; 2

⊥∇  is the transversal Laplace operator; n2 is the nonlinear index of 

refraction; ωp is the plasma frequency; Ip is the ionization potential of the atom; ρ is the 
number density of the ionized atoms. We assume that tunneling ionization is the only 
ionization mechanism, and therefore, the ADK formula gives an accurate description of the 

ionization rate ρ τ∂ ∂  [19]. Since tunneling ionization depends on the phase of the electric 

field, the ionization loss term contains the real part of the electric field. Because of cylindrical 
symmetry, E is a function of z, τ, and the radial coordinate r. 

In our numerical study, we consider two different gases interact with a 2.5mJ, 40fs IR 
pulse centered at several different wavelengths. The gas is neon or helium because of their 
large ionization potentials and high HHG cutoffs. The geometry of the gas nozzle is either a 
gas jet or a gas cell both of which are frequently used in experiment. The gas jet is assumed to 
have a Gaussian pressure distribution with 1mm full-width-half-maximum (FWHM) [20], and 
the laser pulse is focused at the center of the gas jet. The gas cell length is 1cm, and the laser 
pulse is focused at the center of the cell, too. The pressure profile of the gas cell is assumed to 
be uniform inside the cell and has a Lorentzian shape at both ends [21]. Although it has been 
shown experimentally that the relative position between the focus and the medium can be 
optimized for efficiency, we neglect this tuning degree of freedom for simplicity. We consider 
six different wavelengths 0.8µm, 1.3µm, 1.6µm, 2µm, 3µm, and 4µm, which cover most 
wavelengths of interest in current near and mid-IR HHG experiments. For comparison, all IR 
pulses have the same pulse energy 2.5mJ and pulse duration 40fs. The beam sizes are 75µm in 
He and 95µm in Ne that correspond to intensities of 7x10

14
 W/cm

2
 and 4.4x10

14
 W/cm

2
 

respectively. In this paper, the medium temperature is assumed to be 300K, and then 1bar 
pressure is equivalent to a density of 2.4x10

19
 atoms/cm

3
 if we assume the medium is an ideal 

gas. In a real gas jet where the temperature can be much lower than 300K due to free 
expansion, the pressure in our simulation should be referred as atomic density. 

Figure 1 shows the peak intensity and ionization level distribution when a 2.5mJ, 40fs, 
2µm laser pulse propagates from negative z to positive z through a He jet with three different 
pressures. The laser pulse is focused to an intensity of 7x10

14
 W/cm

2
 at the center of the jets (z 

= 0). Figure 1 (a)–(c) show the peak intensity of the pulse during propagation. The jet is 
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located at z = 0, and the Gaussian curve in each plot shows a relative He pressure (atomic 
density) profile along the z-dimension. Because the beam spot is much smaller than the 
characteristic length of the jet, we neglect the pressure variation in the transverse spatial 
dimensions. In Fig. 1(a), the gas density is small, so the plasma doesn’t have too much impact 
on the pulse, and the intensity evolution is similar to free space propagation. As the pressure 
becomes higher in Fig. 1 (b) and (c), plasma defocusing starts to play an important role. A 
drop of intensity near the center of the jet can be seen. Such a drop of intensity hinders the 
pulse from efficiently ionizing the gas and generating high harmonics. Figure 1 (d)–(f) show 
the distribution of the ionization level (i.e. the fraction of atoms that are ionized) after the 
entire pulse leaves the medium and before the plasma starts to diffuse or recombine with ions. 
The pressures in Fig. 1 (d)–(f) are the same as in Fig. 1 (a)–(c) respectively. Because 
ionization is a highly nonlinear process, the ionization level is more sensitive to plasma 
defocusing than the peak intensity of the laser field. While the ionization level in Fig. 1(d) 
distributes widely from negative to positive z domain, the ionized regions in Fig. 1 (e) and (f) 
are mostly restricted in the negative z domain. Furthermore, the strong defocusing effect in 
Fig. 1(f) even prevents the pulse from approaching the center of the gas jet with a high 
intensity, so the ionization and HHG can only occur in the low pressure wing before the gas 
jet. In such situation, the high density center of the gas jet doesn’t help HHG but reabsorbs the 
high harmonic photons instead. This effect decreases the advantage of using a high pressure 
gas jet. 

 

Fig. 1. Numerical results of the 2µm laser pulse propagation toward the + z direction through a 
He gas jet. The upper row shows the peak intensity when the peak pressure at the jet is (a) 
0.1bar, (b) 1bar, and (c) 10bar. The Gaussian curves illustrate the relative pressure profile of 
the jet. The lower row shows the ionization level when the pressure is (d) 0.1bar, (e) 1bar, and 
(f) 10bar. The color scales of the intensity and the ionization level are shown on the side. 

Figure 2 shows the peak intensity and ionization level distributions when the same pulse 
considered in Fig. 1 propagates through a 1cm-long helium cell with different pressures. The 
laser pulse is focused to the same intensity (7x10

14
 W/cm

2
) at the center of the cell (z = 0). 

Compared with the jet case, the intensity and ionization level in the He cell are lower at the 
same pressure because the pulse has to propagate a longer distance in the cell and suffers 
more plasma defocusing before reaching the focus at the cell center. The ionization level 
again shows sensitive dependence on the laser pulse intensity. In Fig. 2(f), the maximum 

ionization is only 4x10
−4

, which is much less than the ionization level in the lower pressure 
case (Fig. 2(d)). An immediate effect of plasma defocusing can be seen from Fig. 1 and Fig. 2 
is the drop of the pulse intensity that reduces the cutoff photon energy or even stops HHG. 
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Besides, as will be shown in next section, the impact of plasma defocusing on the phase-
matching condition is even more dramatic to HHG efficiency. 

 

Fig. 2. Numerical results of the 2µm laser pulse propagation toward the + z direction through a 
He cell. The upper row shows the peak intensity when the pressure is (a) 0.1bar, (b) 1bar, and 
(c) 10bar. The relative pressure is shown by the flat-top curve. The lower row shows the 
ionization level when the pressure is (d) 0.1bar, (e) 1bar, and (f) 10bar. The color scales of the 
intensity and the ionization level are shown on the side. 

3. Phase-matching and HHG enhancement 

To quantitatively discuss the influence of plasma defocusing, we introduce and calculate the 
HHG efficiency for the various cases. However, solving a three dimensional (3D) time-
dependent Schrodinger equation along with the 3D wave propagation is time-consuming, so 
we follow the analysis of Ref [17]. and generalize it to include plasma defocusing effect. It 
captures and analyzes the macroscopic properties of the HHG process, including phase-
matching and reabsorption of the harmonics, and shows excellent agreement with experiment 
and HHG energy scaling [22,23]. The HHG energy of the q

th
 harmonic is assumed to be in the 

following form: 
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where A is a proportional constant; η(q,λ1), as a function of the harmonic order q and the 
driver wavelength λ1, is the single atom efficiency (SAE); w = w(r,z,τ) is the ionization rate 
given by the ADK formula; P(z) is the medium pressure; ∆kq = qk1-kq is the mismatch 
between the fundamental and the q

th
 harmonic wave-vectors; β(z) represents the absorption of 

the harmonics. The integral with respect to z is due to the coherent addition of the high 
harmonic field generated over the non-uniform pressure distribution P(z). The integral is over 
a range from –L/2 to L/2 that is long enough to cover the medium completely. Its magnitude 
square would be proportional to the harmonic intensity generated from the point (r,τ) in the 
parameter space. Then, the integrals over r and τ consider the HHG contribution from every 
part of the driver pulse and result in the total amount of high-harmonic energy in a given 
harmonic. We neglect the depletion of the ground states because the ionization level 
considered here is always less than few percents. We define the integral part of Eq. (2) as the 
enhancement factor ξ: 
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because it shows how much the SAE is enhanced by the total HHG medium. Then the total 
high harmonic energy can be rewritten as 

 .
q

E Aηξ=  (4) 

This enhancement factor ξ comprises the propagation effects of HHG and is proportional 
to the high harmonic energy, so it is useful for the investigation of the plasma defocusing 
effect. 

The wave-vector mismatch ∆kq is important in the calculation of the enhancement factor ξ. 
For a many-cycle pulse, phase-matching mainly depends on the neutral atom dispersion δka, 
the plasma dispersion δkp that is induced by the free electrons, and the mismatches δkg and δkd 
that result from the geometric phase and the dipole phase respectively [14,24]. Therefore, the 
total wave-vector mismatch can be expressed as 

 .
q a p g d

k k k k kδ δ δ δ∆ = + + +  (5) 

The geometric and dipole phases are particularly important for longer driver wavelengths 
for several reasons. Because most mid-IR OPA or OPCPA systems have to be focused tightly 
(usually with a beam size smaller than 100µm) to generate high harmonics, and then, the 
Guoy and dipole phases are not negligible. Besides, the Guoy phase is proportional to the 
driver wavelength for a fixed spot size, and the dipole phase is proportional to the driver 
wavelength cube due to the longer trajectory and higher kinetic energy of electron during 
propagation. Last, the wave-vector mismatch is also proportional to the harmonic order that is 
larger for longer driver wavelength. Here we consider the contribution from the short-
trajectory to HHG, and the dipole phase can be written as -αsI, where I is the laser intensity, 
and the coefficient αs can be calculated based on the harmonic order and the action of the 

semi-classical electron trajectory [25]. In the following simulation, αs is 5x10
−14

 rad-cm
2
/W 

for 0.8µm driver wavelength. For other driver wavelengths, the coefficients are scaled with 
the cube of the wavelength. 

 

Fig. 3. The wave-vector mismatches in a He jet at r = 0 and τ = 0 (pulse peak). The laser pulse 
and medium conditions are the same as Fig. 1, and the medium pressures are (a) 0.1bar, (b) 
1bar, and (c) 10bar respectively. The harmonic energy considered here is 500eV. In each plot, 
the blue, green, red, and yellow curves show the mismatch due to neutral atom dispersion, 
plasma dispersion, geometric phase, and dipole phase respectively. The black curve shows the 
total wave-vector mismatch that is the sum of the above four curves. 
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Fig. 4. The wave-vector mismatches in a He cell at r = 0 and τ = 0 (pulse peak). The laser 
pulse and medium conditions are the same as Fig. 2, and the medium pressure is (a) 0.1bar, (b) 
1bar, and (c) 10bar respectively. The harmonic energy considered here is 500eV. In each plot, 
the blue, green, red, and yellow curves show the mismatch due to neutral atom dispersion, 
plasma dispersion, geometric phase, and dipole phase respectively. The black curve shows the 
total wave-vector mismatch that is the sum of the above four curves. 

Figure 3 and Fig. 4 show and compare the four different sources of wave-vector mismatch 
seen by the peak of the driver pulse (i.e. at r = 0 and τ = 0) under the same driver pulse 
condition and medium structure as Fig. 1 and Fig. 2 respectively. The harmonic energy 
considered in both figures is 500eV, which is the 807th harmonic of the 2µm driver 
wavelength. The refractive indices used here for the driver pulses and the harmonics are taken 
from Ref [26]. and Ref [27]. respectively. At low pressure (Fig. 3(a) and Fig. 4(a), P = 
0.1bar), the geometric phase and the dipole phase are more dominant than the other two, and 
phase-matching (∆kq = 0) can only be realized far behind the focus. As the pressure becomes 
higher (Fig. 3(b) and Fig. 4(b), P = 1bar), all four contributions are comparable, and the total 
∆kq shows complicated behavior. Phase-matching is achieved at some point near the center of 
the medium. At even higher pressure (Fig. 3(c) and Fig. 4(c), P = 10bar), the total ∆kq 
basically follows the profile of the neutral atom dispersion because the negative plasma 
dispersion is roughly cancelled by the positive dipole and geometric phases. 

When the ionization level is maintained below a few percent, the neutral atom dispersion 
is not affected by the plasma, but the other three phase-matching factors are still significantly 
influenced by plasma defocusing. As shown in Fig. 1 and Fig. 2, the ionization level that 
determines the plasma dispersion is very sensitive to the driver pulse intensity, which drops 
faster due to plasma defocusing. The fast drop of the driver pulse intensity then results in an 
enhanced dipole phase because the dipole phase of the short trajectory is proportional to the 
negative derivative of the driver pulse intensity [24]. The geometric phase also changes due to 
the modification of the intensity profile along the radius direction. At low pressure, the 
geometric phase is almost the same as the Guoy phase of a focused Gaussian beam. When the 
pressure increases, and the plasma defocusing becomes stronger, the geometric phase that 
results from the diffraction can be quite different from the Guoy phase as shown in Fig. 3 and 
Fig. 4. Therefore, plasma defocusing not only reduces the pulse intensity, but also influences 
the phase-matching. It is difficult to control and balance all these factors around ∆kq = 0 for a 
long distance. Instead, ∆kq often crosses the ∆kq = 0 line with some slope. To improve the 
HHG efficiency in such a situation, one should try to decrease the slope and move the 
crossing point to the high density part of the medium. 
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Fig. 5. Enhancement factor ξ for He. (a) and (b) show the enhancement of a 1mm He jet and a 
1cm He cell respectively. For each driver wavelength, the curve is intentionally shifted for 
clarity. The number near each curve indicates the driver wavelength in units of 1µm. For 
comparison, the dashed lines show a parabolic dependence on pressure. 

 

Fig. 6. Enhancement factor ξ for Ne. (a) and (b) show the enhancement of a 1mm Ne jet and a 
1cm Ne cell respectively. For each driver wavelength, the curve is intentionally shifted for 
clarity. The number near each curve indicates the driver wavelength in units of 1µm. For 
comparison, the dashed lines show a parabolic dependence on pressure. 

Figure 5 shows the calculated enhancement factors ξ for a He jet and a He cell for six 
different driver wavelengths and varying pressure. In Fig. 5(a), there are sharp transitions at 
about 0.1bar, because at this pressure a transition from phase-mismatched HHG to phase-
matched HHG occurs. At low pressure (<0.1bar), Guoy phase and dipole phase dominate, and 
the phase-matching point where ∆kq = 0 is located far behind the gas jet. Therefore, phase-
matching cannot be achieved with low density media density, and poor HHG efficiency 
results from it. When the pressure is low, ∆kq doesn’t change much with the increasing 
pressure. Therefore the HHG efficiency still increases quadratically with the medium pressure 
although it is not phase-matched at all. Once the pressure is high enough (>0.1bar), the neutral 
atom dispersion is able to compensate the other phase effects and results in a phase-matching 
point within the gas jet. Correspondingly the enhancement factor ξ, and with it the HHG 
efficiency, increase drastically. This transition phenomenon is less sharp for shorter driver 
wavelengths due to the smaller Guoy and dipole phases and smaller harmonic orders that can 
be generated. With higher medium density, the strong plasma defocusing and reabsorption 
start to limit the HHG efficiency and result in a saturation feature with optimal medium 
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pressure for ξ. In Fig. 5(b), the basic features of a He cell are similar to those of a He jet 
except that the optimal pressure is lower due to a longer interaction length. Figure 6 shows the 
enhancement factor ξ for Ne. The same sharp transition can be seen at lower medium 
pressures because Ne has larger neutral atom dispersion. Compared to He, the larger 
reabsorption of Ne limits the optimal pressure to lower values than those of He. 

The calculated optimal pressures in Fig. 5 and Fig. 6 show excellent agreement with 
experiment. For 0.8µm driver wavelength, Fig. 5 and Fig. 6 show optimal HHG efficiency at 
a few hundreds mbar for gas jets and a few tens mbar for Ne cells. These are typical values 
appearing in experiment [12,28]. To further verify our model, we simulate the cases studied 
experimentally in Ref [22]. As shown in Fig. 7, the calculated optimal pressures for He and 
Ne are 25mbar and 18mbar respectively, which are close to the experimental pressures at 
26mbar and 13mbar. To show that these optimal pressures are closely related to plasma 
defocusing, we also calculate the enhancement factor without any plasma defocusing, as 
shown by the dashed curves in Fig. 7. The dashed curves are calculated by neglecting the 
impact of refractive index and losses due to plasma onto the driver pulses. The intensity 
distribution and the ionization level provide the information to calculate the enhancement 
factor, as shown in Fig. 7. The sharp turn on the dashed curve in Fig. 7(b) is due to phase 
mismatching. The initial intensity is too high and generates too much plasma that causes 
phase-mismatching. This phase-mismatched HHG has a coherence length [17] comparable to 
the medium length when the pressure is 10mbar. When the pressure is higher than 10mbar, 
the coherence length becomes shorter, and the enhancement cannot benefit more from the 
higher pressure. In Fig. 7(b), plasma defocusing decreases the intensity to an appropriate level 
for phase-matching, so the enhancement can be larger than for the case without plasma-
defocusing. Beyond 0.8µm HHG experiments, our 1.6µm result also matches Ref [7]. well. 
The Ne jet in Ref. [7] is optimized at 0.76bar that is close to our optimal pressure at 1bar for a 
Ne jet. Determining the working pressure is important to the design of the vacuum system and 
the choice of appropriate gas geometry. The numerical analysis on plasma defocusing 
provided here gives the necessary information as well as the maximum enhancement due to 
the macroscopic propagation effects of the medium, and is therefore of great practical 
importance. 

 

Fig. 7. Enhancement factor for 0.8µm driver wavelength with high pulse energy and loose 
focusing. For (a) He, a 130mJ pulse is focused into a 5cm-long gas cell with 590µm beam 
radius. For (b) Ne, a 50mJ pulse is focused into a 4cm-long gas cell with 360µm beam radius 
[22]. The solid curves consider plasma defocusing, while the dashed ones don’t. 

4. HHG efficiency 

Although HHG efficiency is closely related to the microscopic dynamics of atoms under a 
strong field, our model can still estimate the efficiency for different driver wavelengths. 

#153148 - $15.00 USD Received 19 Aug 2011; revised 3 Oct 2011; accepted 8 Oct 2011; published 24 Oct 2011
(C) 2011 OSA 7 November 2011 / Vol. 19,  No. 23 / OPTICS EXPRESS  22385



According to Eq. (4), the enhancement factor ξ, the SAE η, and the proportionality constant A 
are needed to calculate the HHG efficiency. As shown in last section, the enhancement factor 
ξ can be calculated by Eq. (3). Although the SAE η is not discussed in this paper, it has been 

shown to scale with the driver wavelength as λ1
−(5~6)

, and we can take η = Cλ1
-5.5

. The 
differences between SAE in the plateau are ignored. The unknown pre-factor A × C can be 
determined by comparing the theoretical scaling according to Eq. (2) with known 
experimental results, for instance, with an HHG experiment using a 0.8µm driver wavelength. 
This method is then able to give an estimate for the HHG efficiency with a different driver 
wavelength. 

 

Fig. 8. Calculated HHG efficiency for optimal pressures in (a) He and (b) Ne. The black dotted 

curves also show a λ1
−5.5 dependence starting from the efficiency reference point. For different 

driver wavelengths, different photon energies that are near the corresponding cutoffs are 
considered, as labeled. 

Figure 8(a) and (b) show the calculated HHG efficiency of He and Ne respectively. The 

reference efficiencies for He and Ne 0.8µm HHG are 1x10
−8

 [22] and 2x10
−7

 [29] 
respectively. Because the main advantage of using a longer driver wavelength is to generate 
higher cutoff, the efficiencies for different driver wavelengths are calculated at the photon 
energies near the cutoff of the HHG spectra. Our calculation shows similar results as the 

1.6µm and 2µm experiments [3,7]. The dashed curves show a λ1
−5.5−scaling starting from the 

0.8µm reference points. For comparison, we also calculate the cases without any plasma 
defocusing and show the results by the green stars. Most points are 0~2 orders higher than the 
dashed curves, so it means that they have a few to hundreds times higher enhancements than 
the 0.8µm case. This only partially compensates the efficiency loss due to reduced SAE. 

5. Summary 

We quantitatively analyzed the influence of plasma defocusing on HHG for different driver 
wavelengths by defining and comparing the enhancement factor ξ that considers macroscopic 
characteristics including plasma defocusing, reabsorption of harmonics, and phase-matching. 
Geometric and dipole phases that are important in the phase-matching of HHG driven by mid-
IR wavelengths are also included. Our numerical result shows good agreement with 
experiment and provides an easy way to calculate and explain HHG performance without 
referring to the complex microscopic behavior of strong field dynamics and the atomic 
parameters. Although increasing the medium pressure can partially make up the severe loss of 
SAE with longer driver wavelengths, the compensation is still limited by the plasma 
defocusing. 
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