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(Received 10 March 2011; accepted 1 July 2011; published online 1 August 2011)

We discuss the evaluation of certain d-dimensional angular integrals which arise
in perturbative field theory calculations. We find that the angular integral with n
denominators can be computed in terms of a certain special function, the so-called
H-function of several variables. We also present several illustrative examples of the
general result and briefly consider some applications. C© 2011 American Institute of
Physics. [doi:10.1063/1.3615515]

I. INTRODUCTION

When computing higher order corrections in perturbative field theory, the following d-
dimensional angular integrals are encountered in many situations,∫

d�d−1(q)
1

(p1 · q) j1 . . . (pn · q) jn
, (1)

where pμ

1 , . . . , pμ
n are fixed vectors in d = 4 − 2ε dimensional Minkowski space and d�d−1(q)

is the rotationally invariant angular measure in d dimensions for the massless vector qμ. For a
single denominator, i.e., n = 1, the integral in Eq. (1) is easy to evaluate as it reduces to a single
(trivial) integration in a properly chosen Lorentz frame. The case of two denominators, n = 2,
is already quite a bit more cumbersome and it seems that general (i.e., j1 and j2 are symbolic)
analytic expressions valid to all orders in ε are only available in the literature for the massless case
(p2

1 = p2
2 = 0) as first derived in Ref. 1. When one or both of the momenta pμ

1 and pμ

2 are massive,
Appendix C of Ref. 2 provides a very useful compilation of known results. (See also Ref. 3 and
references therein.) However, these are first of all limited to specific values of j1 and j2, specifically
j1, j2 = −2,−1, . . . , 2. (Some results for different specific values of j’s—in particular integers
with | j1|, | j2| ≤ 4—are also known.4) Furthermore, they are given as expansions in ε, up to and
including O(ε) terms for the case of a single massive momentum (e.g., p2

1 �= 0 and p2
2 = 0), while

for the case when both momenta are massive (p2
1 �= 0 and p2

2 �= 0), only the four-dimensional result
is given. (Clearly the integral in Eq. (1) is finite in four dimensions if all pμ

i , i = 1, . . . , n, are
massive.) Work towards deriving the O(ε) terms for the angular integral with two denominators and
two massive momenta was presented recently in Ref. 5. As explained in Ref. 3, the most difficult of
these two denominator integrals were computed by relating them to the imaginary parts of certain
box integrals, which could be evaluated by Feynman parameters.

However, in certain cases, results going beyond those found in Refs. 1–5 are needed. For ex-
ample, when integrating6 the so-called iterated singly-unresolved approximate cross section of the
next-to-next-to-leading order (NNLO) subtraction scheme of Refs. 7–11, one requires a general (i.e.,
symbolic j1 and j2), all-order (in ε) expression for the two denominator angular integral with one mas-
sive momentum. In the same computation, one also encounters angular integrals with three denomi-
nators and general exponents. To the best of our knowledge, there is no systematic discussion of such
d-dimensional angular integrals with more than two denominators in the published literature.

In this paper, we use the method of Mellin–Barnes representations to evaluate the integral in
Eq. (1). The idea of using Mellin–Barnes techniques to obtain hypergeometric representations of
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Feynman diagrams was originally introduced in Ref. 12. For a thorough discussion of this method,
see Ref. 13 and references therein. In our calculation, we allow an arbitrary number, n, of massless or
massive momenta pμ

i (i = 1, . . . , n) in the denominator of Eq. (1). The exponents ji (i = 1, . . . , n)
are also kept symbolic, and we tacitly assume that they satisfy any constraints that are needed to
make our manipulations meaningful. In particular, it will be seen that our final expression for the
general angular integral (and indeed its derivation) cannot be applied naively for nonpositive integer
exponents. Nevertheless, some of our specific results will be valid even for ji being a nonpositive
integer.

The analytical expression for the general angular integral with n denominators is computed
in Sec. II and is given in terms of the H-function of several variables. The H-function of several
variables has been discussed in various forms by a number of authors in the literature see, e.g.,
Ref. 14 and references therein. (See also the recent book,15 which however deals mostly with the
single variable case.) For convenience, we recall the definition of the H-function as used in the
present paper in Appendix A. Then, in Sec. III, we illustrate the general case by several specific
examples. In particular, we rederive and extend all known results for n = 2 as special cases of the
general expression, including a general, all-order (in ε) formula for the case with a single massive
momentum. We also discuss the three denominator angular integral arising in Ref. 6. We draw our
conclusions in Sec. IV.

II. ANGULAR INTEGRAL WITH n DENOMINATORS

A. General result

To begin, we note that the overall normalization of the pμ

i and qμ plays no essential role, since
clearly ∫

d�d−1(q)
1

(λ1 p1 · λq) j1 . . . (λn pn · λq) jn
= 1

λ
j1
1 . . . λ

jn
n λ j1+...+ jn

×
∫

d�d−1(q)
1

(p1 · q) j1 . . . (pn · q) jn
.

(2)

Hence, it is no loss of generality to choose the normalization of all vectors in whatever way is most
convenient. In particular, to write the integral in Eq. (1) explicitly, one may choose a Lorentz frame,
where

pμ

1 = (1, 0d−2, β1),

pμ

2 = (1, 0d−3, β2 sin χ
(1)
2 , β2 cos χ

(1)
2 ),

pμ

3 = (1, 0d−4, β3 sin χ
(2)
3 sin χ

(1)
3 , β3 cos χ

(2)
3 sin χ

(1)
3 , β3 cos χ

(1)
3 ),

...

pμ
n = (1, 0d−1−n, βn

n−1∏
k=1

sin χ (k)
n , βn cos χ (n−1)

n

n−2∏
k=1

sin χ (k)
n , . . . , βn cos χ (2)

n sin χ (1)
n , βn cos χ (1)

n ),

(3)

while qμ reads

qμ = (1, ..‘angles’.., cos ϑn

n−1∏
k=1

sin ϑk, cos ϑn−1

n−2∏
k=1

sin ϑk, . . . , cos ϑ2 sin ϑ1, cos ϑ1), (4)

and we have used the freedom to choose the normalization to fix each zeroth component to be one.
In Eq. (4), the notation ..‘angles’.. stands for the d − 1 − n angular variables that may be trivially
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integrated in Eq. (1). The explicit expression for the measure d�d−1(q) reads

d�d−1(q) =
n∏

k=1

d(cos ϑk) (sin ϑk)−k+1−2εd�d−1−n(q), (5)

and hence Eq. (1) leads to the integral

� j1,..., jn ≡
∫

d�d−1−n(q)
∫ 1

−1

[
n∏

k=1

d(cos ϑk) (sin ϑk)−k+1−2ε

]

×
n∏

k=1

{
1 − βk

k∑
l=1

[(
δlk + (1 − δlk) cos χ

(l)
k

)
cos ϑl

l−1∏
m=1

(
sin χ

(m)
k sin ϑm

)]}− jk

,

(6)

which we take as the definition of � j1,..., jn . Notice that for n = 2 the normalization of � j1, j2 conforms
to that of Ref. 1, while Refs. 2 and 3 use a different normalization (the factor of

∫
d�d−1−n(q) is

missing). As defined above, � j1,..., jn is a function of the n(n−1)
2 independent angles χ

(1)
1 , . . . , χ (n−1)

n ,
and n velocities, β1, . . . , βn . However, it will be more natural to adopt the dot products between the
various pμ

i in Eq. (3) as the independent variables. We will set the following notation:

vkl ≡

⎧⎪⎪⎨
⎪⎪⎩

pk · pl

2
; k �= l

p2
k

4
; k = l

, (7)

where the choice of normalization will become clear later. If the pμ

i are all light-like or time-like (i.e.,
0 ≤ βi ≤ 1), then we have vkl ≥ 0. In the following, we will assume that all vkl are non-negative.

We can now state our main result: the function � j1,..., jn is given by the following expression:

� j1,..., jn ({vkl}; ε) = 22− j−2επ1−ε H [v; (α, A); (β, B); Ls], (8)

where H is the H-function of N = n(n+1)
2 variables.14 In Eq. (8) above, v denotes the vector of N

variables, v = (v11, v12, . . . , v1n, v22, v23, . . . , vn−1n, vnn) while α and β are the following vectors
of parameters:

α = (0N , j1, . . . , jn, 1 − j − ε), β = ( j1, . . . , jn, 2 − j − 2ε). (9)

In Eqs. (8) and (9), j is the sum of exponents,

j =
n∑

k=1

jk . (10)

Notice that the number of components of α is (n+1)(n+2)
2 , while that of β is (n + 1). Finally, A and

B are (n+1)(n+2)
2 × N and (n + 1) × N matrices of parameters, respectively. We have

A =

⎡
⎢⎣

−1N×N

Mn×N

−1 · · · − 1

⎤
⎥⎦ , B = [(0)(n+1)×N ], (11)

i.e., B is zero, while the n × N dimensional matrix M has the following block form:

Mn×N = [
mn×n mn×(n−1) · · · mn×1

]
with mn×p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 (0)(n−p)×(p−1)

2 1 · · · 1

0

... 1(p−1)×(p−1)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (12)
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In Eqs. (11) and (12), 1a×a denotes the a × a dimensional unit matrix, while (0)a×b denotes an a × b
dimensional block of zeros. To give some examples, we spell out the A matrix explicitly for the
cases n = 1, 2, and 3, when A is a (3 × 1), (6 × 3), and (10 × 6) dimensional matrix, respectively,

A(n = 1) =

⎡
⎢⎣

−1

2

−1

⎤
⎥⎦ , A(n = 2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0

0 −1 0

0 0 −1

2 1 0

0 1 2

−1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A(n = 3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

2 1 1 0 0 0

0 1 0 2 1 0

0 0 1 0 1 2

−1 −1 −1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(13)

For clarity, in Eq. (13), we have indicated the block structure of the various A matrices explicitly.
Finally, in Eq. (8) we have Ls = Ls1 × . . . × LsN , where Lsk is an infinite contour in the complex
sk-plane running from −i∞ to +i∞, whose properties we discuss below Eq. (15). Here × indicates
the Cartesian product of contours.

We note in passing that the H-function of several variables satisfies various contiguous
relations,16–18 i.e., algebraic relations between functions H [v; (α, A); (β, B); Ls] with the vectors of
parameters α and β shifted by vectors of integers. These relations may be used to reduce H-functions
to a set of basis functions with parameters differing form the original values by integer shifts via the
method of differential reduction.19 (See also Ref. 20 for a short but clear introduction to the main
ideas.) The differential reduction of H-functions is beyond the scope of this paper. Nevertheless,
since the parameter of dimensional regularization, ε, appears in α (see Eq. (9)), we speculate that
this reduction will naturally include dimensional shift identities21 for angular integrals.

Finally, using the defining Mellin–Barnes representation of the H-function as recalled in
Appendix A, we find

� j1,..., jn ({vkl}; ε) = 22− j−2επ1−ε 1∏n
k=1 
( jk)
(2 − j − 2ε)

×
∫ +i∞

−i∞

[
n∏

k=1

n∏
l=k

dzkl

2π i

(−zkl) (vkl)

zkl

][
n∏

k=1


( jk + zk)

]

(1 − j − ε − z).

(14)

Note that the N Mellin–Barnes integration variables are denoted zkl , with k = 1, . . . , n and
l = k, . . . , n, i.e., z11, z12, . . . , z1n, z22, z23, . . . , zn−1n, znn and in Eq. (14), we have furthermore
introduced the following notation:

z =
n∑

k=1

n∑
l=k

zkl and zk =
k∑

l=1

zlk +
n∑

l=k

zkl . (15)
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In words, z is the sum of all N Mellin–Barnes variables, while zk is the sum of all variables that
involve k as one of their indices, such that zkk itself is counted twice, i.e., zk = z1k + . . . zk−1k +
2zkk + zkk+1 + . . . + zkn . In Eq. (14), j is the sum of all exponents see Eq. (10). The contours of
integration for the zkl are chosen in the standard way: the poles with a 
(. . . + zkl) dependence are
to the left of the contour and poles with a 
(. . . − zkl) dependence are to the right of it.

B. Computation

We establish Eq. (14) by direct computation as follows. Consider Eq. (1). First, use Feynman
parametrization to combine all n denominators

� j1... jn ≡
∫

d�d−1(q)

( j)∏n

k=1 
( jk)

∫ 1

0

[
n∏

k=1

dxk (xk) jk−1

]
δ

(
n∑

k=1

xk − 1

)[(
n∑

k=1

xk pk

)
· q

]− j

,

(16)
where again j is the sum of exponents as in Eq. (10) and the pμ

i are given in Eq. (3). By rotational
invariance, we can choose a frame such that

n∑
k=1

xk pμ

k = (1, 0d−2, β) and qμ = (1, ..‘angles’.., sin ϑ, cos ϑ). (17)

Then we have

1 − β2 =
n∑

k=1

n∑
l=k+1

2xk xl (pk · pl) +
n∑

k=1

x2
k p2

k = 4
n∑

k=1

n∑
l=k

xk xlvkl . (18)

In the frame of Eq. (17), the integral in Eq. (16) reduces to

� j1... jn = 
( j)∏n
k=1 
( jk)

∫ 1

0

[
n∏

k=1

dxk (xk) jk−1

]
δ

(
n∑

k=1

xk − 1

)

×
∫

d�d−2

∫ 1

−1
d(cos ϑ) (sin ϑ)−2ε[1 − β({xk, vkl}) cos ϑ]− j ,

(19)

where β({xk, vkl}) is given (implicitly) in Eq. (18). Hence, we can exchange all but one angular
integration for an integration over a Feynman parameter.

The angular integral which appears on the second line of Eq. (19) is just the one denominator
massive integral � j , to be discussed in more detail in Sec. III B. For now, we simply state that it has
a Mellin–Barnes representation of the form

� j = 22− j−2επ1−ε 1


( j)
(2 − j − 2ε)

×
∫ +i∞

−i∞

dz0

2π i

(−z0)
( j + 2z0)
(1 − j − ε − z0)

(
1 − β2({xk, vkl})

4

)z0

,

(20)

however, we defer the derivation of this until Sec. III B. Using Eq. (20) in Eq. (19), we obtain

� j1... jn = 22− j−2επ1−ε 1∏n
k=1 
( jk)
(2 − j − 2ε)

∫ 1

0

[
n∏

k=1

dxk (xk) jk−1

]
δ

(
n∑

k=1

xk − 1

)

×
∫ +i∞

−i∞

dz0

2π i

(−z0)
( j + 2z0)
(1 − j − ε − z0)

(
1 − β2({xk, vkl})

4

)z0

.

(21)
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Next, we perform the integral over the Feynman parameters. The only nontrivial x dependence
appears in 1−β2({xk ,vkl })

4 , and this is given by (see Eq. (18) above)

1 − β2({xk, vkl})
4

=
n∑

k=1

n∑
l=k

xk xlvkl, (22)

which explains our choice of normalization in Eq. (7). We can factorize all x dependence in Eq.

(21) by writing
(

1−β2({xk ,vkl })
4

)z0

as a multidimensional (in fact (N − 1) dimensional; recall that

N = n(n+1)
2 ) Mellin–Barnes integral

(
1 − β2({xk, vkl})

4

)z0

= 1


(−z0)

∫ +i∞

−i∞

[
n−1∏
k=1

n∏
l=k

dzkl

2π i

(−zkl)(xk xlvkl)

zkl

]

× 

(
−z0 + ∑n−1

k=1

∑n
l=k zkl

)
(x2

nvnn)z0−
∑n−1

k=1

∑n
l=k zkl .

(23)

Substituting Eq. (23) into Eq. (21), we obtain

� j1... jn = 22− j−2επ1−ε 1∏n
k=1 
( jk)
(2 − j − 2ε)

∫ 1

0

[
n∏

k=1

dxk (xk) jk−1

]
δ

(
n∑

k=1

xk − 1

)

×
∫ +i∞

−i∞

dz0

2π i

( j + 2z0)
(1 − j − ε − z0)

∫ +i∞

−i∞

[
n−1∏
k=1

n∏
l=k

dzkl

2π i

(−zkl)(xk xlvkl)

zkl

]

× 

(
−z0 + ∑n−1

k=1

∑n
l=k zkl

)
(x2

nvnn)z0−
∑n−1

k=1

∑n
l=k zkl .

(24)

Setting z0 − ∑n−1
k=1

∑n
l=k zkl ≡ znn and changing the variable of integration z0 → znn , we find

� j1... jn = 22− j−2επ1−ε 1∏n
k=1 
( jk)
(2 − j − 2ε)

∫ 1

0

[
n∏

k=1

dxk (xk) jk−1

]
δ

(
n∑

k=1

xk − 1

)

×
∫ +i∞

−i∞

[
n∏

k=1

n∏
l=k

dzkl

2π i

(−zkl)(xk xlvkl)

zkl

]

( j + 2z)
(1 − j − ε − z),

(25)

where z is the sum of all N integration variables as in Eq. (15). Collecting all factors of the various
x’s in Eq. (25), we obtain

� j1... jn = 22− j−2επ1−ε 1∏n
k=1 
( jk)
(2 − j − 2ε)

∫ 1

0

[
n∏

k=1

dxk (xk) jk−1+zk

]
δ

(
n∑

k=1

xk − 1

)

×
∫ +i∞

−i∞

[
n∏

k=1

n∏
l=k

dzkl

2π i

(−zkl)(vkl)

zkl

]

( j + 2z)
(1 − j − ε − z),

(26)

where zk is defined in Eq. (15). We can now perform the Feynman parameter integrals via

∫ 1

0

N∏
k=1

dxk x pk−1
k δ

(
N∑

k=1

xk − 1

)
=

∏N
k=1 
(pk)



(∑N

k=1 pk

) , (27)
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to obtain Eq. (14) as claimed

� j1... jn = 22− j−2επ1−ε 1∏n
k=1 
( jk)
(2 − j − 2ε)

×
∫ +i∞

−i∞

[
n∏

k=1

n∏
l=k

dzkl

2π i

(−zkl)(vkl)

zkl

][
n∏

k=1


( jk + zk)

]

(1 − j − ε − z).

(28)

In writing Eq. (28), we used
∑n

k=1( jk + zk) = j + 2z. This completes the calculation.
Before moving on, some comments are in order. First, note that the derivation of Eq. (28)

implicitly assumes that the exponents, jk (k = 1, . . . , n) are not zero or negative integers, and indeed
Eq. (28) is clearly not applicable as it stands when any jk is a nonpositive integer. In such cases,
when, e.g., − jk ′ ∈ N, we can attempt to analytically continue Eq. (28) to the required value of jk ′ , say
by setting jk ′ → jk ′ + δ and performing the analytic continuation δ → 0. The analytic continuation
of Mellin–Barnes integrals has been automated in the MATHEMATICA package MB.m.22

Second, we call attention to the fact that Eq. (28) was obtained under the assumption that
vkl > 0 for all k = 1, . . . , n and l = k, . . . , n. However, sometimes it may happen that some vkl is
identically zero as, e.g., when, say, momentum pμ

k ′ in Eq. (3) is massless, implying vk ′k ′ ≡ 0. In such
situations, we clearly cannot use Eq. (28) as it stands. Nevertheless, the derivation is trivial to adapt
to such cases, since when say vk ′l ′ is identically zero, the only change is that this term is missing
form the sum in Eq. (22). Then, the corresponding Mellin–Barnes integration over zk ′l ′ is absent in
Eq. (23), but the rest of the derivation goes through unchanged. The end result is that we must drop
integrations corresponding to variables that are identically zero from the final expression, Eq. (28).
Ultimately, this amounts to simply restricting all products (such as the one in the first bracket on the
second line of Eq. (28)) and sums (as in the definitions of zk and z, Eq. (15)) over zkl to values of k
and l such that vkl �= 0. Needless to say, the H-function representation of the integral must also be
adapted to accommodate the fact that some integration variables are missing.

III. EXAMPLES

In this section, we illustrate the use of the general result in Eqs. (8) and (14) with several
examples.

A. One denominator, massless

We begin with the simplest example, the massless one denominator angular integral, i.e., n = 1
and p2

1 = 0 (hence β1 = 1). In this case, Eq. (6) reduces to

� j (0; ε) =
∫

d�d−2

∫ 1

−1
d(cos ϑ1)(sin ϑ1)−2ε(1 − cos ϑ1)− j . (29)

Since pμ

1 is massless, v11 is identically zero, and the discussion at the end of Sec. II B applies. Thus,
the Mellin–Barnes integral representation is zero-dimensional and so clearly z1 = z = 0. Then we
find

� j (0; ε) = 22− j−2επ1−ε 
(1 − j − ε)


(2 − j − 2ε)
. (30)

The result in Eq. (30) is easy to verify by explicit computation: recalling that

∫
d�p = 2π

p
2



( p

2

) (31)

and setting cos ϑ1 → 2s − 1 in Eq. (29), we obtain Eq. (30) immediately.
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B. One denominator, massive

The next simplest example is the massive one denominator angular integral, i.e., n = 1, but
p2

1 �= 0. In this case, Eq. (6) gives

� j (v11; ε) =
∫

d�d−2

∫ 1

−1
d(cos ϑ1)(sin ϑ1)−2ε(1 − β1 cos ϑ1)− j . (32)

Now v11 is nonzero, and Eq. (14) yields the following one-dimensional Mellin–Barnes integral
representation:

� j (v11; ε) = 22− j−2επ1−ε 1


( j)
(2 − j − 2ε)

×
∫ +i∞

−i∞

dz11

2π i

(−z11)
( j + 2z11)
(1 − j − ε − z11)(v11)z11 .

(33)

We used that Eq. (15) gives z1 = 2z11 and z = z11. In terms of the H-function, we have

� j (v11; ε) = 22− j−2επ1−ε H [(v11); (α, A); (β, B); Ls], (34)

where α, β, A, and B are given in Eqs. (9)–(13), with n = 1. Explicitly

α = (0, j, 1 − j − ε), β = ( j, 2 − j − 2ε), (35)

and

A =

⎡
⎢⎣

−1

2

−1

⎤
⎥⎦ , B = [(0)2×1]. (36)

We may compute the integral in Eq. (33) by using the doubling relation for the gamma function,


(2x) = 22x−1

√
π


(x)

(
x + 1

2

)
, (37)

to write Eq. (33) in the following form:

� j (v11; ε) = 21−2επ
1
2 −ε 1


( j)
(2 − j − 2ε)

×
∫ +i∞

−i∞

dz11

2π i

(−z11)


(
j
2 + z11

)


(

j+1
2 + z11

)

(1 − j − ε − z11)(4v11)z11 .

(38)

Then the Mellin–Barnes integral on the second line can be evaluated in terms of 
 functions and the
2 F1 hypergeometric function. Indeed, we have

2 F1(a, b, c, x) = 
(c)


(a)
(b)
(c − a)
(c − b)

×
∫ +i∞

−i∞

dz

2π i

(a + z)
(b + z)
(c − a − b − z)
(−z)(1 − x)z,

(39)

(see, e.g., Appendix D of Ref. 13), and hence we find

� j (v11; ε) = 21−2επ
1
2 −ε 1


( j)
(2 − j − 2ε)

×


(

j
2

)


(

j+1
2

)


(

3− j
2 − ε

)


(

2− j
2 − ε

)


(

3
2 − ε

) 2 F1

(
j

2
,

j + 1

2
,

3

2
− ε, 1 − 4v11

)
.

(40)
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Using Eq. (37), we can clean up the prefactor and obtain the final expression

� j (v11; ε) = 22−2επ1−ε 
(1 − ε)


(2 − 2ε)
2 F1

(
j

2
,

j + 1

2
,

3

2
− ε, 1 − 4v11

)
. (41)

This result is also simple to verify by explicit calculation, since Eq. (32) is straightforward to
evaluate via the substitution cos ϑ1 → 2s − 1. We obtain

� j (v11; ε) = 22−2επ1−ε 
(1 − ε)


(2 − 2ε)
(1 + β1)− j

2 F1

(
j, 1 − ε, 2 − 2ε,

2β1

1 + β1

)
, (42)

and Eq. (41) is then reproduced using the quadratic hypergeometric identity (see, e.g., Ref. 23),

2 F1(a, b, 2b, z) =
(

1 − z

2

)−a

2 F1

[
a

2
,

a + 1

2
, b + 1

2
,

(
z

2 − z

)2 ]
, (43)

and the relation v11 = 1−β2
1

4 . The above considerations in fact establish Eq. (33) independently of
Eq. (14), thus the gap left in the derivation of the main result is closed.

Before moving on, we note that although Eq. (33) was derived under the assumption that j is
not zero or a negative integer, our final result, Eq. (41), is in fact valid for negative integer j as well.

In practical applications, one is often interested in the ε-expansion of the final result, Eq. (41).
When j is an integer, it is straightforward to obtain such expansions starting from the equiva-
lent form of the result, Eq. (42). Indeed, for j a negative integer, the power series representation
of the hypergeometric function in Eq. (42) terminates, and the ε-expansion in this case is triv-
ial. For positive integer j , the method of nested sums of Ref. 24 or the integration method of
Ref. 25 may be employed. The nested sums method has been implemented in several publicly
available packages, such as NESTEDSUMS,26 XSUMMER,27 and HYPEXP,25 with the last of these im-
plementing the integration method as well. Algorithms have also been developed for the expansion
of (generalized) hypergeometric functions around half-integer values of the parameters,28–34 and the
HYPEXP2 package34 provides a public implementation of one particular method. Finally, we note that
whenever j is not zero or a negative integer, the direct numerical integration of the Mellin–Barnes
representation in Eq. (33) provides a fast and reliable way to obtain numerical results.

By way of illustration, and for purposes of comparing with existing literature,2, 3 we obtain the
ε-expansion of Eq. (42) for the specific values of j = −2,−1, 1, and 2, up to and including O(ε2)
terms. (Note that for j = 0, �0(v; ε) just reduces to the massless integral �0(0; ε), and we do not
discuss this case further.) The results, obtained with the method of nested sums and XSUMMER,27 are
presented in Appendix C 1.

C. Two denominators, massless

Our next example is the massless two denominator angular integral, i.e., n = 2, with p2
1 = p2

2
= 0 (hence β1 = β2 = 1). Eq. (6) reads in this case

� j,k(v12, 0, 0; ε) =
∫

d�d−3

∫ 1

−1
d(cos ϑ1)(sin ϑ1)−2ε

∫ 1

−1
d(cos ϑ2)(sin ϑ2)−1−2ε

× (1 − cos ϑ1)− j (1 − cos χ
(1)
2 cos ϑ1 − sin χ

(1)
2 sin ϑ1 cos ϑ2)−k .

(44)

Since both pμ

1 and pμ

2 are massless, we have v11 = v22 ≡ 0. Then the discussion at the end of
Sec. II B applies and we find that Eq. (14) leads to the following one-dimensional Mellin–Barnes
integral representation

� j,k(v12, 0, 0; ε) = 22− j−k−2επ1−ε 1


( j)
(k)
(2 − j − k − 2ε)

×
∫ +i∞

−i∞

dz12

2π i

(−z12)
( j + z12)
(k + z12)
(1 − j − k − ε − z12) (v12)z12 .

(45)
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We used that Eq. (15) gives z1 = z2 = z = z12. The H-function representation of Eq. (45) reads

� j,k(v12, 0, 0; ε) = 22− j−k−2επ1−ε H [(v12); (α, A); (β, B); Ls], (46)

where

α = (0, j, k, 1 − j − k − ε), β = ( j, k, 2 − j − k − 2ε), (47)

and

A =

⎡
⎢⎢⎢⎣

−1

1

1

−1

⎤
⎥⎥⎥⎦ , B = [(0)3×1]. (48)

Notice that A above may be obtained from the general expression for A(n = 2) in Eq. (13) by
removing the first and third columns which would correspond to the variables v11 and v22 which are
identically zero, and then removing the first and third rows of the matrix so obtained, which contain
only zeros. Correspondingly, the first and third components of α (both zeros) are also removed as
compared to the general formula for n = 2 in Eq. (9).

The Mellin–Barnes integral in Eq. (45) straightforwardly evaluates in terms of 
 functions and
a 2 F1 hypergeometric function, see Eq. (39), and we find

� j,k(v12, 0, 0; ε) = 22− j−k−2επ1−ε 
(1 − j − ε)
(1 − k − ε)


(1 − ε)
(2 − j − k − 2ε)
2 F1( j, k, 1 − ε, 1 − v12). (49)

Upon noting that

v12 = (p1 · p2)

2
= 1 − cos χ

(1)
2

2
⇒ 1 − v12 = 1 + cos χ

(1)
2

2
= cos2 χ

(1)
2

2
, (50)

the result in Eq. (49) is seen to coincide with Eq. (A11) of Ref. 1.
We remind the reader that Eq. (45) was derived under the assumption that j and k are not zero

or negative integers. Nevertheless, the final result in Eq. (49) applies in such cases as well.
Finally, we mention that the expansion of Eq. (49) in ε for integer or half-integer j and k is

straightforward as discussed at the end of Sec. III B. Here, by way of illustration, we present these
expansions for j, k = −2,−1, 1, and 2 in Appendix C 2. (We do not consider cases where either
exponent is zero, since these are not genuinely two denominator angular integrals.) Expansions of the
appropriate hypergeometric functions were computed with the nested sums method and XSUMMER.27

D. Two denominators, one mass

Now consider the generalization of the previous example to the single mass case, i.e., when,
say, p2

1 �= 0 but p2
2 = 0 (hence β1 �= 1, but β2 = 1). Then Eq. (6) gives

� j,k(v12, v11, 0; ε) =
∫

d�d−3

∫ 1

−1
d(cos ϑ1)(sin ϑ1)−2ε

∫ 1

−1
d(cos ϑ2)(sin ϑ2)−1−2ε

× (1 − β1 cos ϑ1)− j (1 − cos χ
(1)
2 cos ϑ1 − sin χ

(1)
2 sin ϑ1 cos ϑ2)−k .

(51)

Since v22 still vanishes identically, the Mellin–Barnes representation of Eq. (14) is only two-
dimensional

� j,k(v12, v11, 0; ε) = 22− j−k−2επ1−ε 1


( j)
(k)
(2 − j − k − 2ε)

∫ +i∞

−i∞

dz11 dz12

(2π i)2

(−z11)
(−z12)

× 
( j + 2z11 + z12)
(k + z12)
(1 − j − k − ε − z11 − z12) (v11)z11 (v12)z12 .

(52)
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We used that in this case, Eq. (15) evaluates as z1 = 2z11 + z12, z2 = z12, and z = z11 + z12. Written
in terms of the H-function, Eq. (52) is

� j,k(v12, v11, 0; ε) = 22− j−k−2επ1−ε H [(v11, v12); (α, A); (β, B); Ls], (53)

where

α = (0, 0, j, k, 1 − j − k − ε), β = ( j, k, 2 − j − k − 2ε), (54)

and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0

0 −1

2 1

0 1

−1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

, B = [(0)3×2]. (55)

The A matrix above is obtained from the general expression for A(n = 2) in Eq. (13) by removing
the third column corresponding to the variable v22 which is identically zero, and then removing the
third row of the matrix obtained, which contains only zeros. Accordingly, the third component of α

(again zero) is also dropped as compared to the general formula for n = 2 in Eq. (9).
The two-dimensional Mellin–Barnes integral in Eq. (52) can be evaluated in terms of the Appell

function of the first kind. We show this in Appendix B, and only quote the final result here. We find

� j,k(v12, v11, 0; ε) = 22− j−k−2επ1−ε 
(1 − k − ε)


(2 − k − 2ε)
v

− j
12

× F1

(
j, 1 − k − ε, 1 − k − ε, 2 − k − 2ε,

2v12 − 1 − √
1 − 4v11

2v12
,

2v12 − 1 + √
1 − 4v11

2v12

)
.

(56)

Let us make several comments. First, as in the previous two examples, the final expression in
Eq. (56) is valid even for j or k zero or a negative integer, even though the Mellin–Barnes represen-
tation in Eq. (52), as it stands, does not apply to these cases.

Second, the Appell function of the first kind is precisely the type of generalized hypergeometric
function whose expansion around integer or half-integer parameters can be solved with the methods
of Refs. 24, 30–33, and 34. In Appendix C 3, we present the expansion of Eq. (56) in ε up to and
including finite terms, for j, k = −2,−1, 1, and 2. (Again, we only deal with cases which genuinely
involve two denominator integrals.) We used the method of nested sums and XSUMMER27 to compute
the expansions of the appropriate Appell F1 functions.

Finally, let us briefly discuss the application of the result in Eq. (56) to the computation of certain
integrated counterterms in the NNLO subtraction scheme of Refs. 7–9. As explained in Ref. 6, when
computing the so-called integrated iterated singly-unresolved approximate cross section, several
integrals must be evaluated which involve the function J (1m)(Y, β; ε, y0, d ′

0) in their integrands,
where (see (C25) of Ref. 6)

J (1m)(Y, β; ε, y0, d ′
0) ≡ −4Y


2(1 − ε)

2π
(1 − 2ε)
�11(cos χ (Y, β), β, 1)

∫ y0

0
dy y−1−2ε(1 − y)d ′

0 , (57)

and Y as well as β depend on further integration variables. Because of this, we require an all-order
(in ε) result for J (1m)(Y, β; ε, y0, d ′

0). In Eq. (57), �11(cos χ (Y, β), β, 1) is a special case of the
general function � jk(cos χ, β1, β2), defined in (C19) of Ref. 6 as follows:

� j,k(cos χ, β1, β2) ≡
∫ 1

−1
d(cos ϑ)(sin ϑ)−2ε

∫ 1

−1
d(cos ϕ)(sin ϕ)−1−2ε

× (1 − β1 cos ϑ)− j [1 − β2(sin χ sin ϑ cos ϕ + cos χ cos ϑ)]−k .

(58)
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For β2 = 1, which is the case relevant in Eq. (57), this is clearly just proportional to the one
mass, two denominator angular integral. Hence, the results of this section can be used to evaluate
J (1m)(Y, β; ε, y0, d ′

0) analytically.

E. Two denominators, two masses

Next, consider the general massive two denominator angular integral, when both p2
1 �= 0 and

p2
2 �= 0 (hence β1 �= 1 and β2 �= 1). In this case, Eq. (6) gives explicitly

� j,k(v12, v11, v22; ε) =
∫

d�d−3

∫ 1

−1
d(cos ϑ1)(sin ϑ1)−2ε

∫ 1

−1
d(cos ϑ2)(sin ϑ2)−1−2ε

× (1 − β1 cos ϑ1)− j (1 − β2 cos χ
(1)
2 cos ϑ1 − β2 sin χ

(1)
2 sin ϑ1 cos ϑ2)−k .

(59)

Now Eq. (14) leads to the following three-dimensional Mellin–Barnes integral representation:

� j,k(v12, v11, v22; ε) = 22− j−k−2επ1−ε 1


( j)
(k)
(2 − j − k − 2ε)

×
∫ +i∞

−i∞

dz11 dz12 dz22

(2π i)3

(−z11)
(−z12)
(−z22)

× 
( j + 2z11 + z12)
(k + z12 + 2z22)

× 
(1 − j − k − ε − z11 − z12 − z22) (v11)z11 (v12)z12 (v22)z22 .

(60)

We used that Eq. (15) gives z1 = 2z11 + z12, z2 = z12 + 2z22, and z = z11 + z12 + z22. Since all
variables (v11, v12, and v22) are now different from zero, the H-function representation of Eq. (60),

� j,k(v12, v11, v22; ε) = 22− j−k−2επ1−ε H [(v11, v12, v22); (α, A); (β, B); Ls], (61)

is simply the general expression in Eqs. (9)–(13) for n = 2, i.e., we have

α = (0, 0, 0, j, k, 1 − j − k − ε), β = ( j, k, 2 − j − 2ε), (62)

and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0

0 −1 0

0 0 −1

2 1 0

0 1 2

−1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B = [(0)3×3]. (63)

In this case, we are no longer able to evaluate the Mellin–Barnes integrals in Eq. (60) in terms
of functions more familiar than the H-function of several variables.

Nevertheless, the Mellin–Barnes representation of Eq. (60) is still a very useful starting point for
computing the ε expansion of � j,k(v12, v11, v22; ε). Let us briefly review the main steps involved.

1. In general, the contours of integration in Eq. (60) are not necessarily straight lines, and their
standard definition is such that the poles with a 
(. . . + zkl) dependence are to the left of the
contour for the zkl integration, while poles with a 
(. . . − zkl) dependence are to the right of it.
However, as a key observation, Ref. 35 realized straight line contours parallel to the imaginary
axis in an algorithmic way. The basic idea is that starting with a curved contour that fulfills the
condition on the poles, one may deform it into a straight line, taking into account the residua of
the crossed poles according to Cauchy’s theorem. This procedure lends itself to implementation
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in computer codes for the evaluation and manipulation of Mellin–Barnes integrals, such as the
MB.m package of Ref. 22.

2. Upon deformation of the curved contours, all potential singularities in ε are extracted so that
it is safe to expand in ε around zero before performing the complex integrations. In this way,
the Mellin–Barnes representations of the required coefficients of the Laurent expansion of the
original integral are obtained.

3. In the next step, we convert the complex contour integrations into sums over residua using
Cauchy’s theorem.

4. Finally, we evaluate the sums.

For the specific case of � j,k(v12, v11, v22; ε) with integer j and k (we considered the cases j, k =
−2,−1, 1, and 2 as before), this procedure leads to a representation of the O(ε0) coefficient which
involves at most single sums. These are all straightforward to compute and we present the results in
Appendix C 4.

However, starting from the linear term in ε, we are lead to representations of the coefficients
involving up to triple sums, which are difficult to compute, and we made no severe effort to calculate
them. In fact, this corroborates the findings of Ref. 5 nicely, where a completely different method
leads to a one-dimensional real integral representation of the linear term in the ε expansion of
� j,k(v12, v11, v22; ε) which “...involves three square roots so it is difficult to evaluate the integration
analytically...” and hence Ref. 5 does “...not have an analytical answer.” Nevertheless, we remind
the reader that the direct numerical integration of the Mellin–Barnes representation provides a
convenient and efficient way of obtaining numerical results for the higher order coefficients.

F. Three denominators, massless

As a final example, we present explicitly the massless angular integral with three denominators,
i.e., n = 3 and p2

i = 0 (hence βi = 1) i = 1, 2, 3. Equation (6) reads

� j,k,l(v12, v13, v23; ε) =
∫

d�d−4

∫ 1

−1
d(cos ϑ1)(sin ϑ1)−2ε

∫ 1

−1
d(cos ϑ2)(sin ϑ2)−1−2ε

×
∫ 1

−1
d(cos ϑ3)(sin ϑ3)−2−2ε (1 − cos ϑ1)− j (1 − cos χ

(1)
2 cos ϑ1 − sin χ

(1)
2 sin ϑ1 cos ϑ2)−k

× (1 − cos χ
(1)
3 cos ϑ1 − cos χ

(2)
3 sin χ

(1)
3 sin ϑ1 cos ϑ2 − sin χ

(2)
3 sin χ

(1)
3 sin ϑ1 sin ϑ2 cos ϑ3)−l .

(64)

Since vi i ≡ 0 all for i = 1, 2, 3, the Mellin–Barnes representation of Eq. (14) collapses to only three
integrations,

� j,k,l(v12, v13, v23; ε) = 22− j−k−l−2επ1−ε 1


( j)
(k)
(l)
(2 − j − k − l − 2ε)

×
∫ +i∞

−i∞

dz12 dz13 dz23

(2π i)3

(−z12)
(−z13)
(−z23)

× 
( j + z12 + z13)
(k + z12 + z23)
(l + z13 + z23)

× 
(1 − j − k − l − ε − z12 − z13 − z23) (v12)z12 (v13)z13 (v23)z23 .

(65)

Equation (15) gives z1 = z12 + z13, z2 = z12 + z23, z3 = z13 + z23, and z = z12 + z13 + z23 in this
case, which we used when writing Eq. (65). In terms of the H-function, Eq. (65) has the following
representation:

� j,k,l(v12, v13, v23; ε) = 22− j−k−l−2επ1−ε H [(v12, v13, v23); (α, A); (β, B); Ls], (66)
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where

α = (0, 0, 0, j, k, l, 1 − j − k − l − ε), β = ( j, k, l, 2 − j − k − l − 2ε), (67)

and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0

0 −1 0

0 0 −1

1 1 0

1 0 1

0 1 1

−1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B = [(0)4×3]. (68)

We may obtain the A matrix above from the general expression for A(n = 3) in Eq. (13) by
removing the first, fourth, and sixth columns corresponding to the variables v11, v22, and v33 which
are identically zero, and then removing all rows of the resulting matrix, which contain only zeros
(i.e., rows one, four, and six). The corresponding components of α (i.e., the first, fourth, and sixth,
all zeros) are also dropped as compared to the general formula for n = 3 in Eq. (9).

As in the previous example, we are again unable to evaluate the Mellin–Barnes integrals in
Eq. (65) in terms of functions other than the H-function of several variables.

However, as discussed in Sec. III E, Eq. (65) provides a useful starting point for obtaining the
ε expansion of � j,k,l(v12, v13, v23; ε). In this particular case, for j , k, and l integers (in fact we
consider only j, k, l = 1 and 2), the procedure outlined below Eq. (60) leads to zero-dimensional
Mellin–Barnes integral representations for both the O(ε−1) and O(ε0) coefficients in step 2. Hence,
there are no integrals or sums to compute at all. The expansions obtained, up to and including O(ε0)
terms, are presented in Appendix C 5.

The situation with higher order expansion coefficients is very similar to the previous example
of Sec. III E. Again, starting from the linear term in ε, we find representations involving triple
sums which are hard to compute. In passing, we note that one may also attempt to evaluate the
Mellin–Barnes representations of given expansion coefficients by means other than converting them
into sums, e.g., with methods along the lines of Ref. 36, where the authors compute a difficult
three-dimensional Mellin–Barnes integral in terms of Goncharov polylogarithms. If we are satisfied
with numerical results for higher order expansion coefficients, then the direct numerical integration
the Mellin–Barnes representation proves convenient.

We finish by noting that the knowledge of Eq. (65) was necessary to compute certain iterated
singly-unresolved integrals in Ref. 6. Specifically, when computing the so-called integrated soft-
double soft counterterm, we encounter the massless angular integral with three denominators in
intermediate stages of the calculation. In particular, in order to be able to write the Mellin–Barnes
representation of the I (11)

S;ik, jk master integral of Eq. (E52) of Ref. 6, we required a Mellin–Barnes
representation for the angular integral

∫ 1

−1
d(cos ϑ)(sin ϑ)−2ε

∫ 1

−1
d(cos ϕ)(sin ϕ)−1−2ε (1 − cos ϑ)−1

× (1 − cos χ
(1)
2 cos ϑ − sin χ

(1)
2 sin ϑ cos ϕ)−z1 (1 − cos χ

(1)
3 cos ϑ + sin χ

(1)
3 sin ϑ cos ϕ)−z2 ,

(69)

where z1 and z2 are integration variables of further Mellin–Barnes integrals. The integral in
Eq. (69) is clearly proportional to �1,z1,z2 (v12, v13, v23; ε), in the special case where sin χ

(2)
3 = 0

and cos χ
(2)
3 = −1 in Eq. (3). (This constraint means that only two variables out of v12, v13, and v23

are independent.) The results of this section thus provide the necessary Mellin–Barnes representation
of Eq. (69), and hence are needed to compute the I (11)

S;ik, jk master integral.
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IV. CONCLUSIONS

In this paper, we have evaluated some d-dimensional angular integrals which arise in pertur-
bative field theory calculations. We used the method of Mellin–Barnes representations to compute
the general angular integral with n denominators, massive or massless momenta and (essentially)
arbitrary powers of the denominators in terms of a certain special function, the so-called H-function
of several variables. We pointed out that the existence of various contiguous relations for the H-
function provides the opportunity to apply the method of differential reduction to angular integrals
in d dimensions. It would be very interesting to expand the present results in this direction.

We illustrated the use of our general result with several examples of angular integrals with
up to three denominators. We showed that some of these integrals can be computed in terms of
(generalized) hypergeometric functions. In particular, the single denominator massless integral is
fully expressed by 
 functions, while the massive integral involves the 2 F1 hypergeometric function.
For the massless two denominator integral we recover the known result of Ref. 1 which again
involves a 2 F1 hypergeometric function. However, our derivation is much more straightforward than
the original computation. When precisely one of the momenta is massive, we obtain a new all-order
(in ε) analytical expression for the two denominator angular integral which involves the Appell
function of the first kind, F1.

In some applications, one is interested in the expansion of the angular integrals in the parameter
of dimensional regularization, ε. We discussed briefly how such expansions can be obtained starting
from the corresponding Mellin–Barnes representations. By way of illustration, we have explicitly
presented such expansions for all examples discussed, for a few specific values of exponents.

The results of this paper have already found applications in computing certain phase space
integrals which appear when integrating NNLO subtraction terms. In fact, all specific angular
integrals that are encountered in the integration of the so-called singly-unresolved and iterated
singly-unresolved subtraction terms of Refs. 8 and 9 were discussed in this paper explicitly. We
expect that our present results will also prove valuable when computing the so-called integrated
doubly-unresolved subtraction terms.
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APPENDIX A: THE H-FUNCTION OF SEVERAL VARIABLES

In this Appendix, we recall the particular definition of the H-function of several variables
which we use in Sec. II A. This function has been discussed in various forms by several authors
in the literature, here we adopt (essentially) the definition of Ref. 14. In the most general case, the
H-function of N variables is defined as follows:

H [x, (α, A), (β, B); Ls] ≡ (2π i)−N
∫

Ls

�(s) xs ds, (A1)

where

�(s) =
∏m

j=1 

(
α j + ∑N

k=1 a j,ksk

)
∏n

j=1 

(
β j + ∑N

k=1 b j,ksk

) . (A2)

Here s = (s1, . . . , sN ), x = (x1, . . . , xN ), α = (α1, . . . , αm), and β = (β1, . . . , βn) denote vectors
of complex numbers; while

A = (a j,k)m×N and B = (b j,k)n×N (A3)
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are matrices of real numbers. Also

xs =
N∏

k=1

(xk)sk ; ds =
N∏

k=1

dsk ; Ls = Ls1 × . . . × LsN , (A4)

where Lsk is an infinite contour in the complex sk-plane running from −i∞ to +i∞, such that �(s)
has no singularities for s ∈ Ls.

The H-function of Eq. (A1) generalizes nearly all known special functions of N variables, e.g.,
Lauricella functions F (N )

A , F (N )
B , F (N )

C , and F (N )
D ; the G-function of N variables; the special H-function

of N variables, etc. For the specific cases of N = 1 and 2, it essentially reduces to the known Fox’s
H-function of one variable and the H-function of two variables defined by various authors scattered
in the literature. The definition given in Eq. (A1) is different form the H-function considered by
Ref. 14 only in the replacement of x−s by xs. We have made this replacement for convenience in
our applications.

APPENDIX B: A MELLIN–BARNES INTEGRAL

In this Appendix, we evaluate the following two-dimensional Mellin–Barnes integral
analytically:

I =
∫ +i∞

−i∞

dz1 dz2

(2π i)2

(−z1)
(−z2)
(a + 2z1 + z2)
(b + z2)
(c − z1 − z2) xz1 yz2 , (B1)

which we encounter in Sec. III D. Throughout this Appendix, we assume tacitly that all parameters
and integration variables lie in a strip of the complex plane such that each integral we write converges.

We begin by writing the product of the second and fourth gamma functions above as a one-
dimensional real integral

I = 
(b)
∫ +i∞

−i∞

dz1 dz2

(2π i)2

∫ 1

0
ds s−1−z2 (1 − s)b−1+z2 
(−z1)
(a + 2z1 + z2)
(c − z1 − z2) xz1 yz2 .

(B2)
Now, it is somewhat easier to follow the manipulations below if we make the change of variables
z2 → −a − 2z1 − z2,

I = 
(b)
∫ +i∞

−i∞

dz1 dz2

(2π i)2

∫ 1

0
ds sa−1+2z1+z2 (1 − s)b−a−1−2z1−z2

× 
(−z1)
(−z2)
(a + c + z1 + z2) xz1

(
1

y

)a+2z1+z2

.

(B3)

Next, we rearrange some factors and write I in the following form:

I = y−a
(b)
∫ 1

0
ds sa−1(1 − s)a+b+2c−1

∫ +i∞

−i∞

dz1 dz2

(2π i)2

(−z1)
(−z2)

× 
(a + c + z1 + z2)

(
xs2

y2

)z1 [ s(1 − s)

y

]z2 [
(1 − s)2

]−a−c−z1−z2
.

(B4)

The Mellin–Barnes integrals are now easy to perform and we find

I = y−a
(b)
(a + c)
∫ 1

0
ds sa−1(1 − s)a+b+2c−1

[
(1 − s)2 + s(1 − s)

y
+ xs2

y2

]−a−c

. (B5)

Factoring the quadratic expression in the square brackets,

(1 − s)2 + s(1 − s)

y
+ xs2

y2
=
(

1 − 2y − 1 − √
1 − 4x

2y
s

)(
1 − 2y − 1 + √

1 − 4x

2y
s

)
, (B6)
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we obtain

I = y−a
(b)
(a + c)
∫ 1

0
ds sa−1(1 − s)a+b+2c−1

×
(

1 − 2y − 1 − √
1 − 4x

2y
s

)−a−c (
1 − 2y − 1 + √

1 − 4x

2y
s

)−a−c

.

(B7)

The final integral can be performed in terms of the Appell function of the first kind (see, e.g.,
Ref. 23) and we find

I = y−a 
(a)
(b)
(a + c)
(a + b + 2c)


(2a + b + 2c)

× F1

(
a, a + c, a + c, 2a + b + 2c,

2y − 1 − √
1 − 4x

2y
,

2y − 1 + √
1 − 4x

2y

)
,

(B8)

which is our final result.

APPENDIX C: EXPANSIONS

1. One denominator, one mass

In this section, we present the ε-expansion of � j (v; ε) for the specific values of j = −2,−1, 1,
and 2. In order not to clutter the following expressions with irrelevant constants like ln(4π ) and γE ,
we extract a factor of

∫
d�d−3 and present the ε-expansion of the function I j , where

I j (v; ε) ≡ 2−1+2επε 
(1 − 2ε)


(1 − ε)
� j (v; ε), (C1)

which has the further advantage that it may be directly compared with the appropriate expressions
of Refs. 2 and 3. We find

I−2(v; ε) = 2π

[
4

3
− 4

3
v +

(
26

9
− 32

9
v

)
ε +

(
160

27
− 208

27
v

)
ε2 + O(ε3)

]
, (C2)

I−1(v; ε) = 2π

[
1 + 2ε + 4ε2 + O(ε3)

]
, (C3)

I1(v; ε) = π√
1 − 4v

{
ln

(
1 + √

1 − 4v

1 − √
1 − 4v

)

+ 1

2

[
ln2

(
1 + √

1 − 4v

1 − √
1 − 4v

)
+ 4 Li2

(
2
√

1 − 4v

1 + √
1 − 4v

)]
ε

+ 1

6

[
ln3

(
1 + √

1 − 4v

1 − √
1 − 4v

)
− 6 ln

(
2
√

1 − 4v

1 + √
1 − 4v

)
ln2

(
1 + √

1 − 4v

1 − √
1 − 4v

)

+ 12 ln

(
1 + √

1 − 4v

1 − √
1 − 4v

)
Li2

(
2
√

1 − 4v

1 + √
1 − 4v

)

+ 12 ln

(
1 + √

1 − 4v

1 − √
1 − 4v

)
Li2

(
1 − √

1 − 4v

1 + √
1 − 4v

)

+ 24 Li3

(
2
√

1 − 4v

1 + √
1 − 4v

)
+ 12 Li3

(
1 − √

1 − 4v

1 + √
1 − 4v

)
− 12 ζ3

]
ε2 + O(ε3)

}
, (C4)
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I2(v; ε) = π

4v
√

1 − 4v

{
2
√

1 − 4v + 2 ln

(
1 + √

1 − 4v

1 − √
1 − 4v

)
ε +

[
ln2

(
1 + √

1 − 4v

1 − √
1 − 4v

)

+ 4 Li2

(
2
√

1 − 4v

1 + √
1 − 4v

)]
ε2 + O(ε3)

}
. (C5)

2. Two denominators, massless

Here, we present the ε-expansion of the massless angular integral with two denominators,
� j,k(v, 0, 0; ε), for the specific values of j, k = −2,−1, 1, and 2. More precisely, we extract a
factor of

∫
d�1−2ε and define

I j,k(v; ε) ≡ 2−1+2επε 
(1 − 2ε)


(1 − ε)
� j,k(v, 0, 0; ε). (C6)

This choice of normalization keeps the expanded expressions simpler and allows for a straightforward
comparison with Refs. 2 and 3. Since the results are clearly symmetric in j and k, we can restrict to
the cases where j ≥ k. We find

I−2,−2(v; ε) = 2π

[
16

5
− 16

5
v + 8

15
v2 +

(
596

75
− 656

75
v + 368

225
v2

)
ε + O(ε2)

]
, (C7)

I−1,−2(v; ε) = 2π

[
2 − 4

3
v +

(
14

3
− 32

9
v

)
ε + O(ε2)

]
, (C8)

I1,−2(v; ε) = 2π

[
− 2v2

ε
+ 1 + 2v − 6v2 + 2

(
1 + 3v − 7v2

)
ε + O(ε2)

]
, (C9)

I2,−2(v; ε) = 2π

[
− 2v(2 − 3v)

ε
+ 1 − 8v + 6v2 + 2

(
1 − 8v + 9v2

)
ε + O(ε2)

]
, (C10)

I−1,−1(v; ε) = 2π

[
4

3
− 2

3
v +

(
26

9
− 16

9
v

)
ε + O(ε2)

]
, (C11)

I1,−1(v; ε) = 2π

[
− v

ε
+ 1 − 2v + 2

(
1 − 2v

)
ε + O(ε2)

]
, (C12)

I2,−1(v; ε) = 2π

[
− 1 − 2v

2ε
− v + vε + O(ε2)

]
, (C13)

I1,1(v; ε) = π

v

{
− 1

ε
+ ln v − 1

2

[
ln2 v + 2 Li2(1 − v)

]
ε + O(ε2)

}
, (C14)

I2,1(v; ε) = π

2v2

{
− 1

ε
− 2 + v + ln v + 1

2

[
2v + 4 ln v − ln2 v − 2 Li2(1 − v)

]
ε + O(ε2)

}
,

(C15)
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I2,2(v; ε) = π

2v3

{
− 2 − v

ε
− 5 + 4v + (2 − v) ln v

− 1

2

[
4 − 6v − (10 − 4v) ln v + (2 − v) ln2 v + 2(2 − v) Li2(1 − v)

]
ε + O(ε2)

}
. (C16)

3. Two denominators, one mass

Next, we present the ε-expansion of the angular integral with two denominators and one mass,
� j,k(v12, v11, 0; ε), for the specific values j, k = −2,−1, 1, and 2. As before, we extract a factor of∫

d�1−2ε and set

I (1)
j,k (v12, v11; ε) ≡ 2−1+2επε 
(1 − 2ε)


(1 − ε)
� j,k(v12, v11, 0; ε). (C17)

When k < 1, the integral is finite in ε and we have

I (1)
−2,−2(v12, v11; ε) = 2π

[
16

5
− 8

5
v11 − 16

5
v12 + 8

15
v2

12 + O(ε)

]
, (C18)

I (1)
−1,−2(v12, v11; ε) = 2π

[
2 − 4

3
v12 + O(ε)

]
, (C19)

I (1)
1,−2(v12, v11; ε) = 2π

(1 − 4v11)5/2

[√
1 − 4v11

(
1 − 10v11 + 2v12 + 16v11v12 − 6v2

12

)

− 2
(

6v2
11 − 6v11v12 + v2

12 + 2v11v
2
12

)
ln

(
1 − √

1 − 4v11

1 + √
1 − 4v11

)
+ O(ε)

]
, (C20)

I (1)
2,−2(v12, v11; ε) = 2π

v11(1 − 4v11)5/2

[√
1 − 4v11

(
v11 + 8v2

11 − 12v11v12 + v2
12 + 8v11v

2
12

)

+ 2v11

(
3v11 − 2v12 − 4v11v12 + 3v2

12

)
ln

(
1 − √

1 − 4v11

1 + √
1 − 4v11

)
+ O(ε)

]
, (C21)

I (1)
−2,−1(v12, v11; ε) = 2π

[
2 − 4

3

(
v11 + v12

)
+ O(ε)

]
, (C22)

I (1)
−1,−1(v12, v11; ε) = 2π

[
4

3
− 2

3
v12 + O(ε)

]
, (C23)

I (1)
1,−1(v12, v11; ε) = 2π

(1 − 4v11)3/2

×
[√

1 − 4v11

(
1 − 2v12

)
+
(

2v11 − v12

)
ln

(
1 − √

1 − 4v11

1 + √
1 − 4v11

)
+ O(ε)

]
,

(C24)
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I (1)
2,−1(v12, v11; ε) = − π

v11(1 − 4v11)3/2

×
[√

1 − 4v11

(
2v11 − v12

)
+ v11

(
1 − 2v12

)
ln

(
1 − √

1 − 4v11

1 + √
1 − 4v11

)
+ O(ε)

]
,

(C25)

On the other hand, for k ≥ 1, the integral has a pole in ε. We find

I (1)
−2,1(v12, v11; ε) = 2π

[
− 2v2

12

ε
+ 1 − 2v11 + 2v12 − 6v2

12 + O(ε)

]
, (C26)

I (1)
−1,1(v12, v11; ε) = 2π

[
− v12

ε
+ 1 − 2v12 + O(ε)

]
, (C27)

I (1)
1,1(v12, v11; ε) = π

2v12

[
− 1

ε
− ln

(
v11

v2
12

)
+ O(ε)

]
, (C28)

I (1)
2,1(v12, v11; ε) = π

4v11v
2
12

[
− v11

ε
− 2v11 + v12 − v11 ln

(
v11

v2
12

)
+ O(ε)

]
, (C29)

I (1)
−2,2(v12, v11; ε) = 2π

[
2(v11 − 2v12 + 3v2

12)

ε
+ 1 + 4v11 − 8v12 + 6v2

12 + O(ε)

]
, (C30)

I (1)
−1,2(v12, v11; ε) = 2π

[
− 1 − 2v12

2ε
− v12 + O(ε)

]
, (C31)

I (1)
1,2(v12, v11; ε) = π

4v3
12

[
2v11 − v12

ε
+ 2

(
2v11 − 2v12 + v2

12

)
+
(

2v11 − v12

)
ln

(
v11

v2
12

)
+ O(ε)

]
,

(C32)

I (1)
2,2(v12, v11; ε) = π

8v11v
4
12

[
2v11(3v11 − 2v12 + v2

12)

ε
+ 16v2

11 − 16v11v12 + v2
12 + 10v11v

2
12

+ 2v11(3v11 − 2v12 + v2
12) ln

(
v11

v2
12

)
+ O(ε)

]
, (C33)

4. Two denominators, two masses

Here, we present the ε-expansion of the angular integral with two denominators and two masses,
� j,k(v12, v11, v22; ε), for the specific values j, k = −2,−1, 1, and 2. As before, we extract a factor
of
∫

d�1−2ε and define

I (2)
j,k (v12, v11, v22; ε) ≡ 2−1+2επε 
(1 − 2ε)


(1 − ε)
� j,k(v12, v11, v22; ε). (C34)

Clearly, this expression is symmetric under the simultaneous exchange of j ↔ k and v11 ↔ v22,
thus we can restrict to the cases where j ≥ k.

We find

I (2)
−2,−2(v12, v11, v22; ε) = 2π

[
16

5
− 8

5
v11 − 16

5
v12 + 8

15
v2

12 − 8

5
v22 + 16

15
v11v22 + O(ε)

]
, (C35)
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I (2)
−1,−2(v12, v11, v22; ε) = 2π

[
2 − 4

3
v12 − 4

3
v22 + O(ε)

]
, (C36)

I (2)
1,−2(v12, v11, v22; ε) = 2π

(1 − 4v11)5/2

[√
1 − 4v11

(
1 − 10v11 + 2v12 + 16v11v12 − 6v2

12 − 2v22

+ 8v11v22

)
− 2

(
6v2

11 − 6v11v12 + v2
12 + 2v11v

2
12 + 2v11v22 − 8v2

11v22

)

× ln

(
1 − √

1 − 4v11

1 + √
1 − 4v11

)
+ O(ε)

]
, (C37)

I (2)
2,−2(v12, v11, v22; ε) = 2π

v11(1 − 4v11)5/2

[√
1 − 4v11

(
v11 + 8v2

11 − 12v11v12 + v2
12 + 8v11v

2
12

+ 4v11v22 − 16v2
11v22

)
+ 2v11

(
3v11 − 2v12 − 4v11v12 + 3v2

12 + v22

− 4v11v22

)
ln

(
1 − √

1 − 4v11

1 + √
1 − 4v11

)
+ O(ε)

]
, (C38)

I (2)
−1,−1(v12, v11, v22; ε) = 2π

[
4

3
− 2

3
v12 + O(ε)

]
, (C39)

I (2)
1,−1(v12, v11, v22; ε) = 2π

(1 − 4v11)3/2

[√
1 − 4v11

(
1 − 2v12

)

+
(

2v11 − v12

)
ln

(
1 − √

1 − 4v11

1 + √
1 − 4v11

)
+ O(ε)

]
, (C40)

I (2)
2,−1(v12, v11, v22; ε) = − π

v11(1 − 4v11)3/2

[√
1 − 4v11

(
2v11 − v12

)

+ v11

(
1 − 2v12

)
ln

(
1 − √

1 − 4v11

1 + √
1 − 4v11

)
+ O(ε)

]
, (C41)

I (2)
1,1(v12, v11, v22; ε) = π

2
√

v2
12 − 4v11v22

[
ln

(v12 +
√

v2
12 − 4v11v22

v12 −
√

v2
12 − 4v11v22

)
+ O(ε)

]
, (C42)

I (2)
2,1(v12, v11, v22; ε) = − π

4v11(v2
12 − 4v11v22)3/2

[√
v2

12 − 4v11v22

(
2v11 − v12

)

− v11

(
v12 − 2v22

)
ln

(v12 +
√

v2
12 − 4v11v22

v12 −
√

v2
12 − 4v11v22

)
+ O(ε)

]
, (C43)
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I (2)
2,2(v12, v11, v22; ε) = π

8v11v22(v2
12 − 4v11v22)5/2

[√
v2

12 − 4v11v22

(
v11v

2
12 + 8v2

11v22

− 12v11v12v22 + v2
12v22 + 4v11v

2
12v22 + 8v11v

2
22 − 16v2

11v
2
22

)

− 2v11v22

(
3v11v12 − 2v2

12 + v3
12 − 4v11v22 + 3v12v22 − 4v11v12v22

)

× ln

(v12 +
√

v2
12 − 4v11v22

v12 −
√

v2
12 − 4v11v22

)
+ O(ε)

]
. (C44)

5. Three denominators, massless

Finally, we present the ε-expansion of the massless angular integral with three denominators,
� j,k,l(v12, v13, v23; ε), for the specific values j, k = 1 and 2. As in the previous examples, we extract
a factor of

∫
d�1−2ε and define

I j,k,l(v12, v13, v23; ε) ≡ 2−1+2επε 
(1 − 2ε)


(1 − ε)
� j,k,l(v12, v13, v23; ε). (C45)

Clearly, this expression is symmetric under the permutations of the indices j , k, and l. Hence, we
can restrict to the cases where j ≥ k ≥ l. We find

I1,1,1(v12, v13, v23; ε) = − π

4v12v13v23

[
v12 + v13 + v23

ε
+
(
v12 − v13 − v23

)
ln v12

+
(
v13 − v12 − v23

)
ln v13 +

(
v23 − v12 − v13

)
ln v23 + O(ε)

]
, (C46)

I2,1,1(v12, v13, v23; ε) = − π

8v2
12v

2
13v23

[
v2

12 + v2
13 + 2v12v23 + 2v13v23 − 2v12v13v23 − v2

23

ε

+ v2
12 − 2v12v13 + v2

13 + 4v12v23 + 4v13v23 − 6v12v13v23 − v2
23

+
(
v2

12 − v2
13 − 2v12v23 − 2v13v23 + 2v12v13v23 + v2

23

)
ln v12

+
(
v2

13 − v2
12 − 2v13v23 − 2v12v23 + 2v12v13v23 + v2

23

)
ln v13

−
(
v2

12 + v2
13 − 2v12v23 − 2v13v23 + 2v12v13v23 + v2

23

)
ln v23 + O(ε)

]
,

(C47)

I2,2,1(v12, v13, v23; ε) = − π

16v3
12v

2
13v

2
23

[(
v3

12 + 3v12v
2
13 − 2v3

13 + 6v2
13v23 − 6v12v

2
13v23 + 3v12v

2
23

+ 6v13v
2
23 − 6v12v13v

2
23 − 2v3

23

)1

ε
+ 2v3

12 − 3v2
12v13 + 8v12v

2
13 − 3v3

13 − 3v2
12v23 − 6v12v13v23
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+ 6v2
12v13v23 + 13v2

13v23 − 16v12v
2
13v23 + 8v12v

2
23 + 13v13v

2
23 − 16v12v13v

2
23 − 3v3

23

+
(
v3

12 − 3v12v
2
13 + 2v3

13 − 6v2
13v23 + 6v12v

2
13v23 − 3v12v

2
23 − 6v13v

2
23 + 6v12v13v

2
23

+ 2v3
23

)
ln v12 −

(
v3

12 − 3v12v
2
13 + 2v3

13 − 6v2
13v23 + 6v12v

2
13v23 + 3v12v

2
23 + 6v13v

2
23

− 6v12v13v
2
23 − 2v3

23

)
ln v13 −

(
v3

12 + 3v12v
2
13 − 2v3

13 + 6v2
13v23 − 6v12v

2
13v23 − 3v12v

2
23

− 6v13v
2
23 + 6v12v13v

2
23 + 2v3

23

)
ln v23 + O(ε)

]
, (C48)

I2,2,2(v12, v13, v23; ε) = π

16v3
12v

3
13v

3
23

[(
2v4

12 − 4v3
12v13 − 4v12v

3
13 + 2v4

13 − 4v3
12v23 + 6v3

12v13v23

− 4v3
13v23 + 6v12v

3
13v23 − 4v12v

3
23 − 4v13v

3
23 + 6v12v13v

3
23 + 2v4

23

)1

ε
+ 4v4

12 − 12v3
12v13

+ 6v2
12v

2
13 − 12v12v

3
13 + 4v4

13 − 12v3
12v23 + 6v2

12v13v23 + 19v3
12v13v23 + 6v12v

2
13v23

− 12v2
12v

2
13v23 − 12v3

13v23 + 19v12v
3
13v23 + 6v2

12v
2
23 + 6v12v13v

2
23 − 12v2

12v13v
2
23

+ 6v2
13v

2
23 − 12v12v

2
13v

2
23 + 6v2

12v
2
13v

2
23 − 12v12v

3
23 − 12v13v

3
23 + 19v12v13v

3
23 + 4v4

23

+
(

2v4
12 − 4v3

12v13 + 4v12v
3
13 − 2v4

13 − 4v3
12v23 + 6v3

12v13v23 + 4v3
13v23

− 6v12v
3
13v23 + 4v12v

3
23 + 4v13v

3
23 − 6v12v13v

3
23 − 2v4

23

)
ln v12

−
(

2v4
12 − 4v3

12v13 + 4v12v
3
13 − 2v4

13 − 4v3
12v23 + 6v3

12v13v23 + 4v3
13v23

− 6v12v
3
13v23 − 4v12v

3
23 − 4v13v

3
23 + 6v12v13v

3
23 + 2v4

23

)
ln v13

−
(

2v4
12 − 4v3

12v13 − 4v12v
3
13 + 2v4

13 − 4v3
12v23 + 6v3

12v13v23 − 4v3
13v23

+ 6v12v
3
13v23 + 4v12v

3
23 + 4v13v

3
23 − 6v12v13v

3
23 − 2v4

23

)
ln v23 + O(ε)

]
. (C49)
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9 G. Somogyi and Z. Trócsányi, J. High Energy Phys. 01, 052 (2007); e-print arXiv:hep-ph/0609043.

10 U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi, and Z. Trócsányi, J. High Energy Phys. 09, 107 (2008); e-print
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