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Abstract

Newton’s Law of Gravitation has been tested at small values a of the acceler-
ation, down to a ≈ 10−10 ms−2, the approximate value of MOND’s constant
a0. No deviations were found.

1 Introduction

The nature of Dark Matter is one of the central questions in astrophysics
at present. Introduced originally to explain the dynamics of galaxies, Dark
Matter has found an established place in the Cosmological Model. Still, many
questions and difficulties remain, see e.g. [1]. In this context, also alternative
explanations are discussed, one of them being MOND (modified-Newtonian-
dynamics) [2]. MOND assumes, that the gravitational law is modified for
small values of the acceleration in the following way:

aN = a · µ(a/a0) (1)

Here, a is the acceleration according to MOND, aN is the Newtonian accel-
eration aN = G ·m/r2, and a0 = 1.2 ·10−10ms−2 is assumed to be a universal
constant [1], [3]. The interpolation function µ(a/a0) is µ → 1 for a >> a0,
recovering Newton’s Law, and µ → a/a0 for a << a0. Apart from these
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asymptotic values the interpolation function is not determined by the the-
ory, but has to be constrained by data.

A relativistic formulation incorporating the MOND theory has been de-
veloped by Bekenstein [4].

MOND has so far passed many astronomical tests [1] [3]. Apart from
modifying Newton’s Law, MOND could also be interpreted as a violation of
Newton’s second axiom F = m · a [5], irrespective of the nature of the force
F . This latter aspect has been experimentally checked, using electromag-
netic restoring forces, and Newton’s axiom verified down to accelerations of
3 · 10−11ms−2 [6] and 5 · 10−14ms−2 [7]. Therefore, a possible modification
according to MOND must rest with the gravitational force alone. This ex-
periment is designed to test Newton’s Law at accelerations of the order a0,
using only gravitational forces. It has been argued, that such a test is not
meaningful in the strong gravitational field of the earth, but, due to a lack
of a deeper understanding of MOND, this view is not shared by everybody
(see e.g. [3]).

2 Experimental Procedure

A schematic view of the experiment is shown in Fig. 1.

Figure 1: Schematic view of the experiment

The central part of the experiment is a microwave resonator, tuned to a
frequency of about 21.3905 GHz. The resonator consists of two mirrors with
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Figure 2: Schematic view of the resonator

spherical surfaces, suspended by tungsten wires of about 3 m length, result-
ing in a pendulum period of 3.289 ± 0.010 s. This part of the detector sits
in an evacuated vessel. Two field-masses are positioned outside the vacuum
vessel on either side of the resonator, and are periodically and simultaneously
moved between a far (A) and a near (B) position. Their gravitational pull
results in a small change of the position of the two mirrors, which is measured
from the change of the resonance frequency.

A detailed view of the resonator is presented in Fig. 2, showing also the
microwave guides.

The apparatus had been built and operated at Wuppertal University for
a precision measurement of the gravitational constant [8], [9],[10],[11],[12]. It
was later tranferred to DESY and reinstalled with some improvements for
the stability of the support [13], [14].

Measurements were carried out with three pairs of field-masses, consist-
ing of spheres of brass, marble and plastic, with masses of 9.02 kg, 2.92 kg
and 1.00 kg, respectively. All spheres have the same diameter of 12.7 cm.
They were placed at the near position with their centers at 76.6 cm on the
left side and of 77.9 cm on the right side from the center of gravity of the
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nearest mirror, respectively. The acceleration of a mirror caused by the closer
field-mass at the near position was 10.2 · 10−10ms−2, 3.3 · 10−10ms−2, and
1.1 · 10−10ms−2 for the three masses, resulting in a change of the distance
between the two mirrors from about 0.210 nm to 0.023 nm. If Newton’s
Law is correct, the deflections due to the three field-masses must be precisely
proportional to their mass values.

Measurements were carried out by moving the left (right) field-masses
from the near position at 76.6 cm (77.9 cm) to a far position at 213 cm (220
cm) every 40 min.

Measurements of the resonance frequency fR were performed every 2 sec
by tuning the frequency of the generator to five values around the resonance
frequency and recording the resulting amplitude at the exit of the resonator.
The resonance frequency was then determined by fitting a resonance curve
of the form Equ.(2) to the five amplitude values U(f).

U(f) = Umax ·
1

1 + 4((f − fR)/fw)2
. (2)

Here U(f) is the amplitude at frequency f, fR is the fitted resonance fre-
quency and fw is the resonance width.

The frequency measurements were then averaged over typically 1-2 min.
The temperature at the apparatus was kept constant to about 0.1 degree;
still the data show a strong drift with temperature, which must be corrected
for.

Figure 3 shows an example of a measurement with the 9.02 kg field-
masses before and after subtraction of a slow frequency drift. From the
frequency measurements a large constant frequency (about 21 GHz) has been
subtracted.

Additional distortions come also from sources like ground movements,
occasional earthquakes and waves from the North Sea: Fig. 4 shows as an
example the rms noise of single frequency measurements plotted against the
significant wave height at the mouth of the Elbe river.
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Figure 3: Frequency as a function of time for a measurement with the 9.02 kg
sphere, without (above) and after (below) a background drift subtraction. A large
constant frequency offset has been subtracted.
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Figure 4: The noise (rms) of a single frequency measurement as a function of the
significant wave height at the mouth of the Elbe river.

3 Results

The data were evaluated using six different methods of background subtrac-
tion, to deal with slow drifts of the resonance frequency and with short-term
background variations: Overall polynomial fits (A1, A3), piecewise 3rd or-
der polynomial fit (A5), piecewise 5th order polynomial fit (A6), and sliding
average (A2, A4) [14]. For each mass the uncertainties of the mean values
in Table 1 were determined from the variance of the results of about 25 in-
dependent data runs with an average duration of 12 hours. The differences
between the results of different methods for the 9.02 kg data are somewhat
larger than expected from the individual errors and reflect differences in
dealing with short-term variations of the background. To deal with it, the
uncertainty of the 9.02 kg data is in the following Fig. 5 and in the calculation
of G increased by a factor of 1.5, according to the PDG prescription [15]. All
six methods were checked with several sets of Monte Carlo data, to which
regular and irregular noise similar to the one observed in the data had been
added. All methods were able to reproduce the correct input signal within
the uncertainties [14].

Method A1 was used as the central value and the other methods as con-
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sistency checks.

Table 1: Mean frequency shift ∆f in Hz for the three field-masses

Method ∆f 1.0 kg ∆f 2.92 kg ∆f 9.02 kg
A1 2.06 ± 0.25 6.09 ±0.24 18.65 ± 0.40
A2 2.00 ± 0.44 6.25 ±0.32 19.12 ± 0.54
A3 2.06 ± 0.38 6.19 ±0.34 18.53 ± 0.60
A4 2.94 ± 0.48 6.36 ±0.31 19.30 ± 0.61
A5 1.72 ± 0.59 6.31 ±0.36 20.09 ± 0.51
A6 1.60 ± 0.25 5.63 ±0.23 17.00 ± 0.56

Assuming, that the potential effect due to MOND is negligeable for the
9.02 kg field-masses, the gravitational constant G can be computed from the
frequency shift ∆f between the far and near positions of the 9.02 kg field-
masses. The values of ∆f given in Table 1 are the sum of the frequency
shifts of the right and left field-masses.

The frequency shift δf due to one field-mass is given by

δf

f
=

GMT 2

0
·∆(1/r2)

4π2b
(3)

with

∆(1/r2) = (1/r2n − 1/(rn + b)2)− (1/r2f − 1/(rf + b)2) (4)

Here f is the frequency, M the field-mass, T0 the pendulum period of
the cavity, b the distance between the two cavities, rn and rf are the dis-
tances of the near and far position of the field-mass from the nearest mirror,
respectively.

Using method A1 as a reference value, and after a correction taking ac-
count of the detailed shape of the mirrors [14], one obtains a value for G

G = (6.57 ±0.21 ±0.11) · 10−11m3/kg s2

where the first uncertainty is due to the uncertainty of the frequency shift.
The second uncertainty is systematic, with the list of systematic uncertain-
ties as given in the table below. The first three entries in the table follow
directly from the corresponding measurement uncertainties, the fourth entry
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follows from the estimated accuracy of the integration over the mirrors, and
the uncertainty of b was determined from an analysis of the mode spectrum
of the resonator.

Table 2: Systematic uncertainties contributing to the measurement of G.

Source uncertainty in %
pendulum frequency T−1

0
0.66

position of the field-masses rn, rf 1.48
value of the field-masses M 0.11
integration over the mass distribution of the mirrors 0.20
distance between mirrors b 0.01

This value of G agrees with the world average [15] of G = 6.67428(67) ·
10−11m3/kg s2 within the uncertainties.

Predictions from MOND are not unambiguous. We assume, that the
forces from each field-mass on each cavity, as calculated from the MOND
formula, can be added linearly. With this assumption one can calculate
the frequency shifts for the different field-masses and for the different inter-
polation functions µ(x), with a=acceleration due to MOND, aN=Newton’s
acceleration, x = a/a0, y =

√

(aN/a0):

MOND1 [5] µ(x) = x/
√
1 + x2

MOND2 [16] µ(x) = x/(1 + x)

MOND3 [17] µ(x) = 6x/π2 ·
∫ π2/6x

0
z/(ez − 1)dz

MOND4 [18] a = a0y · (1− y4)/(1− y3)
MOND5 [4] µ(x) = (

√
1 + 4x− 1)/(

√
1 + 4x+ 1)

Fig. 5 shows a comparison of the measurements with the predictions of the
five interpolation functions. The normalized frequency shift ∆f/M (whereM
is the mass of the field-mass) is plotted for the three field-masses. The error
bars on the data points represent the uncertainty of the measured frequency
shifts. The width of the bands for the interpolating functions shows the effect
of the systematic uncertainties. If Newton’s Law is valid, ∆f/M must be the
same for all field-masses. Version MOND5 due to Bekenstein’s relativistic
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theory is clearly ruled out (also ruled out by astrophysical observations [16]).
The versions MOND1 and MOND2 are only slightly disfavoured.
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Figure 5: Comparison of different versions of the MOND interpolation function
with the measurements. The values of the field-masses M are plotted against
∆f/M , where ∆f is the frequency shift. The upper horizontal axis indicates the
value of the acceleration of one of the mirrors caused by the closer field-mass in
the near position in units of the MOND acceleration a0. The vertical axis on the
right hand side shows the corresponding relative change of the distance between
the mirrors.
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4 Conclusions.

Newton’s Law of Gravitation has been tested for small values of the accel-
eration, using a pair of pendulums to measure the gravitational attraction.
The data cannot refute the MOND theory, but they have successfully probed
Newton’s Law down to the MOND acceleration a0 = 1.2 · 10−10 m/s2. The
accuracy of the measurements will be improved by moving the experiment
to an underground location and by a better mechanical support.
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