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Abstract

BCM1F, the Fast Beam Conditions Monitor, is a sub-detector of the CMS experiment at LHC.
It monitors the beam halo and the collision product rates inside the CMS experiment.
The data acquisition of BCM1F is independent from CMS. Major components of the BCM1F
back-end are discriminators, ADCs, TDCs, look-up tables and a Veto module.
In the thesis the performance of several components is investigated.
For the TDC two different readout modes are compared, and the impact of a Ring Buffer in
the readout software was investigated.
For one discriminator the thresholds of all channels are investigated and offsets of about 10 mV
are found.
Data taken in the LHC runs with the TDC are presented and discussed.
Also the of BCM1F as a luminosity monitor is studied.
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1 INTRODUCTION

1 Introduction

1.1 Large Hadron Collider (LHC)

The LHC is a particle accelerator at CERN near Geneva. It is a storage ring of 27 km circumference
located about 100 metres underground where two proton or heavy ion beams are accelerated in
opposite directions and brought into collisions in the experiments.
The energy of each proton bunch can reach up to 7 TeV with a luminosity of 1034 cm−2s−1. Not
only one particle will be accelerated by the LHC but a packet of particles which is called bunch.
The minimal time between two bunches is 24.95 ns. The bunch needs 89 µs for one orbit at the LHC
ring. Several bunches form bunch trains covering a few µs. Between bunch trains time intervals
without bunches are foreseen to activate magnets for a beam dump, the so called abort gap. The
gap is needed to allow the dump steering magnet to switch from off to on. The bunch-structure
is illustrated in Figure 1. After the collision of the two bunches at very high energy, the particle
detectors measure the collision products of proton-proton interaction. New fundamental particles
or interactions are expected to be discovered, which may have governed the universe in a very early
stage, just after the Big Bang [1] [2].

Figure 1: Scheme of the bunch structure

A major motivation of the LHC is the explanation of the electroweak symmetry breaking, which
is caused by the Higgs mechanism. It will be a great success to find the Higgs boson with one of
the experiments at the LHC.
Six experiments at the LHC were designed for different goals. The two largest experiments are
ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid). ATLAS and CMS
are searching for the Higgs boson to study the electroweak symmetry breaking mechanism. If they
do not find the Higgs boson, they will look for alternative models. ATLAS and CMS have different
detector concepts for mutual confirmation if one of them has made a new discovery.
ALICE (A Large Ion Collider Experiment) and LHCb (LHC beauty) are two medium size detec-
tors. With ALICE one can recreate the conditions as they existed in early stages of the universe
by colliding ions. LHCb is studying the beauty quark and investigating the matter-antimatter
asymmetry.
The smallest detectors are TOTEM (TOTal Elastic and diffractive cross section Measurements)
and LHCf (LHC forward). TOTEM is monitoring the luminosity and LHCf uses forward particles
as a source to study interactions important to understand cosmic ray showers.

1.2 Compact Muon Solenoid (CMS)

The detector is permeated by a magnetic field of 4 T, which is generate by a superconducting
solenoid. This magnetic field is needed to measure the momenta of charged particles.
Different sub-detectors are arranged inside the coil to detect collision products, such as photons,
protons, electrons, and others [3]. The layout of the CMS detector is shown in Figure 2.
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1 INTRODUCTION

Figure 2: 3-dimensional view of the CMS detector [http://public.web.cern.ch/public/en/lhc/CMS-
en.html]

Charged particles crossing the detectors ionise the material. In an electric field the charge carriers
drift and generate electric signals to be measured. A pixel detector, that measures space coordinates
along the track of charged particles, is located close to the IP. The pixel detector allows also the
reconstruction of secondary vertices, created by the decay of instable particles.

Figure 3: Signature of different particles in the detectors [http://cms.web.cern.ch/cms/Detector/
FullDetector/index.html]

At large radius from the IP follows the silicon tracker built of silicon strip sensors that reconstruct
together with the pixel detector the path of charged particles. Neutral particles, such as photons
or neutrons, cross the silicon tracker usually without any signal.

The silicon tracker is encompassed by the electromagnetic calorimeter (ECal). The hadron calorime-
ter (HCal) is around the electromagnetic calorimeter. The electromagnetic calorimeter detects elec-
trons and photons because they produce a shower of electrons and positrons due to bremsstrahlung
and pair production. All hadrons are detected in the hadron calorimeter, where also neutrons and
neutral kaons produce a shower. Both calorimeters are able to measure the energy of the particles
that create a shower in the calorimeters. Two hadronic forward calorimeters (HF) are positioned
at either end of CMS and close to the beam pipe. HF detects particles at low polar angles.

The outermost detector is the muon detector. Muons are charged particles like electrons, but they
are 200 times heavier and penetrate several meters of iron. While most particles, such as electrons,
protons, or neutrons, are stopped by the calorimeters, muons can pass through all calorimeters.
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1 INTRODUCTION

To detect muons, CMS has a detector in the iron yoke where muons are the only particles likely
to deposit a signal. Because of the different orientation of the magnetic field the muon follows an
S-shape curve. From the bending radii the momentum of a muon can be measured both in the
inner tracker and in the muon detector. It is very important to detect muons because it can be a
signature of the Higgs boson. When the Higgs boson is heavy enough it decays in two Z-bosons with
subsequent decay into four muons. In Figure 3, one can see the interaction of different particles in
each sub-detector.
Table 1 summarizes the signatures of each particle in the detectors.

Particle Silicon Tracker ECal HCal Muon Detector
Muon track track track track

Electron track shower - -
Charged Hadron(e.g. Pion) track track shower -

Neutral Hadron (e.g. Neutron) - - shower -
Photon - shower - -

Table 1: Signatures of different particles in the sub-detectors of the CMS experiment

1.3 Beam Conditions and Radiation Monitoring System (BRM)

CMS consists not only of detectors that measure and identify particles, it also has sub-detectors
for protection and monitoring. The Beam Conditions and Radiation Monitoring system (BRM)
performs both of these tasks [2].

sub-system Sampling time Function
Passives Long Term Monitoring

RADMON 1s Monitoring
BCM2 40 µs Protection

BCM1L sub orbit 5 µs Protection
BSC bunch-by-bunch Monitoring

counter with ns time resolution
BCM1F bunch-by-bunch Monitoring

counter with ns time resolution
BPTX 200 ps Monitoring

Table 2: Sub-systems of BRM [3]

All BRM sub-systems are listed in Table 2. Each sub-system of BRM is working at a different
sampling time. Two of them can initiate a beam abort to protect the CMS in case of adverse beam
conditions. Others monitor the beam conditions and signal e.g. the need of improvements in the
beam optics and collimators.
The protection systems are BCM1L and BCM2 being fast enough to match beam abort scenarios.
BCM1L and BCM2 are positioned on either side of the IP but BCM2 is farther away than BCM1L.
These detectors are used in the current measurement mode as particle flux monitors. In case the
currents exceed certain thresholds a beam abort is initiated.
The monitoring system contain slow and fast detectors. The passive detectors measure the ra-
diation dose at several positions in and around the CMS detectors over several weeks or month.
The RADMON, based on FET transistorsconsists, is readout each second, BCM1F (Fast Beam
Conditions Monitor), BSC (Beam Scintillation Counters) and BPTX (Beam Pickup tp Trigger
Experiment) are fast detectors. BCM1F counts particles crossing its sensors. The precision of the
time measurement, about 1.3 ns, is small in comparison to the time between two bunch-crossings.
Hence, halo particles or collision products originating from bunch crossings can be resolved. For
precise information of the bunch arrival time, BRM has BPTX. The BSC detector is a set of scin-
tillators (32) mounted in front of HF to provide raw timing and beam halo information.
In case of a beam abort, the BRM system will provide data to allow a post-mortem analysis. All
BRM detectors are working independently of other CMS sub-detectors.
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2 Fast Beam Conditions Monitoring (BCM1F)

BCM1F is vital for monitoring beam conditions in CMS [4]. It is sensitive to fast changes of beam
conditions and provides diagnostics with a time resolution much better than the time between
bunch crossings. In case of a beam abort it will provide data for a post-mortem analysis. BCM1F
is working independently of other CMS sub-detectors to monitor the beam halo continuously.

Figure 4: Position of BCM1F inside the CMS detector [4]

Figure 4 shows the location of BCM1F inside the CMS detector. BCM1F has 2 planes with 4
single-crystal chemical vapor deposition (sCVD) diamond sensors. Each sensor has a volume of
5×5×0.465 mm3. The planes are positioned at each side of the IP and the distance between
plane and IP is 1.8 m. Relativistic particles need 6 ns to move that distance. Figure 5 shows
the arrangement of the eight sensors with respect to the beam pipe and the labeling scheme. The
labeling ”near, far, top and bottom” refers to the location of the diamonds with respect to the
center of the LHC ring. The distance from the IP is optimized to separate the beam halo coming
from +Z and -Z directions and the collision products using the arrival time information. Details
are described in Chapter 6.

Figure 5: Layout of BCM1F Setup

Each sensor is connected to a radiation-hard preamplifier. If a charged particle passes through a
sensor, it generates an electrical signal (Hit) that is amplified. After the amplifier the signal is
converted into an optical signal. The optical signal is transmitted to the counting room. The whole
chain is shown in Figure 6(a). In the counting room, the signals are digitized and analyzed by a
power PC. The readout of the back-end is illustrated in Figure 6(b). For more details see Section
4.1.
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2 FAST BEAM CONDITIONS MONITORING (BCM1F)

(a) Scheme of the analog part of the BCM1F readout system

(b) Scheme of the back-end readout of BCM1F

Figure 6: Readout System [4]
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3 Luminosity Measurements at LHC

The luminosity measurement is used to monitor the LHC performance and to provide an overall
normalization for physics analysis. It is needed for the calculation of the cross-section of the
recorded collision processes.
In case of two particle beams a and b are colliding in a storage ring the instantaneous luminosity
is given by the following equation [5]:

L =
Na ·Nb · j · v

A · U
, (1)

where j is the number of particle bunches, each of them have Na or Nb particles. U is the
circumference of the collider. Due to a magnetic field, beams a and b circulate in opposite directions
with the velocity v. The two beams will collide at an interaction point j · v

U times per unit time.
A is the beam cross-section at the collision point. For a Gaussian distribution of the beam particles
around the beam center with horizontal and vertical standard deviation σx and σy , A is given by:

A = 4πσxσy . (2)

The dimension of the luminosity is 1
t·s = 1

cm−2s . Instead of cm2, very often another unit of area,
the barn, is used:

1 barn = 1 b

= 10−24 cm2 .

To get a high luminosity, the beam must be focused at the interaction point into the smallest
possible cross-sectional area.
The cross-section is a yardstick of the probability of a reaction between the two colliding particles.
For a certain process it is given by:

σ =
Ṅ

L
, (3)

where Ṅ is the number of events of the process per time unit.
An often used quantity in storage ring experiments and at LHC is the integrated luminosity which
is defined as:

L =

∫
Ldt . (4)

With the integrated luminosity, the cross-section can be written as following:

σ =
Ṅ

L
=
dN

dtL
=
N

L
, (5)

where N is the total number of events selected for a certain process.

The luminosity measurement is made by HF. HF is close to the beam pipe and covers a pseu-
dorapidity range 3 < |η| < 5 [2]. The pseudorapidity is given by the following equation:

η = −log
{
tan

(
Θ

2

)}
, (6)

where Θ is the angle between the particle being considered and the beam axis. A method to
measure the luminosity with HF is based on the measurement of the transverse energy, ET, in the
pseudorapidity of HF. It exploits the linear relationship between ET deposited in the HF and the
number of interactions. The number of interactions is proportional to the instantaneous luminosity.
However, a gauge is needed to translate the measurements in HF into the absolute pp (proton-
proton) luminosity. To obtain it, van-der-Meer scans [6] are done by LHC once per running period.
In these scans beams with known σx and σy are moved systematically in x and y to maximize the
collision rate, and the absolute luminosity is obtained using Equation (1).
It is planned to use BCM1F as a luminosity monitor to get an additional fast luminosity monitoring.
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4 Performance of the Data Acquisition of BCM1F

The BRM group at DESY-Zeuthen was in charge of designing, building and testing the back-end
part of BCM1F. The structure of the back-end is illustrated in Figure 7. Two identical setups are
installed at CERN and in the laboratory at DESY-Zeuthen. Before the installation of the DAQ
modules and the readout software at CERN, the whole system was tested in the laboratory in
DESY-Zeuthen. One of the requirements on the system is continuous running without crashes.
Hence, also long term test have been done in the laboratory. In addition, the system needs to be
fast in terms of double hit resolution and data delivering to the control rooms. The limitations
of the system with respect to readout speed and dead time are investigated. This is important at
higher luminosity, since the system must be able to cope with a larger amount of data.

4.1 Experimental Setup of the Back-End

The readout at back-end consists of different VME based readout modules produced by CAEN.
The modules are listed in Table 3.

Module CAEN model Task Features

Discriminator v258B Discrimination of signals Threshold voltage
produced by particles [0,-510 mV]

TDC v767 Time information 0.8 ns/bin,
10 ns double hit resolution,

ECL↔NIM v538 Signal conversion I/O delay < 5 ns
converter for adaption of output/

input of different modules
LUT v1495 coincidences in pairs programmable general

of detectors, veto purpose board
signal during FIFO readout

Scaler v560E Hit rates 32 bit counter
5 ns double hit resolution

ADC v1721 signal sampling 4.5 mV/bin
500 Ms/s (Megasamples/s)

Veto-Module - blocking incoming signals needs activation signal

Table 3: Modules for the readout

A discriminator receives the signals from the analog chain and generates a standard output signal
only if the input signal is above a threshold set via software. The TDCs provides the time informa-
tion of the Hits. An ECL↔NIM converter is needed for the conversion of an ECL electronic signal
to a NIM electronic signal or NIM to ECL since NIM and ECL logics are different. NIM logic is a
current based logic with negative true at -0.8 V with an input impedance of 50Ω and false at 0 V.
The ECL based logic varies from -0.8 V(true) to -1.6 V(false).
A LUT is a programmable board that builds coincidences of two signal inputs and it can be used
as a register. For more details see Section 4.1.3. The Scaler allows to measure the count rates (#
Hits/time).
A 8-bit fast sampling ADC digitizes the signal shape and can be used for the measurements of
signal spectra.
The Veto module blocks new incoming Hits in case of an high Hit rate. It is described in Section
4.1.5.
To check the functionality of the system in the laboratory the scheme of the back-end that is
illustrated in Figure 7 was used. Instead of incoming Hits produced by particles test-pulses from a
pulse generator were used. The Hits simulate the passage of charged particles trough the diamond
detectors.

7
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Figure 7: Scheme of the data processing at the BCM1F back-end

First the signals from the analog chain go to a Fan-In-Fan-Out unit and then to the discriminator.
In the discriminator for each channel a threshold voltage is set and only pulses larger than the
threshold voltage produce an output signal.
After the discriminator, the Hits pass through the so-called ”Veto module” and then to the TDC.
The measurements with the TDCs are made with and without the Veto module to identify possible
performance differences.
The Hits go also from the discriminator to the Scaler to measure the count rates. An additional
board, the Look-up Table (LUT), is included between Scaler and discriminator.

The setup at DESY-Zeuthen is identical to the one installed at CERN. Also the labeling scheme
of the inputs/outputs of each module is the same as the labeling scheme at CERN. Table 4 lists
the inputs/outputs of the modules and the specification of the sensors.

Location of sensor Fan-in,Fan-out Discriminator TDC channel Scaler
with respect to the channel input/output input/output input/output

center of the LHC ring
-Z, Top 1/1 08 0 08
+Z, Top 2/1 09 1 09
-Z, Far 1/2 10 32 10

+Z, Near 2/2 11 33 11
-Z, Bottom 1/3 12 64 12
+Z, Bottom 2/3 13 65 13

-Z, Near 1/4 14 96 14
+Z, Far 2/4 15 97 15

Table 4: Nomenclature of the Channels

4.1.1 Discriminator

The discriminator v258B [7] has 16 channels and each channel has its own threshold. The threshold
for each channel can be set individually via a program in a range from 0 mV (0x00) to −510 mV
(0xFF) in steps of −2 mV. The module accepts only negative input voltages and produces ECL
outputs. However, the width of the output signal is independent of the input signal time over
threshold. The pulse width can be set in two ranges: 5-40 ns and 40-300 ns, using jumpers and it
is adjustable with a front panel trimmer (”WDT”). For our setup, we are using a range of 5-40 ns
because the time between the LHC bunches is 25 ns and the range 40-300 ns would hide consecutive
bunches. The time between the bunches is 25 ns that means during 100 ns, we may see 4 Hits in

8



4 PERFORMANCE OF THE DATA ACQUISITION OF BCM1F

our system. If we would use a higher width of the output pulse, for example 100 ns, we may lose
after a signal potentially signals from the following 3 bunches.

4.1.2 Time to Digital Converter (TDC)

The TDC module v767 houses 128 independent TDC channels [8] which are included in 4 TDC
chips [9]. Hence, each TDC chip houses 32 channels. Two important specifications of TDC are the
Double Hit Resolution (the minimal time between two consecutive Hits), which is 10 ns, and the
LSB (time resolution) which is 800 ps.
A TDC works as an electronic clock. It needs a reference signal that is called Start and measures
the time of the Hits with respect to the Start. The Start signal is needed for the calculation of
the time of the Hits. In the laboratory setup at Zeuthen we generate the Starts and Hits with
a pulse generator. The output of the generator is a NIM signal, but the TDC accepts only ECL
signals. That means the Start goes from the generator to an ECL←NIM converter and then to the
START input of the TDC board in the front panel. The period of the Starts, TStart, are for each
measurement 100 µs. The real LHC Start period is 89 µs which correspond to the time needed for
a bunch to make one turn. Nevertheless, a test period of 100 µs allows us to check the performance
of the DAQ in an easy way since we can easily generate Hits as a multiple of the Start period.
The period of the Hits is adjustable. The Hits and Starts will be processed in the TDC chips and
will be stored in the FIFO (output buffer) that will be filled with up to 32k words of 32 bits. The
FIFO is described in Chapter 4.3.

4.1.3 Look-Up Table (LUT)

The LUT is included between the Scaler and discriminator. The LUT v1495 [10] is user-programmable
I/O and logic blocks. It can be directly customized by the user and the management is handled
by two FPGAs. The FPGA is provided with a basic firmware which allows to define coincidences
matrices, I/O register, and asynchronous timer functions.
For our setup it will be used as a veto register for the Veto module and for building coincidences.
The Veto is active when a specific register of the LUT is set to 1, and a 0 resets it.
The coincidences are built by looking at the respective two inputs. Figure 8 shows how to get the
coincidences. Two Hits, which are coming from the discriminator, arrive in the LUT. A logical
AND of both signals is building a coincidence.

Figure 8: Scheme of a coincidence of two signals

In the future, it is planned to use the LUT for changing the operation mode to post-mortem
analysis after beam abort.

4.1.4 Scaler

The Scaler module v560 has 16 independent 32-bit counting channels [11] which accept only ECL
signals. Each channel count the number of Signals per time. The minimum time interval between
two signals is 5 ns.
In eight channels we are counting the Hit rate of the eight diamond sensors in BCM1F. Two other

9
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channels count the OR of the four sensors in +Z (OR +Z) and in -Z (OR -Z). The Scaler channel
OR +Z counts every time when the OR is 1. The OR becomes 1 when in at least one of the four
sensors is a Hit.
The coincidence, that are built in the LUT, are count in four other channels of the Scaler. The
four coincidences are important for the luminosity measurements with BCM1F. For more detail
see Section 7.1.
The last two channels count the number of Starts (orbit trigger) that is provided by LHC and the
number of active veto signals. The veto signal is always active during the block transfer (BLT). It
is described in Section 4.1.5.

4.1.5 Veto Module

The Veto module was developed in DESY-Zeuthen. The need of the Veto module came up after
the first test in the laboratory with the TDC module.
We observed that the data transfer from the TDC to the computer via the VME bus was to slow
to prevent overwriting of the data in the FIFO by the new incoming data. It was decided to veto
the storage of new data in the FIFO during the transfer of data. With the Veto board only Start
signals may reach the TDC FIFO during the transfer of data. The Veto blocks new Hits if the
FIFO of the TDC is half full. The half full condition is used because the size of one BLT of data
is a half of the TDC FIFO (16k).
An external signal is needed to activate the Veto module. To get an active veto signal during the
whole BLT of 16k, we are using the LUT. A register in the LUT is set to 1 when the data is ready.
The data is ready when the FIFO is half full. The register is 1 during the whole BLT of 16k. After
the BLT the register is set to 0 and the TDC is filled with new Hits. Such a register signal is
illustrated in Figure 9.

Figure 9: The output of the LUT register

For the TDC measurements with the Veto module we are using the LUT, which is also included
in the final DAQ setup of the TDC.

4.2 Principles of Operation

The data acquisition in the TDC can be programmed in different modes. We are using the con-
tinuous storage mode [8]. In this acquisition mode, all Hits that reach the TDC are stored in the
FIFO. Optionally, Starts can be stored in the FIFO.
The time measurement can be done in different ways. One way is the absolute time measurement.
For this, the zero time, given by the reset of the TDC, is a reference for time calculation. An other
way is the relative time measurement. For this, each Hit will be referred to a Start as shown in
Figure 10. The START period, TStart, is well-known. The Hits which arrive at time t1, t2 and
t3 are referred to the START time T1. The following Hits t4 and t5, which arrive at the second
START period, are referred to the START time T2. The arrival time of STARTS and Hits is
written in sequential order in the FIFO and the order reflects the time evolution (see Table 5).
It is possible to disable the writing of the Start times. If the total rates of Starts and Hits are
higher than the transfer rate of data from the TDC to the FIFO, an overflow will be the result
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Figure 10: Continuous storage mode [8]

Datum Signal
Datum n. 1 Start time T1
Datum n. 2 Hit time t1
Datum n. 3 Hit time t2
Datum n. 4 Hit time t3
Datum n. 5 Start time T2
Datum n. 6 Hit time t4
Datum n. 7 Hit time t5

Table 5: Storage of data in the FIFO

and data will be lost.

4.3 TDC FIFO and Data Structure

All the data (Hits and Starts) that come from the TDC chips are stored in the FIFO. The FIFO
contains 32k words and each word is 32 bit long. In case of continuous storage mode, one word
contains 20 bit time information and one bit gives information if it is a Start signal (1) or a Hit
signal (0). The last bits contain information about the channel number. The structure of one word
is given in detail in Figure 11. Each Hit and Start is one word and they will be stored in sequential
order in the FIFO.

Figure 11: Structure of one word (DATUM) in the FIFO

To start the readout of the FIFO we use the ”Data Ready” signal of the TDC. This happens when
the ”Buffer Almost Full” level is reached. This level goes from 0x0002 to 0x3FFF1 corresponding
to 16k words = half of the TDC FIFO. For the readout we can choose between two methods: single
memory access and block transfer via the VME bus.
With the single memory access, we are reading out the data from the FIFO word by word. This
readout requires one VME cycle per 32-bit word transfer. The BLT reads out a whole block of
memory - 16k of 32 bit words - in one single VME access.
If the FIFO is full and the readout is slow, new data will overwrite the old data in the FIFO. In
this case the data will be corrupted. When the DAQ collapses, we can determine the time we need
to fill the FIFO. The measurements in this section characterize the FIFO of the TDC v767.

1hexadecimal numbers
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4.4 Readout Code

For the control and the readout of the TDC module CAEN v767 via the VME bus we use a code
that is written in C++ where the TDC module is defined as a C++ class. The code comprises
four files. With the file ”tdc v767 caen.hh” we define the map of registers and functions that are
needed for the control of the TDC. In the file ”tdc v767 caen.cc” we implement the functions that
were declared in the previews file. The ”Makefile” is needed for the C++ compilation. At the end
we have the main file that is called ”DAQ code.cc”. This code we use for the DAQ. In the following
sections different versions of ”DAQ code.cc” are described and the results are reported. The two
different versions are ”TDC BufferAlmostFull.cc” using single memory access (with and without
Veto module) and ”BLT tree vmartin” using the block transfer (with and without Veto module).
Both codes are given in the Appendix.

4.4.1 Measurements using Single Memory Access without Veto module

To read out the FIFO with single memory access we use the program ”TDC BufferAlmostFull.cc”.
A flow diagram is given in Figure 12.

Figure 12: DAQ code flow diagram for single memory access

The memory of the TDC v767 FIFO has ≈32k words and to read out all of them, the program
can loop over a readout of 40000 words. With this loop, we cover the whole TDC memory.
The program runs with the following parameters:

� 40000 acquisitions
� 1 channel enabled (number of channel is 32)
� TStart = 100 µs
� tHit = 10 µs ,

where tHit is the time between two consecutive Hits.
The results of the tests are shown in Figure 13 and 14.

12
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(a) Dynamic range as a function of the number of TStart

(b) Zoom of upper plot

Figure 13: Dynamic Range

Figure 13(a) shows in the y-axis the dynamic range of the TDC and in the x-axis the number of
TStart which are counted in the FIFO. In Figure 13(b) is given the dynamic range from 0×TStart

till 200×TStart. The dynamic range of the TDC is 840000 ns. If the period of the TStart is 100 µs
and the Start time of the TDC begins to count at 0 µs, the Start time increases 100 µs after each
Start till reaching 840000 ns. After eight Starts it achieves 8×100 µs=800000 ns=800 µs and goes
back to 0 µs. This behavior is illustrated in Figure ??fig:ZOOM.

Figure 14: Hits per TStart as a function of TStart

Figure 14 shows the Hits registered per Start. In this case we have a Hit each 10 µs, or 10 Hits
per Start because:

13
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Hits per Start =
TStart

tHit
(7)

=
100 µs

10 µs
= 10 .

Since the readout rate is slower than the data input rate old data may be overwritten when the
FIFO is full. In Figure 14 we see above a Start number of 2980 the obtained number of Hits
becomes wrong, since the FIFO is full. With the Start number of 2980 the time to fill the FIFO
can be calculated:

time to fill FIFO = Start number · TStart (8)

= 2980 · 100 µs (9)

= 289 ms .

From this point on the DAQ collapses. Furthermore, we can see how many words are in the FIFO
without collapse of the DAQ:

size of full readout = Hits per Orbit× Start Numbers + Start Numbers (10)

= 10
Hits

Start
× 2980 Starts + 2980Starts

≈ 32k words .

In this way, one can measure the time to fill the FIFO for different Hit rates. In this experiment, we
increased the Hit rate and measured the time to fill the FIFO. Table 6 shows the relation between
Hit rate and the time to fill the FIFO under the following conditions:

� 40 000 acquisitions
� 1 channel enabled (channel number 32)
� TStart = 100 µs

tHit
Number of Hits

Start Hit rate time to fill the TDC FIFO (32k)
10 µs 10 100 Hits/ms 298 ms
2.5 µs 40 400 Hits/ms 80 ms
1 µs 100 1000 Hits/ms 32.4 ms

500 ns 200 2000 Hits/ms 16.5 ms
200 ns 500 5000 Hits/ms 6.5 ms

Table 6: Time to fill TDC FIFO using single memory access, 1 ch enabled

We can see in Table 6 how the time to fill the FIFO decreases when the Hit rate increases.
The same measurements can be done with 7 channels enabled (channels 1, 32, 33, 64, 65, 96, 97).
The results are shown in Table 7. For 7 channels enabled, data loss happens after 46.2 ms for a
Hit rate of 100 Hits/ms. This 46.2 ms is ≈ 1

7 of 298 ms which is the time to fill the FIFO for 1
channel enabled.

tHit
Number of Hits

Start Hit rate time to fill the TDC FIFO (32k)
10 µs 10 100 Hits/ms 46.2 ms
2.5 µs 40 400 Hits/ms 11.6 ms
1 µs 100 1000 Hits/ms 4.6 ms

500 ns 200 2000 Hits/ms 0.65 ms
200 ns 500 5000 Hits/ms -

Table 7: Time to fill TDC FIFO using single memory access, 7 channels enabled

To summarize, for a Hit rate of 10 per 100 µs using single memory access we get a relation between
the time to fill the FIFO and the number of channels enabled.

14
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time to fill FIFO =
298 ms

number of channels enabled
(11)

4.4.2 Measurements using Single Memory Access with Veto module

To characterize the Veto module, the same measurements as in the previous case were done. As
illustrated in Figure 7, the Veto module is included between the discriminator and the TDC and
it is controlled by the LUT. Using the Veto module, we wait until the data is ready, 16k words are
in the FIFO. Then we enable the Veto module by the LUT providing a signal to stop sending data
to the TDC. Then we loop over the whole FIFO and read out 40000 words.
The conditions of measurement were:

� 40 000 acquisitions
� 1 channel enabled (channel number 32)
� TStart = 100 µs
� tHit = 10 µs

Figure 15 shows the time when the DAQ collapse for a Hit rate of 100 Hits/ms (10 Hits per Start).

Figure 15: Hits per TStart as a function of TStart

In Figure 15 we see above the Start number of 1488 the obtained number of Hits becomes wrong.
The size of the data readout can be calculated with the Start number of 1488:

size of full readout = Hits per Orbit× Start Numbers + Start Numbers

= 10
Hits

Start
× 1488 Starts + 1488Starts

≈ 16k words .

The size of the readout is only 16k instead 32k as in the case before even though we loop over the
whole FIFO of 32k. In Table 6 is given the time to fill the FIFO for different Hit rates. Figure 16
illustrates the time to fill the FIFO without losing data over the Hit rate with and without Veto.
We can see that the time to fill the FIFO in case of using the Veto module is a half of the time
needed without Veto module.

THit
Number of Hits

Start Hit rate time to fill the TDC FIFO (16k)
10 µs 10 100 Hits/ms 148.8 ms
2.5 µs 40 400 Hits/ms 39.9 ms
1 µs 100 1000 Hits/ms 16.1 ms

500 ns 200 2000 Hits/ms 8.1 ms
200 ns 500 5000 Hits/ms 3.2 ms

Table 8: Time to fill the TDC FIFO using single memory access, 1 ch enabled and with Veto
module

15
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As explained in Section 4.1.5 the Veto module is inactive while the level of the FIFO filled is
less than 16k (half of the FIFO). If the FIFO is half full the Veto module will block new Hits.
Meanwhile the program writes the information of 16k from the FIFO to a txt file and only Starts
are written to the FIFO. Only the half of the FIFO is filled with Hits. That is why we get a half
of the time to readout the FIFO.
The advantage of the Veto module is that we can control when we want to read out the data from
the FIFO and we prevent that a high rate of incoming Hits corrupt the FIFO during readout via
the VME bus.
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Figure 16: Time to fill the FIFO as a function of the Hit rate with and without Veto module for
1 channel enabled

4.4.3 Time of Readout for Single Memory Access

To compare the single memory access with the block transfer, it is important to know the time for
the readout. For the single memory access, we measured the time for a readout of 16k and 32k.
The measurements for 16k were done via software and with the help of an oscilloscope. For the
time measurement with the software we included in the DAQ code C++ time functions. We read
the time before starting the loop of 16k readouts and after the loop. The time difference is the
time of a data transfer of 16k words. For the time measurement with the scope, we observed the
output of the Veto signal provided by the LUT. The Veto is set to 1 during readout of the TDC,
then it is set to 0 to allow writing data into the TDC FIFO and then it is again set to 1 during
the readout. After the readout the Veto is reset to 0. With the scope we can measure the time of
the readout. This is illustrated in Figure 17. The time of the readout that was measured with the
scope is 218 ms.
In Table 9 is shown the time for the readout via the software. The measurements show that
the time of the readout is independent of the Hit rate. The readout time via software for 16k is
obtained to 229 ms, roughly the same time measured with the scope. The time measurements for
32k words are only done via software. For a readout of 32k, about 470 ms are needed.

tHit
Number of Hits

Start time for readout of 32k time for readout of 16k
for 1 ch enabled [ms] for 1 ch enabled [ms]

No Veto Veto
10 µs 10 462.4 239.7
2.5 µs 40 466 225.8
1 µs 100 476 228

500 ns 200 478.6 226.2
200 ns 500 466.4 225.1

Table 9: Time for readout using single memory access, measured via DAQ software
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Figure 17: Readout signal using single memory access observed on scope

4.4.4 Measurements using Block Transfer and without Veto Module

In the previous measurements, the program with single memory access reads out word by word.
Each readout cycle needs a VME access. To speed up the DAQ we used the program ”BLT tree vmartin.cc”
(Block Transfer) transferring the whole memory as one block. Here only one VME access is needed.
The DAQ scheme is given in Figure 18.

Figure 18: DAQ code flow diagram for reading data from the FIFO as a block (BLT)

The advantage is that the time of the readout is expected to be smaller than the single memory
access but this will be checked in the this section.
The test conditions were:

� channel 32 enabled
� TStart = 100 µs
� tHit = 10 µs

Figure 19 shows the time when the DAQ fails for 10 Hits/Start. On the x-axis is the number of
TStarts and on the y-axis is the number of Hits per TStart. For BLT we read out the FIFO before
it is full. Hence, data will not be overwritten and we cannot observe wrong values for the number
of Hits per TStart. The size of the readout block is given by the last Start number because the
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program reads out 16k:

size of readout = 10
Hits

Start
× 1488 Starts + 1488 Starts

≈ 16k words

Figure 19: Hits per TStart as a function of TStart

Table 10 gives the time to fill the FIFO without Veto module for different Hit rates. For single
memory access and without Veto module, we lost data for a Hit rate of 100 Hits/ms after 298 ms
and for BLT after 148.8 ms, which is about half of 298 ms. This can be explained, since the readout
size of the FIFO for single memory access is 32k words and for BLT it is 16k words. The values
are, as expected, the same as given in Table 8 because the readout size is 16k.

tHit
Number of Hits

Start Hit rate time to fill the TDC FIFO (16k)
10 µs 10 100 Hits/ms 148.8 ms
2.5 µs 40 400 Hits/ms 39.9 ms
1 µs 100 1000 Hits/ms 16.1 ms

500 ns 200 2000 Hits/ms 8 ms
200 ns 500 5000 Hits/ms 3.1 ms

Table 10: Time to fill the TDC FIFO using BLT, 1 ch enabled and without Veto module

Table 11 confirms the observation when 7 channels are enabled. In addition, the time to fill FIFO
for 7 channels enabled is 1

7 of the time to fill the FIFO for 1 channel enabled.

tHit
Number of Hits

Start Hit rate time to fill the TDC FIFO (16k)
10 µs 10 100 Hits/ms 20.1 ms
2.5 µs 40 400 Hits/ms 5 ms
1 µs 100 1000 Hits/ms 1.9 ms

500 ns 200 2000 Hits/ms 0.5 ms
200 ns 500 5000 Hits/ms -

Table 11: Time to fill the TDC FIFO using BLT, 7 ch enabled and without Veto module

4.4.5 Measurements using Block Transfer and with Veto Module

Going back to the measurements with single memory access, we found out that with Veto module
we lose data after half the time of what we got without the Veto module. According to Table 12,
however, the time to fill the FIFO using BLT is the same with and without Veto module.
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tHit
Number of Hits

Start Hit rate time to fill the TDC FIFO (16k)
10 µs 10 100 Hits/ms 148.8 ms
2.5 µs 40 400 Hits/ms 39.9 ms
1 µs 100 1000 Hits/ms 16.1 ms

500 ns 200 2000 Hits/ms 8 ms
200 ns 500 5000 Hits/ms 3.1 ms

Table 12: Time to fill the TDC FIFO using BLT, 1 ch enabled and with Veto module

Figure 20 shows the comparison of the measurements without and with Veto module. The measured
data are exactly the same for both conditions.
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Figure 20: Time to fill the FIFO with and without Veto module for 1 channel enabled as a function
of Hit rate

For BLT we can use the Veto module without any changes.

4.4.6 Time of Readout for Block Transfer

The readout time measurements with the BLT were done in the same way as for single memory
access. The observation of the veto signal on the scope is illustrated in Figure 21. With the scope,
the readout time for BLT is ≈ 3.76 ms.

Figure 21: Readout signal using BLT observed on scope
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The second time measurement of the BLT, which was done with the DAQ software, is given in
Table 13. The readout with the program needs 3.65 ms and as observed before, the time of the
readout is independent of the Hit rate.

tHit
Number of Hits

Start time for readout of 16k
for 1 ch enabled [ms]

10 µs 10 3.69
2.5 µs 40 3.55
1 µs 100 3.69

500 ns 200 3.65
200 ns 500 3.63

Table 13: Time for readout of BLT, measured with the program

To summarize, 16k can be read out in about 3.7 ms.

4.4.7 Conclusion

After the measurements with single memory access and BLT, we can conclude that the BLT is
more performant than the single memory access. The disadvantage of the single memory access is
the larger latency in the readout of data.
We recall the results of the readout time. The single memory access needs 229 ms and the BLT
needs 3.7 ms for a transfer of 16k words. The time for readout is independent of the Hit rate.
For most of the measurements, we concentrate on the BLT because of the higher speed of the
readout.
In addition, the Veto module can be used for the BLT DAQ scheme without any complications
and it is working as expected.
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4.5 High Performance Time-to-Digital Converter (HPTDC)

In order to compare the performance of the TDC chip integrated on the TDC v767 CAEN board,
we tested the board v1290 from CAEN with an updated version of the chips: the HPTDC [12].
Table 14 shows a comparison of the old TDC and the new HPTDC [13].

Module LSB double hit resolution FIFO size BLT
v1290 (HPTDC) 800 ps 5 ns 32k 1k

200 ps
100 ps
20 ps

v767 (TDC) 800 ps 10 ns 32k 16k

Table 14: Comparison of LSB, double hit resolution, FIFO and BLT size between TDC and
HPTDC

The new HPTDC board should improve the time resolution of the measurements. The BLT,
however, can only be done in a block size of 1k words.
For the new HPTDC, we can change the time resolution (LSB) using different dynamic ranges.
However, the dynamic range of the TDC should be larger than 1 orbit (89 µs). Otherwise we
have to change the programs and we need other references to calculate the number of Hits. The
dynamic range of the TDC for different LSBs is calculated in Table 15. It can be calculated with
the LSB and the number of bits that are used for the time measurement.

time resolution (LSB) # bits for time measurements dynamic range
800 ps 17 bit 104 µs
200 ps 19 bit 104 µs
100 ps 19 bit 52 µs

Table 15: Time resolution and dynamic range of the HPTDC

For example, if we take a resolution mode of 200 ps we have 19 bits for the time measurement.

200 ps · 219 = 104 µs

We can see in Table 15 that we can only use the 800 ps and 200 ps modes.
For the old TDC and the new HPTDC we need the same data acquisition conditions in order
to compare the performance. That means for the new HPTDC we have to use the 800 ps mode
because for the TDC only the 800 ps mode is available. For the DAQ of the HPTDC, we use the
continuous storage. The HPTDC needs a trigger signal that is the same as the Start signal in the
TDC. The trigger is applied through a normal HPTDC channel.
For the HPTDC we have a limitation, the BLT is only 1k words long. To compare the HPTDC
with the TDC, we will work with a BLT of 1k words also in the TDC v767 CAEN module. To
check the functionality of the HPTDC, we compare the readout using single memory access and
BLT for the HPTDC and the TDC.

4.5.1 Measurements with Single Memory Access

First we checked the single memory access and the time to fill the FIFO.
Test conditions:

� 40k acquisitons
� TStart = 100 µs
� 1 channel enabled
� LSB: 800 ps

Table 16 shows that the time to fill the FIFO is more or less the same for HPTDC and TDC. The
time to fill the FIFO as a function of the Hit rate is shown in Figure 22. It is the same for both
TDCs.
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HPTDC TDC
tHit

Number of Hits
Start Hit rate time to fill FIFO [ms] time to fill the FIFO [ms]

10 µs 10 100 Hits/ms 290.8 298
2.5 µs 40 400 Hits/ms 79.8 80
1 µs 100 1000 Hits/ms 32.3 32.4

500 ns 200 2000 Hits/ms 16.2 16.2
200 ns 500 5000 Hits/ms 6.4 6.5

Table 16: time to fill FIFO (32k) for single memory access and 1 ch enabled for different Hit rates
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Figure 22: Comparison of time to fill FIFO (32k) with single memory access for 1 ch enabled as a
function of Hit rate

For all channels enabled, we come to the conclusion that the results are the same for the HPTDC
and the TDC. The results are given in Table 17 and Figure 232.

HPTDC TDC
tHit

Number of Hits
Start Hit rate time to fill FIFO [ms] time to fill the FIFO [ms]

10 µs 10 100 Hits/ms 40.3 46.2
2.5 µs 40 400 Hits/ms 10.1 11.6
1 µs 100 1000 Hits/ms 4.0 4.6

500 ns 200 2000 Hits/ms 1.9 0.6
200 ns 500 5000 Hits/ms - -

Table 17: Comparison of time to fill FIFO (32k) with single memory access for 8 ch enabled as a
function of Hit rate

We conclude that the new HPTDC is working like the old TDC for single memory access.

4.5.2 Measurements with Block Transfer

The conditions for both TDCs should be the same. That means the BLT of the old TDC and the
new HPTDC has to be set to 1k words. These measurements were only made with one channel
enabled.
Test conditions:

� Block Transfer: 1024 words=1k
� TStart = 100 µs
� LSB: 800 ps

2The graphs are a little bit different because one channel of the TDC v767 was not working
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Figure 23: Comparison of time to fill FIFO with single memory access for 8 ch enabled as a function
of Hit rate

HPTDC TDC
THit

Number of Hits
Start Hit rate time to fill FIFO [ms] time to fill the FIFO [ms]

10 µs 10 100 Hits/ms 9.3 9.2
2.5 µs 40 400 Hits/ms 2.4 2.4
1 µs 100 1000 Hits/ms 1 0.9

500 ns 200 2000 Hits/ms 0.4 0.4
200 ns 500 5000 Hits/ms 0.1 0.1

Table 18: Time to fill the FIFO (1k) using BLT and 1 ch enabled
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Figure 24: Comparison of time to fill FIFO (1k) with BLT for 1 ch enabled as a function of Hit
rate

The time to fill the FIFO buffer is the same for both TDCs, as shown in Table 18. The comparison
in Figure 24 illustrates that there are no differences between TDC and HPTDC. Using BLT of 1k
the time to fill the HPTDC buffer is the same as the TDC.
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4.5.3 Time of Readout

The first time measurement contains a BLT of 1k and was made with the software. For each Hit
rate the time for readout was measured and the results are given in Table 19.

HPTDC TDC
THit time for BLT (1k)[µs] time for BLT (1k)[µs]
10 µs 264 301
2.5 µs 259 293
1 µs 262 306

500 ns 257 297
200 ns 258 313

Table 19: Time for BLT of 1k

We see that the time for a BLT of 1k is above 260 µs for the HPTDC and above 300 µs for the
TDC. The HPTDC is 40 µs faster than the TDC.
In previous measurements we came to the conclusion that the BLT is independent of the Hit rate.
These results can also be observed for the new HPTDC.
However, the BLT of 1k is too small because for the analysis we need the TStart as a reference for
the calculation of the Hits. If the Hit rate is sufficiently high, we fill 1k words with Hits and may
not get one Start signal (TStart) so the analysis program fails. Since we cannot transfer 16k in one
BLT for the HPTDC, we loop over 16 block transfers and each block transfer is 1k words. In this
way we can compare the HPTDC with a single BLT in the TDC. The time for the full readout of
16k is given in Table 20.

HPTDC TDC
THit time for BLT (16k)[ms] time for BLT (16k)[ms]
10 µs 4.4 3.69
2.5 µs 4.28 3.55
1 µ s 4.23 3.69

500 ns 4.28 3.65
200 ns 4.3 3.63

Table 20: Time for BLT of 16k

For a readout of 16k we need 4.3 ms for the HPTDC and 3.6 ms for TDC. In this case the HPTDC
is 0.7 ms slower than the TDC.

4.5.4 Comparison of TDC and HPTDC

After all these measurements, we can find some advantages and some disadvantages for the HPTDC.
An advantage is that with the HPTDC we could get higher precision of the time measurement for
the Hits, up to 100 ps. Also we could get a better double hit resolution.
We are using the continuous storage with Block Transfer for our readout. With the v767 module
we transfer 16k per block. However, for the v1290 module, we can read at maximum 1k which is a
major disadvantage. It would be a limitation in case of high luminosity since it might happen that
we get only Hits with no Start signal in a block of 1k. That means we could lose data. However,
this disadvantages come from the CAEN module v1290, not from the HPTDC chip.
Table 21 shows the time for the BLT of 1k and 16k for TDC and HPTDC. The HPTDC is 40 µs
faster for a readout of 1k but 0.7 ms slower for a readout of 16k because the readout needs more
time for 16×1k than for 1×16k.

Size of BLT TDC HPTDC
1k 0,3 ms 0,26 ms
16k 3,6 ms 4,3 ms

Table 21: Time for the Block Transfer

For our purpose we prefer a BLT of 16k and in this case the HPTDC is too slow. Finally, the
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disadvantages of the HPTDC outweigh the advantages, such as the double hit resolution. The
better double hit resolution is not important for the application in BCM1F, since the shaping time
of the preamplifier is longer than 10 ns. At the moment, it is not planned to replace the TDC with
the HPTDC in the back-end part of BCM1F.
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4.6 Ring Buffer

The Ring Buffer was developed by the software engineer Konstantin Boyanov (DESY-Zeuthen).
A Ring Buffer is a memory area used to handle a continuous data stream and allowing at a given
moment to save data of a previous time interval. Incoming data are filled successively into the
memory, starting to overwrite previous content after complementation of a full cycle. The filling
of new data in the buffer is starting at the beginning of the buffer. Circular buffers are typically
used to hold data written by one process and read by another process. In such cases, we can pick
a block of data and make the analysis.
The data structure of the Ring Buffer was developed in order to decouple the processes of data
taking from the TDC and the analysis and publishing of data via the Data Interchange Protocol
(DIP). In addition, the Ring Buffer will make it easier to rescale the amount of data used for
data analysis and provide the history of data in case of a beam dump. The Ring Buffer class is a
template C++ class that can be configured to store different numbers of objects or other classes.

4.6.1 Ring Buffer Scheme

The Ring Buffer scheme, which is illustrated in Figure 25, can be separated in two main parts that
are needed for the DAQ.

Figure 25: Scheme of Ring Buffer

The first part is the readout of the TDC. The program ”Readout.h” reads out the TDC and writes
the data to the Ring Buffer. The second part is the analysis. The program ”Analysis.h” picks up
data from the Ring Buffer and writes them into Root files. When the Ring Buffer is full, old data
will be overwritten. A third process was developed for the case of a beam abort- the post mortem
analysis. The post mortem analysis will be invoked by the beam dump condition. In case of beam
abort, the TDC has to stop and the data in the Ring Buffer will not be overwritten. All data from
the Ring Buffer can than be used in the post mortem analysis ”PostMortem.h”. With the post
mortem analysis, the last 10 sec before beam abort can be inspected and the reason of beam abort
can be analyzed.

4.6.2 Measurements with Block Transfer

The Ring Buffer was implemented in the TDC with the continuous storage mode and the BLT.
In this case, the BLT goes to the Ring Buffer and then the data are taken from the Ring Buffer,
processed and stored in Root files. This was tested by feeding the Ring Buffer with Hits and
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observing at which time the DAQ fails.
The tests of the Ring Buffer prove the functionality of the version running at DESY-Zeuthen and
if there are limitations in the use. The condition of the measurements are the same as before:

� channel 32 enabled
� TStart = 100 µs
� without Veto module
� readout block: 16k

THit
Number of Hits

Start Hit rate time to fill the TDC FIFO (16k)
10 µs 10 100 Hits/ms 148.8 ms
2.5 µs 40 400 Hits/ms 39.9 ms
1 µs 100 1000 Hits/ms 16.2 ms

500 ns 200 2000 Hits/ms 8.2 ms
200 ns 500 5000 Hits/ms 3.4 ms

Table 22: Time to fill Ring Buffer, 1 ch enabled and without Veto module

Table 22 gives the time to fill the TDC FIFO but using Ring Buffer. The results are the same
as without Ring Buffer as illustrated in Figure 26. We do not have any differences between usage
with and without the Ring Buffer.
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Figure 26: Comparison of time to fill the FIFO as a function of Hit rate with the usage of the Ring
Buffer and without Veto module

Table 23 shows the measurements with the Veto module. Figure 27 shows that the time to fill the
TDC FIFO with Ring Buffer is exactly the same as without the Veto module.

THit
Number of Hits

Start Hit rate time to fill the TDC FIFO (16k)
10 µs 10 100 Hits/ms 148.9 ms
2.5 µs 40 400 Hits/ms 39.9 ms
1 µs 100 1000 Hits/ms 16.1 ms

500 ns 200 2000 Hits/ms 8.1 ms
200 ns 500 5000 Hits/ms 3.2 ms

Table 23: Time to fill Ring Buffer, 1 ch enabled and with Veto module
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Figure 27: Comparison of time to fill the buffer as a function of Hit rate with the usage of the Ring
Buffer and with Veto module

As a conclusion, the BLT with the Ring Buffer is working as the BLT without the Ring Buffer.
The Ring Buffer can be used as an intermediate storage without an additional limitation of the
DAQ.
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5 Performance of the Discriminator

The input signals from the detector are fed into a discriminator. The discriminator applies thresh-
olds and supplies ECL logic signals to the Scaler and the TDC. These thresholds should allow
each signal that comes from a particle, e.g. collision products or beam halo, to be counted and
at the same time suppress smaller signals from noise. For this task, the discriminator has to be
characterized and thresholds to be set properly.

5.1 Experimental Setup

For the characterization of the discriminator, we used pulses from a pulse generator. The pulses go
through the discriminator. The output of the discriminator is an ECL signal that will be converted
to a NIM signal in the ECL↔ NIM converter. The NIM signal can be observed on the scope. In
our measurements, we compare the discriminator output to the well-known input. We should see
an output signal when the input signal is higher than the threshold.

Figure 28: Experimental setup of the offset measurements

5.2 Offset in the Threshold of the Discriminator

In some measurements, we found out that we do not get an output signal from the ECL ↔ NIM
converter even though the amplitude of the signal from the pulse generator exceeded the threshold
set. To investigate this behavior in detail, we set the threshold (Vthr) in the program of the
discriminator to a constant value and increased the amplitude of the input pulse in the generator
until we got an output signal from the discriminator. However, the output signal was flickering
for amplitudes of the input pulse that were slightly higher than the threshold. To be sure that we
have a stable signal, Vin min is the amplitude of the input signal at which the output signal was
not flickering anymore. With this method, we can find the real threshold and determine the offset
of the discriminator threshold.
We measured the real threshold for each channel.
For example for channel 1/1 we calculated the offset for a threshold ranging from −10 mV till
−100 mV. In Table 24 is shown the Vthr set in the code and the Vin min for which we saw an
output in the discriminator. For example: we set Vthr = −10 mV and our output is visible when
Vin min = −23 mV. For channel 1/1 ∆V is about −13 mV.

Vthr Vin min for channel 1/1
−10 mV −23 mV
−20 mV −33 mV
−30 mV −43 mV
−40 mV −53 mV
−50 mV −64 mV
−60 mV −75 mV
−70 mV −85 mV
−80 mV −95 mV
−90 mV −105 mV
−100 mV −115 mV

Table 24: Offset of the discriminator
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For a plot of the relation between Vin min and Vthr a linear dependence can be observed. After
fitting it and extrapolating the linear fit until it crosses the y-axes as shown in Figure 29, one can
read the offset, Voffset and ∆V.

OffsetV

V

Figure 29: The voltage setting at the discriminator compared to the input voltage of the generates
signal

∆V is the value that has to be added to the threshold set to get the real threshold. The real
threshold is:

Vrealthreshold = Vthreshold + ∆V . (12)

The calculation of the real threshold was done with the fit. A linear dependency is described by:

Vin min = a · Vthr + ∆V . (13)

with the variable a as the slope.
∆V is given by the following equations:

∆V = Vin min(Vthr = 0) . (14)

For channel 1/1, the linear fit is:

Vin min = 1.0327 · Vthr − 11.8 mV (15)

→ ∆V = −11.8 mV .

At the end, you have the real threshold for channel 1/1 is:

Vrealthreshold = Vthreshold − 11.8 mV . (16)

The offset can be calculated when Vin min = 0:

→ VOffset = −∆V

a
. (17)

If a ≈ 1 it follows that:

VOffset = −∆V . (18)

In Table 25 all offsets and ∆V are listed.
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channel slope a ∆V [mV] VOffset [mV]
1/1 1.0297 −12.466 11.43
1/2 1.0333 −12.867 12.74
1/3 1.0345 −13 12.48
1/4 1.0327 −11.8 12.57
2/1 1.0333 −11.67 12.45
2/2 1.0352 −12.067 12.1
2/3 1.0152 −12.666 11.29
2/4 1.0097 −12.866 11.66

Table 25: Offset of all channels at the discriminator

It must be pointed out that the measured offsets are only valid for the Discriminator v258B that
we are using in Zeuthen. They could be different for another model. We come to the conclusion
that we have to calibrate the thresholds of a discriminator.
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6 TDC Measurements at LHC

At the moment, LHC is running with proton beams of 3.5 TeV energy each and intensities of
up to 1.4 · 1013 protons/beam. At CMS up to 140 bunches collide. The TDCs are storing time
information of the Hits that are registered in the diamonds due to beam halo or collision products.
The reference or Start signal, TStart, is delivered by LHC and it is called ”orbit-main”.
The DAQ of the TDC at BCM1F is running with continuous storage, BLT and with the Veto
module.

Figure 30 shows one of the plots that are being delivered to the control room of CMS: the bunch
identification plot.

Figure 30: The count rates as a function the bunch number. The maximum bunch number corre-
spond to the time of an orbit, 89 µs

The TDC time axis covers an entire LHC orbit. The formula used for the bunch identification is:

bunch number =
tTDC − 6290 ns

24.95 ns
+ 1 , (19)

where tTDC is the time of the Hit given by the TDC, 6290 ns is the time between ”orbit-main” and
the first bunch registered by BCM1F, and 24.95 ns is the time between two consecutive bunches.
The scale of the Hits is logarithmic and some peaks are much higher than others. The first eight
peaks, containing above 106 Hits, represent bunches that collide in CMS. The rates are high because
the Hits are mainly caused by collision products. Then ten peaks follow with a low Hit rate. These
are Hits that are generated by the beam halo of non-colliding bunches from the 2 beams.
BCM1F is able to separate the beam halo and the collision products as explained in Section 2.
A secondary effect can be observed in Figure 30. A long tail is after each colliding bunch. The
long tails come from collision products that excite the material of the detector and subsequently
decay. This effect is called after glow. An exponential fit of the tails gives a lifetime of 2.21 µs or
89 bunches. With Monte Carlo simulations done by Steffen Müller (KIT) at 7 TeV, we can identify
the particles. There are mostly caused by neutrons and photons. The Monte Carlo simulations are
shown in Figure 31.
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(a) Monte Carlo simulation of the bunches (b) Identification of the tails with Monte
Carlo simulations

Figure 31: Monte Carlo simulations3 of the expected Hit rate as a function of the bunch number

In addition, BCM1F was optimized to separate the beam halo coming towards the CMS interaction
point from +Z and -Z direction. With the beam halo of non-colliding bunches, we can resolve the
time of flight of the particles. Figure 32 shows the arrival time of beam halo particles at counters
in the +Z and -Z planes.

Figure 32: Time of flight measurements with ch1/1 and ch2/1

The particles hit channels in the same azimuthal angle (ch 1/1 and ch 2/1). First ch 1/1 registers
Hits and then ch2/1 because a bunch of beam 2 comes from -Z side (ch 1/1) and goes to the +Z
side (ch 2/1) as shown in Figure 32. The time between the two peaks of ch 1/1 and ch 2/1 is
≈12 ns. The bunch needs 12 ns to arrive from -Z to +Z because the distance of the diamonds in
the channels is 3.6 m. If we consider that the protons travel with the speed of light, the proton

3The Monte Carlo simulations were done by Steffen Müller
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needs:

t =
s

v
(20)

t =
3.6 m

3 · 108 m
s

t = 12 ns .

To summarize, BCM1F has an excellent time resolution to separate beam halo from the luminosity
of collision products and beam halo from each direction.
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7 BCM1F as a Luminosity Monitor

During the last year of operation of LHC, BCM1F diamonds were detecting beam halo and collision
products. The high sensitivity of the detectors and the reliability of the data acquisition lead us
wonder if we could obtain further information such as luminosity. So far HF is used to measure
the instantaneous and integrated luminosity of the LHC beams and provides the information to
CMS. As an additional luminosity monitor, the BCM1F Scaler measurements may be used since
BCM1F counts collision products at low angle where a large fraction of elastic pp (proton-proton)
scattering is expected. In addition, HF is coupled to the main DAQ, while BCM1F is independent.
A fail in the main DAQ stops the luminosity measurements. BCM1F is independent of the main
DAQ and may give in addition a fast on-line luminosity monitoring.

7.1 Detection of Collision Products with the Look-Up Table

In order to detect collision products, we made 4 back-to-back coincidences of Hits using the scheme
that is displayed in Figure 33. These coincidences should not contain the beam halo, since beam
halo particles hit the counters at the same azimuthal angle.

Figure 33: Coincidences in the LUT

The coincidences are built in the LUT, for example coincidences A is an AND function of Hits in
-Z top and +Z bottom. The four coincidences are fed in four channels of the Scaler CAEN v560.
The rate of the coincidences in the data file of the Scaler can be used for the comparison with the
HF rate data files.

7.2 Comparison of BCM1F Rates with HF Rate

To use BCM1F as a luminosity monitor we assume the count rates of BCM1F (4 coincidences and
8 raw count rates) as being proportional to the HF rate.

LHF = a · CBCM1F , (21)

where LHF is the instantaneous luminosity that is given by HF, CBCM1F is the sum of all coinci-
dences that are measured with BCM1F, and a is a scale factor. For the comparison data files of
HF are used. Each data file can be identify by the run number. A list of run numbers with validated
runs can be found in the link: https://twiki.cern.ch/twiki/bin/viewauth/CMS/LumiWiki2010Data.
We get the HF data files with instantaneous luminosity in .csv format. The files contains UTC
(coordinated universal time) time, a unix time stamp and the luminosity value in units of 1

nb·s .
HF calculate4 the luminosity every 23 s. Whilst, BCM1F delivers the coincidences and count rates
every 1 s. For the comparison with one lumi section, we sum up the 4 back-to-back coincidences
of BCM1F over a period that is a multiple of 23 s.
In addition, we sum up the count rates of the four channels in +Z plane and the four channels in
-Z plane and compare also these with the luminosity given by HF.

7.3 First Results

The first comparison was done with the run on August 6th 2010 and it is shown in Figure 34.
A fit is included for the coincidences for better comparison with HF.

4HF calculate the luminosity/rate with the Van-der-Meer scans
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The HF rates are scaled by a factor of 200, which is why the scale of the luminosity is 200
nb·s . The

count rates of +Z and -Z were divided by a scale factor of 165 to bring the two curves close to each
other.

Figure 34: The luminosity values given by HF and the BCM1F count rates as a function of time
from August 6th

It has to be pointed out that the same scale factors are taken for all plots.

Figure 35: The luminosity and the BCM1F count rates as a function of time from August 10th
2010. The large peaks in BCM1F data are caused by a fail in the readout of the Scalers.

Figure 35 displays the run on August 10th 2010. In this case the coincidence rate and the count
rates at the beginning of the run are much higher than the HF data. Towards the end of the fill
the rates approach to each other. For this run, a recalibration of the scale factor is needed.
The run on August 26th 2010 that is given in Figure 36 shows a different behavior than the
previous ones. The coincidences and count rates are higher than the HF data at the beginning of
the fill. After a time of 6 hours, the BCM1F count rates are similar to the HF rate. The BCM1F
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coincidences have a different slope than the count rates or the HF rate. This observation needs to
be investigated.

Figure 36: The luminosity and the BCM1F count rates as a function of time from August 26th
2010. The large peaks in BCM1F data are caused by a fail in the readout of the Scalers.

The last run, Figure 37 shows a run on August 29th 2010. In this case, all slopes are similar.
Only the height of the coincidences is different to the HF rate, which is not explainable because
the calibrations for all the runs are the same. Nevertheless, the count rates and the HF rate have
similar time dependences.

Figure 37: The luminosity and the BCM1F count rates as a function of time from August 29th
2010

It needs to be investigated why the slope of the BCM1F coincidences and the count rates are
different in some runs and why the BCM1F coincidences and count rates are higher than the HF
rate in some runs. The use BCM1F as a luminosity monitor is still under investigation.
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8 Conclusion

CMS consists of different sub-detectors. One sub-detector is BCM1F that is vital for monitoring
the beam conditions. The readout at back-end of BCM1F contains several modules to handle the
raw data - a TDC, a discriminator and a Veto module. These modules were tested and there
performance measured.
Two different readout modes are available for the TDC: single memory access and BLT. Tests
showed that the BLT is much faster than the single memory access and the time for the readout is
independent of the Hit rate. However, the time to fill the FIFO for the same Hit rate is independent
of the readout mode. The TDC will be read out with BLT since the BLT is much faster than the
single memory access.
Additionally, a Veto module can be used to avoid the overwriting of data not yet readout. The
Veto module needs an external signal that activates Veto signal during the whole BLT. The LUT
provides the Veto signal during the BLT. Due to the signal of the LUT the veto module works as
expected and without any limitations.
For the TDC readout a Ring Buffer is necessary in case of high data rates. The software of the Ring
Buffer was tested with the readout mode BLT. The performance is exactly the same as without
the Ring Buffer. Additional limitations cannot be observed.
A second module of the BCM1F setup was tested- the discriminator. Each discriminator channel
has his own offset voltage. Tests showed an offset of 12 mV but the offset is only available for
the discriminator at DESY-Zeuthen. Hence, before using a discriminator, the thresholds of all
channels must be calibrated.
The TDC with the current settings is used in BCM1F in CMS at LHC and it measures the arrival
time of Hits. The count rate over an entire LHC orbit can be measured as a function of time.
In this way BCM1F can identify colliding bunch and non-colliding bunches. Since in the case of
colliding bunches the count rates is by orders of magnitude larger due to the collision products.
Due to the high time resolution BCM1F can separate the beam halo moving towards the CMS
interaction point from each direction.
In the last chapter are the first results to use BCM1F as a luminosity monitor. In this study we
compare the HF data with BCM1F count rates and back-to-back coincidences.
First results show a proportionality between these quanties. However, the possibility to use BCM1F
as luminosity monitor is still under investigation.
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A TDC BufferAlmostFull.cc

/* ************************************************* */
/*Descr ip t ion : program to read out data from bu f f e r */
/* in each vme access we read 1 datum , we wr i t e i t */
/* to CPU mem and l a t e r to a t x t f i l e */
/* ************************************************* */

#include <iostream>
#include <iomanip>
#include <fstream>
#include ”tdc v767 caen . hh”
#include <sys / time . h>
#include <time . h>
#include <s t r i ng>

#define l r e d ”\0 3 3 [ 1 ; 4 9 ; 3 1m”
#define norm ”\033 [0m”

#define coutDefau l t ”\033 [0m”
#define coutRed ”\033[31m”
#define coutGreen ”\033[32m”
#define coutBlue ”\033[34m”
#define coutPurple ”\033[35m”
#define coutUnderLine ”\033 [ 4 ; 30m”

using namespace std ;

TDC V767 CAEN *b ;

unsigned int b u f f e r l e v e l =0x3FFF ; // range [0 x2 :0x3FFF ]

unsigned int Test StartCounter , Test EventCounter = 0 ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Setup TDC parameters f o r DAQ
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
int s e t tdc boa rd ( )
{
//SET UP TDC MODE

b−>Reset ( ) ;
s l e e p ( 2 ) ;
b−>OPCODE Enable AutoLoad ( ) ;
s l e e p ( 1 ) ;
b−>OPCODE Load Default Config ( ) ;
s l e e p ( 1 ) ;
b−>OPCODE Disable allChannel ( ) ;
s l e e p ( 1 ) ;
b−>OPCODE CONT STO( ) ;
s l e e p ( 1 ) ;
//b−>OPCODE Set BufferNotEmpty ( ) ;
//Data Ready as s e r t ed i f t he re i s at l e a s t 1 Datum in memory
// s l e e p ( 1 ) ;
b−>OPCODE Set AlmostFullLevel ( b u f f e r l e v e l ) ;
// Set memory l e v e l
s l e e p ( 1 ) ;
b−>OPCODE Set BufferAlmostFull ( ) ;
//Data Ready as s e r t ed i f t he re i s at l e a s t n Datum in memory

s l e e p ( 1 ) ;

b−>OPCODE Enable ReadoutOfStarttime ( ) ;
s l e e p ( 1 ) ;
//b−>OPCODE Disable ReadoutOfStarttime ( ) ;
// S ta r t data i s not s to red in FIFO
// s l e e p ( 1 ) ;
b−>OPCODE Enable SubtractionOfStarttime ( ) ;
s l e e p ( 1 ) ;
b−>OPCODE Set FallingEdgeOnlyOnAllChannels ( ) ;
s l e e p ( 1 ) ;
b−>OPCODE Set RisingEdgeOnlyStart ( ) ;
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s l e e p ( 1 ) ;

//b−>OPCODE Enable allChannel ( ) ;
// s l e e p ( 1 ) ;

b−>OPCODE Enable Channel ( 3 2 ) ;
s l e e p ( 1 ) ;

b−>C l e a r R e g i s t e r ( ) ;
s l e e p ( 2 ) ;

return 0 ;

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Readout o f data
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
int readout data ( )
{

//OUTPUT BUFFER
unsigned long out data=0x09 ;
unsigned long * p out data ;
p out data=&out data ;

//OUTPUT FILE
FILE *output ;
output=fopen ( ”b lab l a . txt ” , ”w” ) ;

/* **********Check DATA READY be fo re reading out FIFO********** */
while ( ! ( b−>Is Data Ready ( ) ) ) {
//DREADY =1 when Buf fer Almost Fu l l l e v e l i s reached in FIFO

// whi l e ( ! ( b−>Is Busy ( ) ) ){ //DREADY when FIFO i s Fu l l
// us l e ep (500000);

i f (b−>Is Global TDC Error ( ) ){
for (unsigned int j =0; j <4; j++)
i f (b−>Is TDC Error ( j ) ){
c e r r << j << ” ” << b−>OPCODE Get ErrorCode TDC( j ) << endl ;

}
break ;
}
}
// cerr << ” \ tData i s f i n e ” << end l ;

/* **************************************************** */

for (unsigned int i =0; i <1000; i++)
// whi l e (( b−>Is Data Ready ( ) ) )
// loop whi l e there i s at l e a s t 1 Datum in memory
{
//READ OUTPUT BUFFER

b−>Read Output Buffer ( p out data ) ; //1 datum per vme access

i f ( ! ( out data & 0x600000 ) ) //Check i f VALID DATUM
f p r i n t f ( output , ”%lx \n” , out data ) ; //Save to f i l e

// cout << ”Buf fer output data =0x ” << hex << * p ou t da ta << end l ;

// i f ( ! ( ou t da ta & 0x600000 )) //Check i f VALID DATUM
//{ f p r i n t f ( output , ”% l x \n”, * p ou t da ta ) ; //Save to f i l e
//}

}
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f c l o s e ( output ) ;

return 0 ;
}

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
int main ( int argc , char * argv [ ] ) {

b = new TDC V767 CAEN(0 x99990000 , ”TDC V767 CAEN” , 1 , 0 ) ;

s e t tdc boa rd ( ) ;

readout data ( ) ;

delete b ;

return 0 ;
}
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B BLT tree vmartin.cc

/* ************************************************* */
/*Descr ip t ion : program to read out data from bu f f e r */
/*and wr i t e data in a s c i i mode to f i l e */
/* ************************************************* */
/*
−s i d e ADCch TDCch | +s ide ADCch TDCch
1/1 0 0 | 2/1 4 2
1/2 1 32 | 2/2 5 33
1/3 2 66 | 2/3 6 65
1/4 3 96 | 2/4 7 97

*/
/* ************************************************* */

#include ”TROOT. h”
#include ”TFile . h”
#include ”TTree . h”
#include ”TH1S . h”

#include <iostream>
#include <iomanip>
#include <fstream>
#include <sys / time . h>
#include <time . h>
#include <s t r i ng>

#include <cmath>
#include <sstream>

#include <errno . h>
#include < f c n t l . h>
#include <s i g n a l . h>
#include <sys / s t a t . h>teached me
#include <sys / types . h>
#include <uni s td . h>

#include ”tdc v767 caen . hh”

#define l r e d ”\0 3 3 [ 1 ; 4 9 ; 3 1m”
#define norm ”\033 [0m”

#define coutDefau l t ”\033 [0m”
#define coutRed ”\033[31m”
#define coutGreen ”\033[32m”
#define coutBlue ”\033[34m”
#define coutPurple ”\033[35m”
#define coutUnderLine ”\033 [ 4 ; 30m”

//Maximum
#define MAXSAVESIZE 2000 //Bytes

//−Z s ide t eached me
#define CH11 0 //ch0 TDC
#define CH12 32 //ch32 TDC
#define CH13 64 //ch64 TDC
#define CH14 96 //ch96 TDC

//+Z s ide
#define CH21 1 //ch1 TDC
#define CH22 33 //ch33 TDC
#define CH23 65 //ch65 TDC
#define CH24 97 //ch97 TDC

//BLTMAX i s the s i z e o f the BLT
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#define BLTMAX 16384
//#de f ine BLTMAX 2048

#define CH ANAL 32

using namespace std ;

//TDC board parameters
TDC V767 CAEN *b ; // ADC handle
unsigned long baseaddress=0x99990000 ; // 1 : baseaddress
short vme l ink =1; // 2 : vme l i n k
short board no =0; // 3 : PCI board
s t r i n g DO Path=” . / r o o t f i l e s ” ; // 4 : data output path
s t r i n g DO Path2=” . / t x t f i l e ” ; // 4 : data output path

unsigned long BLTData [ 3 2 5 0 0 ] ; // array to s t o r e the data in each BLT
unsigned long * pBLTData ; // array to s t o r e the data in each BLT

t imeva l tot t ime , run time ;
unsigned long header [ 2 ] ; // long s t a t t i n t ! ! // General Event header
unsigned int not val id datum =0;

// copied to in case o f wr i t i n g / treatment
unsigned long TotalData [ 0 x1000010 ] ; // s to rage o f the whole data o f BLT

//Parameters r e l a t e d with c rea t i on o f ROOT Trees and F i l e s
unsigned int NHit=0; // counter f o r +Z and −Z h i t s
unsigned int NHitm=0; // counter f o r −Z h i t s
unsigned int NHitp=0; // counter f o r +Z h i t s

TTree * t ;
TFile * f ;

//Hit i n f o
unsigned int tdc ch [BLTMAX]={0} ;
double h i t [BLTMAX]={0} ;
double m i n u s h i t s o r b i t [BLTMAX]={0} ; // d i s t r i b u t i o n o f Hi ts in an o r b i t f o r −Z
double p l u s h i t s o r b i t [BLTMAX]={0} ; // d i s t r i b u t i o n o f Hi ts in an o r b i t f o r +Z

unsigned int Channel=0;

// S ta r t i n f o
double s t a r t =0;
double p r e v s t a r t =0;
double d e l t a s t a r t =0;
double h i t s s t a r t [BLTMAX]={0} ;

unsigned int NStart =0;
double c o r r s t a r t =0;
unsigned int TDC counter restarts =0;
double t i m e s t a r t =0;
double t o t a l t i m e s t a r t =0;

//Nwords i s the nr o f 32 b i t words t r an s f e r r ed per BLT access
unsigned long Nwords=16383; //Maximum nr of 32 b i t words per BLT = 16383
// unsigned long Nwords=2047; //Maximum nr of 32 b i t words per BLT = 16383

int r e t =0;

unsigned long b u f f e r l e v e l =0x3FFF ;
// Set Almost Fu l l l e v e l ( range [0 x2 :0x3FFF ] )
// unsigned long b u f f e r l e v e l=0x20 ;
// Set Almost Fu l l l e v e l ( range [0 x2 :0x3FFF ] )

s t r i n g t x t f i l e n a m e ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Setup TDC parameters f o r DAQ
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//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
int s e t tdc boa rd ( )
{
//SET UP TDC MODE

b−>Reset ( ) ;
s l e e p ( 2 ) ;
b−>OPCODE Enable AutoLoad ( ) ;
//Loads au tomat i ca l l y the User Config at Power ON or General RESET
s l e e p ( 1 ) ;
b−>OPCODE Load Default Config ( ) ; //Loads User Config p r e v i ou s l y saved
s l e e p ( 1 ) ;

b−>OPCODE CONT STO( ) ; // Set Continuous Storage Mode
s l e e p ( 1 ) ;
b−>OPCODE Set AlmostFullLevel ( b u f f e r l e v e l ) ;
//Mem l e v e l t ha t f i r e s Buf fer Almost Fu l l
s l e e p ( 1 ) ;
b−>OPCODE Set BufferAlmostFull ( ) ;
//Data Ready Mode . Asserted when Almost Fu l l Leve l i s reached
s l e e p ( 1 ) ;
b−>OPCODE Enable ReadoutOfStarttime ( ) ;
s l e e p ( 1 ) ;
b−>OPCODE Enable SubtractionOfStarttime ( ) ;
s l e e p ( 1 ) ;
b−>OPCODE Set FallingEdgeOnlyOnAllChannels ( ) ;
s l e e p ( 1 ) ;
b−>OPCODE Set RisingEdgeOnlyStart ( ) ;
s l e e p ( 1 ) ;

//Disab l e a l l Channels b e f o r e enab l ing de s i r ed ones
b−>OPCODE Disable allChannel ( ) ;
s l e e p ( 1 ) ;

//Enable de s i r ed Channels
//TDC A
b−>OPCODE Enable Channel (CH11 ) ;

s l e e p ( 1 ) ;
b−>OPCODE Enable Channel (CH21 ) ;
s l e e p ( 1 ) ;

//TDC B
b−>OPCODE Enable Channel (CH12 ) ;
s l e e p ( 1 ) ;
b−>OPCODE Enable Channel (CH22 ) ;
s l e e p ( 1 ) ;

//TDC C
b−>OPCODE Enable Channel (CH13 ) ;
s l e e p ( 1 ) ;
b−>OPCODE Enable Channel (CH23 ) ;
s l e e p ( 1 ) ;

//TDC D
b−>OPCODE Enable Channel (CH14 ) ;
s l e e p ( 1 ) ;
b−>OPCODE Enable Channel (CH24 ) ;
s l e e p ( 1 ) ;

b−>OPCODE Save User Config ( ) ;
//Saves Acq Mode , Enabled Channels , Data Ready mode
s l e e p ( 1 ) ;

b−>C l e a r R e g i s t e r ( ) ;
s l e e p ( 2 ) ;

return 0 ;

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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// prov ides the unique d a t a o u t p u t f i l e name
// {DO Path}/ data ( da t r t date / time ) ( time in usec ) . root
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s t r i n g c r e a t e f i l e n a m e ( ){

t imeva l wr i te t ime ;
gett imeofday(&writet ime , 0 ) ;

// crea t e name of ROOT f i l e
os t r ing s t r eam os1 ;
os1 << DO Path << ”/ tdc data ”
<< s t r i n g ( ctime ( ( t ime t *)& wr i te t ime . t v s e c ) )
. subs t r (0 , s t r i n g ( ctime ( ( t ime t *)& wr i te t ime . t v s e c ) ) . l ength ()−1)

<< ” ” << wri te t ime . tv usec << ” . root ” ;

s t r i n g f i l ename = os1 . s t r ( ) ;

while ( f i l ename . f i n d f i r s t o f ( ’ ’ ,0)< f i l ename . l ength ( ) )
f i l ename . r e p l a c e ( f i l ename . f i n d f i r s t o f ( ’ ’ , 0 ) , 1 , 1 , ’ ’ ) ;
while ( f i l ename . f i n d f i r s t o f ( ’ : ’ ,0)< f i l ename . l ength ( ) )
f i l ename . r e p l a c e ( f i l ename . f i n d f i r s t o f ( ’ : ’ , 0 ) , 1 , 1 , ’ . ’ ) ;

// crea t e name of TXT f i l e
os t r ing s t r eam os2 ;
os2 << DO Path2 << ”/ tdc data ”
<< s t r i n g ( ctime ( ( t ime t *)& wr i te t ime . t v s e c ) )
. subs t r (0 , s t r i n g ( ctime ( ( t ime t *)& wr i te t ime . t v s e c ) ) . l ength ()−1)
<< ” ” << wri te t ime . tv usec << ” . txt ” ;

t x t f i l e n a m e = os2 . s t r ( ) ; //Note : t x t f i l e n ame dec lared as g l o b a l v a r i a b l e

while ( t x t f i l e n a m e . f i n d f i r s t o f ( ’ ’ ,0)< t x t f i l e n a m e . l ength ( ) )
t x t f i l e n a m e . r e p l a c e ( t x t f i l e n a m e . f i n d f i r s t o f ( ’ ’ , 0 ) , 1 , 1 , ’ ’ ) ;
while ( t x t f i l e n a m e . f i n d f i r s t o f ( ’ : ’ ,0)< t x t f i l e n a m e . l ength ( ) )
t x t f i l e n a m e . r e p l a c e ( t x t f i l e n a m e . f i n d f i r s t o f ( ’ : ’ , 0 ) , 1 , 1 , ’ . ’ ) ;

return f i l ename ;
}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// s e t Branch o f t r e e
// Open a new F i l e (must be c l o s ed be f o r e )
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void ChangeFile ( ){

// f = new TFile (”TDCblt . root ” , ”RECREATE”) ; // crea t e the Tree f i l e
f = new TFile ( c r e a t e f i l e n a m e ( ) . c s t r ( ) , ”RECREATE” ) ;
t = new TTree ( ”T” , ”Tree ” ) ;

//Header o f f i l e i n f o
t−>Branch ( ”BLT time sec nsScale ”,&header [ 0 ] , ” t ime sec / i ” ) ;
t−>Branch ( ”BLT time usec nsScale ”,&header [ 1 ] , ”t ime usec / i ” ) ;

// S ta r t i n f o
t−>Branch ( ”nbrOrbits ” ,&NStart , ”NStart / i ” ) ; //Total number o f S t a r t s in the BLT
t−>Branch ( ”DeltaOrbit ”,& d e l t a s t a r t , ” d e l t a s t a r t /d” ) ; // crea t e Branches o f Tree
t−>Branch ( ”TimeOrbitInTDCcounter ”,& t ime s ta r t , ” t i m e s t a r t /d” ) ;
t−>Branch ( ”TotalTimeDAQ”,& t o t a l t i m e s t a r t , ” t o t a l t i m e s t a r t /d” ) ;

//Hit i n f o
t−>Branch ( ”Hit sperOrb i t ” ,&NHit , ”NHit/ i ” ) ; //Total number o f Hi ts in the BLT
t−>Branch ( ”PlusZhit sPerOrbi t ” ,&NHitp , ”NHitp/ i ” ) ; //Total number o f Hi ts in the BLT
t−>Branch ( ”MinusZhitsPerOrbit ” ,&NHitm , ”NHitm/ i ” ) ; //Total number o f Hi ts in the BLT
t−>Branch ( ”TdcCh” , tdc ch , ”tdc ch [ NHit ] / i ” ) ; // D i s t r i b u t i on o f Hi ts in TDC channels
// t−>Branch (”HitRawData ” , h i t , ” h i t [ NHit ]/ i ”) ; //Raw Hit in f o ( channel+time )
t−>Branch ( ”HitTimeInOrbit ” , h i t , ”h i t [ NHit ] / d” ) ; //Only time Hit time in f o
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// S ta r t + Hit in f o t o g e t h e r
t−>Branch ( ”Distr ibutionHitsInDAQ ” , h i t s s t a r t , ” h i t s s t a r t [ NHit ] / d” ) ;
t−>Branch ( ”PlusZh i t s InOrb i t ” , p l u s h i t s o r b i t , ” p l u s h i t s o r b i t [ NHitp ] / d” ) ;
// D i s t r i b u t i on o f Hi ts in o r b i t f o r +Z
t−>Branch ( ”MinusZhitsInOrbit ” , m inu s h i t s o r b i t , ”m i n u s h i t s o r b i t [ NHitm ] / d” ) ;
// D i s t r i b u t i on o f Hi ts in o r b i t f o r −Z

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Function fo r s to rage and proces s ing o f data
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
void process Data ( ){
NHit=0;
NHitm=0;
NHitp=0;
NStart =0;
TDC counter restarts =0;

//−−−−−−−−−−−WRITE DATA TO t x t FILE
ofstream of ( t x t f i l e n a m e . c s t r ( ) ) ;

bool f i r s t=true ;
for ( int i =0; i<BLTMAX; i ++){// loop over a l l Block o f Data

i f ( i==BLTMAX−1)
{
t−>F i l l ( ) ; // s t o r e l a s t data in t r e e
t−>Write ( ”” , TObject : : kOverwrite ) ;
// RSS: t h i s ensures t ha t a complete BLT i s saved in same f i l e
// and i s not s p l i t t e d in s e v e r a l f i l e s
f−>Write ( ) ;
break ;
}

i f ( ! ( TotalData [ i ] & 0x600000 ) ){ // check f o r v a l i d datum
// cerr<< ”TotalData=0x ” << hex <<TotalData [ i ]<< end l ;

of<< hex << TotalData [ i ] <<dec<<endl ; // wr i t e data to f i l e

/* ********************************** */
i f ( TotalData [ i ] & 0x800000 ){ // check f o r S tar t s , not Hi ts
i f ( f i r s t==fa l se ){
t−>F i l l ( ) ; //Get a l l parameters o f 1 s t event b e f o r e f i l l i n g Tree

// debug in f o only
// t−>Write ( ”” , TObject : : kOverwrite ) ; // RSS
//cout<< ” s i z e F i l e=”<< f−>GetSize () << end l ; // RSS

} else {
f i r s t=fa l se ;
}

//Read raw s t a r t data
s t a r t =((double ) ( TotalData [ i ] & 0xFFFFF))*25/32 ;
// conver t in to ns , zero time with r e spec t to DAQ r e s t a r t

// cout << ” START=” << dec << s t a r t << ” ns ” << end l ;

//Time d i f f e r e n c e between consecu t i v e S ta r t s i g n a l s
i f ( NStart==0)
{ p r e v s t a r t=s t a r t ; // I n i t i a l i z e p r e v s t a r f o r c a l c u l a t i n g Del ta S ta r t

c o r r s t a r t=s t a r t ; // cor r ec t i on needed to normal ize time to TDC time 0 po in t
t i m e s t a r t=s ta r t−c o r r s t a r t ; // p l o t time of S ta r t over the TDC counter .

t o t a l t i m e s t a r t=s t a r t ; // p l o t time of S ta r t wi th r e spec t to TDC re s e t
// cout << ” START=” << dec << t o t a l t im e s t a r t << ” us ” << end l ;
}
else {
i f ( s t a r t<p r e v s t a r t ){ //TDC counter r e s t a r t s
// cout<< ”COUNTER RESTARTS”<<end l ;
d e l t a s t a r t =( s ta r t−p r e v s t a r t )+(0xFFFFF)*25/32 ;
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c o r r s t a r t=s t a r t ;

TDC counter restarts++;
}
else {
d e l t a s t a r t =( s ta r t−p r e v s t a r t ) ;
}
p r e v s t a r t=s t a r t ;
//}
t i m e s t a r t=s ta r t−c o r r s t a r t ; // p l o t time of S ta r t over the TDC counter .
t o t a l t i m e s t a r t =( s t a r t+TDC counter restarts *(0xFFFFF)*25/32 ) ;
// p l o t time of S ta r t wi th r e spec t to TDC re s e t
// cout << ” START=” << dec << t o t a l t im e s t a r t << ” us ” << end l ;
// t o t a l t im e s t a r t=s t a r t ; // p l o t time of S ta r t with r e spec t to TDC re s e t

}

//cout<<”number o f h i t s in Minus s i d e per o r b i t=”<<dec<< NHitm <<end l ;

NHit=0;
NHitm=0;
NHitp=0;
// cout << ” NBR STARTS=” << dec << NStart << end l ;

NStart++; //1 event s t a r t s wi th a new START s i gna l

} //end of check ing i f S ta r t
/* ********************************** */

else i f ( ! ( TotalData [ i ] & 0x800000 ) ){ // check f o r Hits , not S t a r t s
// cout<< ”HIT”<<end l ;

// Extract Hit channel
Channel=(TotalData [ i ]>>24) & 0x7F ; // crea t e v a r i a b l e f o r branch in Tree

// i f ( Channel==CH ANAL){

// h i t [ NHit]=TotalData [ i ] ; //raw in fo o f h i t
h i t [ NHit ]=(double ( TotalData [ i ]&0 x f f f f f ) * 2 5 . / 3 2 . ) ;
// c a l c u l a t e h i t time with r e spec t to START

tdc ch [ NHit]=Channel ; // tdc channel o f h i t
//Hit raw t ime [ NHit ]=( doub le ( TotalData [ i ]&0 x f f f f f )*25 . /32 . ) ;
// c a l c u l a t e h i t time with r e spec t to START

h i t s s t a r t [ NHit]= t o t a l t i m e s t a r t+h i t [ NHit ] ;
// cout << ” DISTRIBUTION OF HITS IN START=” << dec << h i t s s t a r t [ NHit+1] << ” us ” << end l ;

NHit++;

//} //end check o f channel

//−Z s ide
i f ( Channel==CH11 | Channel==CH12 | Channel==CH13 | Channel==CH14){
m i n u s h i t s o r b i t [ NHitm]=(double ( TotalData [ i ]&0 x f f f f f ) * 2 5 . / 3 2 . ) ;
// cout << ”−Z time in o r b i t=” << dec << minu s h i t s o r b i t [NHitm ] << ” us ” << end l ;

NHitm++;
}
//+Z s ide
i f ( Channel==CH21 | Channel==CH22 | Channel==CH23 | Channel==CH24){
p l u s h i t s o r b i t [ NHitp ]=(double ( TotalData [ i ]&0 x f f f f f ) * 2 5 . / 3 2 . ) ;

NHitp++;
}

} //end of check ing i f Hit

} //end of check ing i f NOT VALID DATUM
else {
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cout << ” NOT VALID DATUM” << endl ;
not val id datum++;
}

/* ********************************** */

} //end of f o r loop in whole BLT data

o f . c l o s e ( ) ; // c l o s e t x t f i l e
c e r r << ” Found ” << NStart << ” S t a r t s in the BLT and wrote i t to t r e e ” << endl ;
c e r r << ” TDC counter r e s t a r t s= ” << dec << TDC counter restarts << endl ;

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Perform readout o f data us ing BLT
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
int readout data ( )
{

unsigned int bytes =0;
bool l a s t=fa l se ;
unsigned long NwordsLeft=Nwords ;
// unsigned long Nwords=16383;
//Maximum nr of 32 b i t words per BLT = 16383
unsigned long TotalNwords=0;

unsigned int index =0;

/* **********Check DATA READY be fo re reading out FIFO********** */
/*Waits f o r DREADY se t to 1*/
while ( ! ( b−>Is Data Ready ( ) ) ) {
// loop whi l e the Buf fer Almost Fu l l l e v e l i s not reached
i f (b−>Is Global TDC Error ( ) ){
for (unsigned int j =0; j <4; j++)
i f (b−>Is TDC Error ( j ) ){
c e r r << j << ” ” << b−>OPCODE Get ErrorCode TDC( j ) << endl ;

}
// break ;
}
}

// cerr << ” \ tData i s f i n e ” << end l ;
/* ******************************************************* */

gett imeofday(&run time , 0 ) ; // Eventtime
header [0 ]= run time . t v s e c ;
header [1 ]= run time . tv usec ;

while ( true ){
//READ OUTPUT BUFFER

r e t=b−>BLTRead Output Buffer (BLTData , NwordsLeft ) ;
//BLT of 32 b i t Nwords
// cerr<< ”Nr t r an s f e r r ed by t e s= ” <<dec<< r e t <<”\ t Nr t r an s f e r r ed words=”<<
dec<<r e t/4<< endl ;

i f ( l a s t | | ( ret <=0)) // check i f prev ious BLT was the l a s t one
{memcpy(&TotalData [ index ] , BLTData , r e t ) ; //copy l a s t BLT to memory

bytes+=r e t ;
TotalNwords+=NwordsLeft ;
break ;}

// Copy Data
//memcpy(&TotalData [ b y t e s ] ,BLTData , r e t ) ;
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memcpy(&TotalData [ index ] , BLTData , r e t ) ;

//cout<< ”index=0x ” << hex << index <<”\ t TotalData [ index ]=0x ” <<
hex <<TotalData [ index]<< endl ;
//cout<< ”BLTData=0x ” << hex <<BLTData [ index]<< end l ;

index+=NwordsLeft ;

bytes+=r e t ;

TotalNwords+=NwordsLeft ;

i f ( (BLTMAX*4−bytes )<=4*NwordsLeft ){
//Note : 16384 i s the maximum nr of 32 b i t words in a BLT
NwordsLeft=BLTMAX−bytes /4 ;
i f ( NwordsLeft==0) break ;
//To avoid going f o r a l a s t VME access f o r t r an s f e r o f ”0” words
l a s t=true ;}

}//end whi l e ( t rue )
cer r<<”Nr t r a n s f e r r e d words=”<<TotalNwords<< endl ;

return 0 ;
}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Perform readout o f data us ing BLT
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
int readout data new ( )
{

unsigned long TotalNwords=0;
unsigned long Nwords=16384;

/* **********Check DATA READY be fo re reading out FIFO********** */
/*Waits f o r DREADY se t to 1*/

while ( ! ( b−>Is Data Ready ( ) ) )
// loop whi l e the Buf fer Almost Fu l l l e v e l i s not reached
{
i f (b−>Is Global TDC Error ( ) )
{
for (unsigned int j =0; j <4; j++)
{
i f (b−>Is TDC Error ( j ) )

{
c e r r << j << ” ” << b−>OPCODE Get ErrorCode TDC( j ) << endl ;
}
}

// break ;
}
}

/* ************************************************* */

//READ OUTPUT BUFFER

pBLTData = &TotalData [ 0 ] ;

// S ta r t time stamp
gett imeofday(&tot t ime , 0 ) ; // Star t t ime
unsigned long s t a r t b l t t i m e=tot t ime . tv usec ;

r e t = b−>BLTRead Output Buffer (pBLTData , Nwords ) ;
//BLT of 32 b i t Nwords

// End time stamp
gett imeofday(&tot t ime , 0 ) ; // Endtime
unsigned long end b l t t ime=tot t ime . tv usec ;

52



B BLT TREE VMARTIN.CC

cout<<”Time d i f f= ”<<dec<<end b l t t ime−s t a r t b l t t i m e <<”us ”<<endl ;

TotalNwords = r e t /4 ;

cer r<<”Nr t r a n s f e r r e d words=” << TotalNwords << endl ;

return 0 ;
}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Main
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
int main ( int argc , char * argv [ ] ) {

// S ta r t time stamp
gett imeofday(&tot t ime , 0 ) ; // Star t t ime
c e r r << ” Star t time : ” << ctime ( ( const t ime t *)& to t t ime . t v s e c)<<”us= ”
<<t o t t ime . tv usec<<endl ;
// cerr << ” s ince 1 .1 .1970 : ” << t o t t ime . t v s e c << ” sec , ” <<
t o t t ime . tv usec << ” usec \n” ;

b = new TDC V767 CAEN( baseaddress , ”TDC V767 CAEN” , vme link , board no ) ;

s e t tdc boa rd ( ) ;

// F i l e and Tree i n i t i a l i s e (1 s t time the DAQ runs )
ChangeFile ( ) ;

// RSS remark : This i s the i n i t i a l f i l e , opened be f o r e any loop i s entered .

for (unsigned int i =0; i <1; i ++){
// whi l e (1){
//Perform a s i n g l e & complete BLT

// readout data ( ) ;
readout data new ( ) ;
process Data ( ) ;

// Check fo r f i l e s i z e and c l o s e / crea t e new f i l e
/* i f ( f−>GetSize () >= MAXSAVESIZE){ // RSS vers ion fo r debugging
cout<< ” s i z e F i l e=”<< dec << f−>GetSize () << ” , a l l owed are : ” <<
( i n t )MAXSAVESIZE <<”\ tC lose current f i l e and open new\n”<< end l ;

f−>Close ( ) ;
ChangeFile ( ) ;

}*/

} //end fo r loop

delete b ;

return 0 ;
}
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