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Abstract

We study the non-equilibrium dynamics of a system of coupled
scalar fields in a Friedmann-Robertson-Walker (FRW) universe. We
consider the evolution of spatially homogeneous “classical” fields and
of their quantum fluctuations including the quantum backreaction in
the one-loop approximation. We discuss in particular the dimensional
regularisation of the coupled system and a special subtraction proce-
dure in order to obtain the renormalised equations of motion and the
renormalised energy-momentum tensor and ensure that the energy is
well-defined and covariantly conserved. These results represent at the
same time a theoretical analysis and a viable scheme for stable nu-
merical simulations. As an example for an application of the general
formalism, we present simulations for a hybrid inflationary model.

1 Introduction

While the renormalisation of a single scalar field in a Friedmann-Robertson-
Walker (FRW) universe, and fermion fields coupled to such field, have been
discussed by various authors [1, 2, 3, 4, 5, 6], a consistent and coherent formu-
lation of coupled scalar field models including non-minimal gravity couplings
and full renormalisation is still missing. As a first step in that direction,
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we study here such a system of coupled fields in the one-loop approximation
with special emphasis on its renormalisation in the MS scheme. This will
allow us to obtain a consistent set of coupled equations of motion without
divergences and numerical instabilities, which is highly suitable for numerical
applications. Coupled scalar fields appear in cosmology in multi-field models
of inflation and are important as well in particle physics in the context of
grand unified theories, which contain several Higgs fields.

The standard example of a coupled system of scalar fields in cosmology
is of course the hybrid model of inflation which has been introduced by
Linde [7, 8, 9] and whose coupled dynamics at the end of the inflationary
phase has received wide attention [10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25] (for a recent review see [26]). Unlike other models
for inflation and for preheating, where one has just one ”inflaton” field with
vacuum quantum numbers coupled to various other boson and fermion fields,
this type of models has two scalar fields with can acquire a time dependent
vacuum expectation value. So these fields and their quantum fluctuations
can mix dynamically.

The renormalisation of such a coupled system of bosons out of equilib-
rium has been considered previously by Cormier et al. [22] in the one-loop
approximation, and in Ref. [27] in the Hartree approximation. The one-loop
approximation includes the quantum back-reaction of the quantum fluctua-
tions on the classical fields, the Hartree approximation includes in addition
the backreaction on the quantum fluctuation themselves. This approxima-
tion has been considered as well by Bastero-Gil et al. [13] with a momentum
cutoff for the quantum fluctuations. These publications do not include the
coupling of the fields to gravity, which may be a reasonable approximation
in the period of preheating after inflation. However, when describing the
evolution during inflation and the end of inflation, the inclusion of the cou-
pling to gravity could be important and it is necessary for consistency, since
those couplings are generated by quantum corrections. Moreover in recent
years, such non-minimal gravitational coupling has drawn a lot of attention
in the context of realising inflation within the Standard Model [28, 29] and
it is surely an interesting issue to include it also in the case of many fields.
In those models it became clear pretty soon that quantum effects on the
inflation potential cannot be neglected [30, 31, 32] and it may be the same
also for the hybrid case.

The one-loop renormalisation for the out-of-equilibrium evolution of a
single scalar field in a FRW universe has been considered by several au-
thors [1, 2, 5, 33, 34, 35, 36]. The technical approach which we will use here
is based on Ref. [36], which itself uses a formalism developed in Ref. [37]. As
in these references we establish here a ”renormalised computation scheme”,
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i.e., the renormalisation is taken into account with the same rigour as in more
formal approaches, and at the same time the formalism can be implemented
efficiently into a numerical code. In particular the renormalisation is inde-
pendent of the initial conditions, though the divergent momentum integrals
depend on the initial effective masses of the system. The energy-momentum
tensor is in this formulation always finite and covariantly conserved.

The paper is organised as follows: in Sec. 2 we recall some basic relations
of FRW cosmology, with special attention to an extension beyond space-time
dimension n = 4 and with the inclusion of higher dimensional gravity coun-
terterms, which are needed in order to properly renormalise the coupled fields
system; in Sec. 3 we define the general model whose dynamical equations
we will formulate in the one-loop approximation; in Sec. 4 we discuss in de-
tail the regularisation and renormalisation of the equation of motions and of
the energy-momentum tensor. Finally in Sec. 5 we give few selected results
to show the applicability of this scheme and the stability of the numerical
results and then conclude. More exhaustive numerical results will be given
in a forthcoming publication. Various technical details can be found in the
Appendices A-G.

2 Short review of FRW cosmology

We consider here a spatially isotropic and flat space-time with n− 1 spacial
dimensions, which can be described by a FRW metric with k = 0 curvature
parameter as

ds2 = dt2 − a2(t)dx2 , (2.1)

where dx2 =
∑n−1

i=0 dx
2
i . The effective action of the coupled gravity-scalar

fields system is given by

S =

∫

dnx
√
−g
[

M2
P

2
R + Λgµν + δαR2 + δβR αβR αβ + δγR αβγδR αβγδ

]

+

∫

dnx L(Φi, gµν , R) . (2.2)

The first two terms are the Einstein-Hilbert action and a cosmological con-
stant term, which allows to tune the energy density of the ground state to
zero. We have introduced also all the gravitational terms up to dimension
four for later convenience. The last term is instead given by the action for
the matter fields, in our case a system of coupled bosons described in the
next section.
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The time evolution of the a(t) is governed by the Einstein’s field equation,
which for the Einstein-Hilbert case δα = δβ = δγ = 0 is given by

Gµν + Λgµν = −8πG < Tµν > . (2.3)

where the general expression for energy-momentum tensor is

Tµν(x) =
2

√

−g(x)
δSmatter

δgµν
. (2.4)

In quantum field theory renormalisation requires to introduce a countert-
erm action. Besides the usual mass and coupling constant counterterms the
coupling to gravity induces divergences which require the inclusions of the
higher curvature terms written in Eq. (2.2) and therefore a modification of
the original Einstein field equations. These then take the form

(1+δZ)Gµν+δα
(1)Hµν+δβ

(2)Hµν+δγHµν+(Λ+δΛ)gµν = −8πG < Tµν > .
(2.5)

The tensors (1)Hµν ,
(2)Hµν and Hµν are related to the variation of the higher

curvature terms R2, RαβRαβ and RαβγδRαβγδ. Since gravity is not quantised,
all divergences arise, at least technically, from the quantum fluctuations of
the matter fields in the energy-momentum tensor. Therefore one may prefer
to include the counterterms into a redefinition of the right hand side of the
Einstein equations via

Tµν → Tµν + δZ̃Gµν + δα̃(1)Hµν + δβ̃(2)Hµν + δγ̃Hµν + (Λ̃ + δΛ̃)gµν . (2.6)

Here δZ̃ = δZ/8πG and similarly for the other terms.
For the various tensors we use the conventions of Ref. [38]: the Einstein

curvature tensor is defined as

Gµν = Rµν −
1

2
gµνR ; (2.7)

the Ricci tensor and the Ricci scalar are

Rµν = Rλ
µνλ, R = gµνRµν , (2.8)

where the curvature tensor is given by

Rλ
αβγ = ∂γΓ

λ
αβ − ∂αΓ

λ
γβ + Γα

γδΓ
δ
αβ − Γλ

αδΓ
δ
γβ . (2.9)
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The higher curvature tensors are defined as [38]

(1)H µν =
1√−g

δ

δg µν

∫

dnx
√
−g R2

= 2R;µν − 2g µν 2R − 1

2
g µν R

2 + 2RR µν , (2.10)

(2)H µν =
1√−g

δ

δg µν

∫

dnx
√−g R αβR αβ

= 2R α
µ ;να −2Rµν −

1

2
g µν 2R + 2R α

µR αν −
1

2
g µν R

αβR αβ

= R ;µν −
1

2
g µν 2R − 2R µν −

1

2
g µν R

αβR αβ + 2R αβR αµβν ,

(2.11)

H µν =
1√−g

δ

δg µν

∫

dnx
√−g R αβγδR αβγδ

= −1

2
g µνR

αβγδRαβγδ + 2R µαβνR αβγ
ν − 42R µν + 2R ;µν

−4R µαR
α
ν + 4R αβR αµβν . (2.12)

For the case n = 4 in conformally flat space-time one has

Hµν = (2)Hµν =
1

3
(1)Hµν . (2.13)

The explicit expressions for all these tensors in FRW space-time are of
course well-known. However, we will use dimensional regularisation, which
implies that we have to perform all the computations for general n = 4− ǫ.
We therefore recall the explicit formulae for the relevant tensors in flat n
dimensional FRW geometry in Appendix A.

For the spatially isotropic FRW universe the Einstein field equations re-
duce for the time-time component and trace to the Friedmann equations

Gtt = −8πGTtt = −8πGρ , (2.14)

Gµ
µ = −8πGT µ

µ = −8πG(ρ− (n− 1)p) , (2.15)

where ρ is the energy density, and the pressure p is given by

p = (ρ− T µ
µ )/(n− 1) . (2.16)

. The covariant conservation of energy takes then the form

dρ

dt
= (n− 1)H(ρ+ p) = H(nρ− T µ

µ ) . (2.17)
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3 Coupled fields in curved space-time

We here consider the quantum field theory of N coupled scalar fields. More
specifically we consider a class of models whose Lagrangian is given by

L =
√
−g
{

1

2

∑

i

gµν∂µΦi∂νΦi − V (Φ)−W (R,Φ)

}

, (3.1)

with the potential

V (Φ) =
1

2

N
∑

i=1

m2
iΦ

2
i +

1

4

N
∑

i=1

N
∑

j=1

λijΦ
2
iΦ

2
j . (3.2)

Instead W (R, φ) describes the coupling of the scalar fields to the curvature
scalar:

W (R,Φ) =
∑

i

ξi
2
R Φ2

i . (3.3)

The ξi are dimensionless coupling constants that have no counterpart in the
flat space theory. As we will see later there is an obviously preferred choice
ξi = 1/6, called conformal coupling. The value ξi = 0 is called instead
minimal coupling.

3.1 The equation of motion in the one-loop approxi-

mation

We split the fields in two parts, the expectation values and the quantum
fluctuations around it

Φi = φi(t) + ψi(t,x) , (3.4)

where the classical field φi(t) is assumed to be homogeneous in space. The
classical part of the Lagrangian density retains the form

L(0) =
√
−g
{

1

2

∑

i

[

gµν∂µφi∂νφi − (m2
i + ξiR)φ

2
i

]

−1

4

∑

ij

λijφ
2
iφ

2
j − Λ̃

}

. (3.5)

The first order in the fluctuations vanishes (the expectation value of the
fluctuations is zero). The fluctuation Lagrangian density of the second order
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in fluctuations

L(2) =
√
−g
{

∑

i

1

2
gµν∂µψi∂νψi −

1

2

∑

i

(m2
i + ξiR)ψ

2
i

−1

2

∑

ij

λij(φ
2
iψ

2
j + 2φiφjψiψj)

}

. (3.6)

Now we can write the equations of motion for classical fields:

φ̈i + (n− 1)Hφ̇i + (m2
i + ξiR)φi

+
∑

j

λij
[

(φ2
j+ < ψ2

j >)φi + 2 < ψiψj > φj

]

= 0 , (3.7)

and for the quantum fluctuations in the one-loop approximation:

ψ̈i+(n−1)Hψ̇i+
1

a2
∇2ψi+(m2

i+ξiR)ψi+
∑

j

λij
(

2φiφjψj + φ2
jψi

)

= 0 . (3.8)

The latter equation can be written in the form

ψ̈i + (n− 1)Hψ̇i +
1

a2
∇2ψi +

∑

j

M2
ijψj = 0 , (3.9)

where the mass squared matrix is given by

M2
ij = (m2

i + ξiR)δij + 2λijφiφj + δij
∑

k

λikφ
2
k , (3.10)

or, more explicitly,

M2
ii = m2

i + ξiR + 3λiiφ
2
i +

∑

k 6=i

λikφ
2
k , (3.11)

M2
ij = 2λijφiφj i 6= j . (3.12)

The expectation values of the quantum fluctuations can be expressed in terms
of equal-time Green’s functions via

< ψiψj >= −iGij(t, x; t, x) , (3.13)

where the Green’s functions satisfy
{[

∂2

∂t2
+ (n− 1)H

∂

∂t
+

1

a2
∇2

]

δij +M2
ij(t)

}

Gjk(t,x; t
′,x′)

= δik
i

an−1
δn−1(x− x

′) δ(t− t′) . (3.14)
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We have introduced here the set of equations for the classical fields and
for the fluctuations in a heuristic way. A rigorous derivation can be found
in Ref. [39], based on the Schwinger-Keldysh or closed-time path formalism
[40, 41].

The differential operator in Eq. (3.14) is non-Hermitian due to the term
(n−1)H∂/∂t, and so is the matrix valued Green’ s function G. This problem
can be solved by introducing conformal time

τ =

∫ t

0

dt′
1

a(t′)
. (3.15)

We can then introduce the dimensionless rescaled fields and their fluctuations

φi(t) = a−n/2+1φ̃i(τ) ,

ψi(t,x) = a−n/2+1ψ̃i(τ,x) .

as well as the rescaled Green’s function

G̃ij(τ,x; τ
′,x′) = an/2−1(t) an/2−1(t′) Gij(t,x; t

′,x′) . (3.16)

As a function of conformal time, the Hubble parameter, the Ricci scalar and
the derivatives of the fields are given by

H =
a′

a2
,

R = 2(n− 1)
a′′

a3
+ (n− 1)(n− 4)H2 ,

ḟ = a−n/2

[

f̃ ′ − n− 2

2
aHf̃

]

, (3.17)

f̈ = a−n/2−1

[

f̃
′′ − (n− 1)aHf̃ ′ +

(n− 1)(n− 2)

2
a2H2f̃

−a2 n− 2

4(n− 1)
Rf̃

]

,

where f stands for any field and the prime denotes the derivative with respect
to conformal time.

Then the equations of motion of the classical fields become

φ̃′′
i +

(

m2
i + (ξi − ξn)R

)

a2φ̃i + a4−n
∑

j

λij

[

(φ2
j + G̃jj)φi + 2G̃ijφj

]

= 0 ,

(3.18)
where

ξn =
n− 2

4(n− 1)
. (3.19)
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We see here that for n = 4 and conformal coupling ξi = 1/6, the curvature
term disappears from the equation of motion of the fields, which reduces to
the form it has in flat Minkowski space if also mi = 0.

The new two-point functions satisfy now
[(

∂2

∂τ 2
−∇2

)

δij + M̃2
ij(τ)

]

G̃ij = −δ(τ − τ ′)δn−1(x− x′) , (3.20)

with the effective masses of the rescaled fluctuation fields

M̃2
ii(τ) =

(

m2
i + (ξi − ξn)R

)

a2 + a4−n

(

3λiiφ̃i
2
+
∑

j 6=i

λijφ̃
2
j

)

,(3.21)

M̃2
ij(τ) = 2a4−nλijφ̃iφ̃j i 6= j . (3.22)

The equations for the fluctuation fields in conformal time become

ψ̃i
′′
+∇2ψ̃i +

∑

j

M̃2
ij(τ)ψ̃j = 0 . (3.23)

We expand the fluctuation fields in terms of mode functions fα
i (τ ;k)

ψ̃i(τ,x) =

∫

dn−1k

(2π)n−1
eikxfα

i (τ ;k) , (3.24)

which satisfy the mode equations

fα
i
′′(τ ;k) + k2fα

i (τ ;k) +
∑

j

M̃2
ij(τ)f

α
j (τ ;k) = 0 . (3.25)

The latin subscripts refer to the field components, i = 1, . . . , N and the greek
superscripts α = 1, . . . , N refer to the N independent solutions of the system
of coupled differential equations (3.25). We will specify them below, by a
suitable set of initial conditions.

The Green’s functions can be expressed by their Fourier components

G̃ij(τ,x; τ
′,x′) =

∫

dn−1k

(2π)n−1
eik(x−x

′)G̃ij(τ, τ
′;k) . (3.26)

These Fourier components can be rewritten in terms of mode functions. They
read

G̃ij(τ, τ
′;k) =

∑

αβ

W−1
βα

[

fα
i (τ, k)f

∗β
j (τ ′, k)θ(τ − τ ′)

+fα
i (τ

′, k)f ∗β
j (τ, k)θ(τ ′ − τ)

]

, (3.27)
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where Wαβ is the Wronskian matrix of the system of solutions:

W αβ =

[

∑

j

fα∗
j fβ

j
′ − fα∗

j
′fβ

j

]

. (3.28)

Therefore the expectation values of the fluctuation fields are given by the
fluctuation integrals:

Fij =< ψ̃iψ̃j >= −i
∫

dn−1k

(2π)n−1

∑

αβ

W−1
βαRe (f

α
i f

β∗
j ) . (3.29)

The Wronskian matrix is determined by the initial conditions of the system
of fluctuations which will be discussed in the next subsection.

3.2 Initial conditions

The choice of initial conditions for the quantum system is very important
for the renormalisation of the equations of motion. In order to satisfy the
canonical commutation relations for the creation and annihilation operators
and choose a Fock space basis, we first diagonalise the mass matrix M̃2

ij at
the initial time. The eigenvalues m2

α0, α = 1, N then define N independent
free particle Fock spaces whose product we choose as our initial state. The
eigenvalues and eigenvectors of the initial mass matrix M̃2

ij(0) are defined by
the equations

det
{

M̃2
ij(0)−m2

α0δij

}

= 0 (3.30)

and
−m2

α0f
α
i0 + M̃2

ij(0)f
α
j0 = 0 . (3.31)

The eigenvectors fα
i0 are orthogonal, we choose them real and normalised as
∑

l

fα
l0f

β
l0 = δαβ ,

∑

α

fα
l0f

α
m0 = δlm . (3.32)

We now specify the mode functions introduced in the previous section by the
initial conditions

fα
l (0, k) = fα

l0 , (3.33)

fα
l
′(0, k) = −iΩα0f

α
l0 , (3.34)

with the frequencies Ωα0(0) =
√

k2 +m2
α0. The Wronskian matrix of the

mode functions at time τ = 0 is given by

Wαβ =W (fα(0, k), fβ(0, k))

=
∑

l

[

fα∗
l (0, k)fβ

l
′(0, k)− fα∗

l
′(0, k)fβ

l (0, k)
]

= −2iΩα0δαβ .(3.35)
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It is time-independent by construction. With these initial conditions the
fluctuation integrals are given by

Fij =< ψ̃iψ̃j >=

∫

dn−1k

(2π)n−1

∑

α

1

2Ωα0
Re (fα

i f
α∗
j ) . (3.36)

These initial conditions correspond to a quantum state which is denoted as
the adiabatic vacuum. For such an initial state the energy-momentum tensor
is found to be singular at initial time [42]. This problem can be solved by a
suitable Bogoliubov transformations of the adiabatic vacuum. For a coupled
system this Bogoliubov transformation was derived in Ref. [43]. We recall
the essential features of this approach in Appendix B. As discussed in Ref.
[42] this modification of the initial state does not affect the renormalisation,
which is our main subject here; so we continue to work with the adiabatic
vacuum as the initial state.

3.3 The energy-momentum tensor

In order to write the Einstein’s equations we need the expression of the
energy-momentum tensor for our system of coupled field in Eq. (3.1). Gen-
eralising straightforwardly the case of a single scalar field given in Ref. [38],
we have

Tµν =
∑

i

[

(1− 2ξi)Φi;µΦi;ν +

(

2ξi −
1

2

)

gµνg
ρσΦi;ρΦi;σ − 2ξiΦi;µνΦi

+2ξigµνΦi2Φi − ξiGµνΦ
2
i

]

+ gµνV (Φ) . (3.37)

In the Friedmann equations only Ttt and T
µ
µ appear and their classical parts

are given by

T cl
tt =

∑

i

(

1

2
φ̇i

2 − ξiGttφ
2
i + 2(n− 1)ξiHφiφ̇i

)

+ V cl(φ) , (3.38)

T cl µ
µ =

∑

i

{[

1− n

2
+ 2(n− 1)ξi

]

φ̇i
2
+ 2(n− 1)ξi

[

φ̈i + (n− 1)Hφ̇i

]

φi

−ξiGµ
µφ

2
i

}

+ nV cl(φ) , (3.39)

with

V cl(φ) =
1

2

∑

i

m2
iφ

2
i +

1

4

∑

i,j

λijφ
2
iφ

2
j . (3.40)
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Using conformal time and the rescaled fields we find 3

T cl
tt =

1

an

{

1

2

∑

i

(φ̃′2
i +m2

i a
2φ̃2

i )

+2(n− 1)
∑

i

(ξi − ξn)

(

aHφ̃′
i −

n− 2

4
a2H2φ̃i

)

φ̃i

+
a4−n

4

∑

ij

λijφ̃
2
i φ̃

2
j

}

. (3.41)

For the fluctuation contribution to the energy density we obtain instead

T q
tt =

1

an

∫

dn−1k

(2π)n−1

∑

α

1

2Ωα0
(3.42)

×
{

1

2

∑

i

[

|fα
i
′|2 + k2|fα

i |2
]

+
1

2

∑

ij

M̃2
ij(τ)f

α∗
i fα

j

+(n− 1)
∑

i

(ξi − ξn)

[

aH
d

dτ
|fα

i |2−
(

n− 2

2
a2H2 +

Ra2

2(n− 1)

)

|fα
i |2
]

}

.

The last term, proportional to R, which has no analogy in the classical
energy-momentum tensor, is not genuine but compensates an analogous term
in M̃2

ij. It is convenient to rewrite T q
tt as a function of the fluctuation integral

as

T q
tt = T q,kin

tt +
1

2an
VijFij (3.43)

+
n− 1

an

∑

i

(ξi − ξn)

[

aH
d

dτ
Fii −

(

n− 2

2
a2H2 +

Ra2

2(n− 1)

)

Fii

]

,

where we have introduced the ”potential”

Vij(τ) = M̃2
ij(τ)− M̃2

ij(0) , (3.44)

and where

T q,kin
tt =

1

an

∫

dn−1k

(2π)n−1

∑

α

1

2Ωα0

{

1

2

∑

i

[

|fα
i
′|2 + Ω2

α0|fα
i |2
]

+
1

2

∑

ij

(M̃2
ij(0)−m2

α0δij)f
α∗
i fα

j

}

(3.45)

3Though we have introduced conformal time we continue to use the time-time compo-
nent of the energy-momentum tensor in standard time t, as made explicit by using time
indices t instead of 0 or τ .
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is the kinetic or free-field part of the energy density.
The classical part of the trace of the energy-momentum tensor becomes

T clµ
µ =

1

an

{

2(n− 1)
∑

i

(ξi − ξn)

[

φ̃′
i −

1

2
(n− 2)aHφ̃i

]2

(3.46)

+2(n− 1)
∑

i

ξiφ̃iφ̃
′′
i + n

[

1

2

∑

i

m2
i φ̃

2
i +

1

4

∑

ij

λija
4−nφ̃2

i φ̃
2
j + Λ

]}

.

For the quantum contribution one finds instead

T qµ
µ =

1

an

∫

dn−1k

(2π)n−1

∑

α

1

2Ωα0

×
{

2(n− 1)
∑

i

(ξi − ξn)
[

|fα
i
′|2 − k2|fα

i |2 −M2
ijf

α∗
i fα

j

−n− 2

2
aH

d

dτ
|fα

i |2 +
1

4

(

(n− 2)2H2 − n

n− 1
R

)

|fα
i |2
]

+
∑

ij

M2
ijf

α∗
i fα

j

}

. (3.47)

Using the equation of motion for the mode functions, Eq. (3.25), the first
three terms in the bracket can we rewritten as

|fα
i
′|2 − k2|fα

i |2 −M2
ijf

α∗
i fα

j = |fα
i
′|2 + fα∗

i fα
i

′′ =
1

2

d2

dτ 2
|fα

i |2 . (3.48)

We therefore may express the entire quantum contribution to T µ
µ in terms of

the fluctuations integral Fij as

T qµ
µ =

n− 1

an

∑

i

(ξi − ξn)

[

d2

dτ 2
Fii − (n− 2)aH

d

dτ
Fii (3.49)

+
1

2

(

(n− 2)2H2 − n

n− 1
R

)

Fii

]

+
1

an

∑

ij

M2
ijFij .

4 Renormalisation

In the previous sections we have introduced the fluctuation integrals and
expressed the equations of motion and the one-loop contributions to the
energy-momentum tensor in term of these quantities. These definitions have

13



only formal character, as they involve divergent momentum integrals. As in
the case of renormalisation in Minkowski, we have to introduce regulators
in order to render the integrals well-defined, and counterterms to absorb the
divergences when the regulators are removed. We will use here dimensional
regularisation with the space dimension 3−ǫ. Furthermore, it is convenient to
separate the limit ǫ→ 0 entirely from the numerical computations by adding
and subtracting appropriate analytical terms, which reproduce the divergent
behaviour and render the numerical integrations finite. Such a scheme was
set up in Ref. [37], and we will use it here. We recall its main features and
the formulae needed here in Appendices C, D and E.

Before we discuss renormalisation we have to discuss a subtle issue (see
also Ref. [36]). We have written all equations for general n = 4− ǫ, and the
equations of motion ensure that the energy-momentum tensor is conserved
in n dimensions. Ultimately we have to take the limit n → 4, or ǫ → 0
and this will generate terms that behave as 1/(n − 4) from the divergent
integrals and consequently in the counterterm action. On the other hand the
equations of motion and the energy-momentum tensor are equal to their 4-
dimensional form only up to terms of order (n−4). These terms will survive
the limit n→ 4 whenever they are multiplied by a factor 1/(n−4). This will
result in “additional finite terms”, which have no counterpart in quantum
field theory in Minkowski space. So our prescription is: we first formulate
the full renormalised theory in n dimensions and take the limit n → 4 only
at the end. Another prescription one may think to use, is consider n 6= 4
only in the divergent integrals, while keeping the equation of motion and the
energy-momentum tensor in 4 dimensions, but in that case we cannot rely
on energy-momentum covariant conservation during the whole regularisation
procedure.

4.1 Renormalisation of the equation of motion

The equation of motion contains logarithmic and quadratic divergences due
to the fluctuation integrals. Using the analysis of Appendix C and in partic-
ular Eq. (C.12), their divergent behaviour can be understood and it coincides
with that of the divergent integral

Fdiv
ij = aǫ

∫

dn−1k

(2π)n−1

∑

α

1

2Ωα0

[

fα
i0f

α
j0 −

∑

β

fα
i0f

β
j0

Ṽαβ(τ)

Ωβ0(Ωα0 + Ωβ0)

]

, (4.1)

where the potential Ṽαβ has been introduced in Eq. (C.10) Here and in the
following we use a slight change in notation, without introducing a new sym-
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bol: we incorporate the prefactor aǫ which appears in front of the divergent
integrals into the n-dimensional integration measure.

Using the formulae for the various integrals given in Appendix E one can
obtain analytically the dimensionally regulated form of the previous expres-
sion as

F reg
ij = − Lǫ

16π2
M̃2

ij(τ) +
∑

α

m2
α0

16π2
fα
i0f

α
j0

(

ln
m2

α0

a2µ2
− 1

)

+
∑

α,β

fα
i0f

β
j0

Ṽαβ(τ)

16π2

(

ln
m2

α0

a2µ2
−

m2
β0

m2
α0 −m2

β0

ln
m2

β0

m2
α0

− 1

)

,(4.2)

where Lǫ =
2
ǫ
−γ+ln 4π. In order to cancel this divergence in the equations of

motion we have to add an appropriate counterterm to the Lagrange density.
In the case of Minkowski space-time, it was found in Ref. [27] that the
counterterm Lagrangian

Lct
Mink. = −δζM2

klM2
lk (4.3)

with

δζ =
Lǫ

64π2
(4.4)

takes account of all divergences. We work here in the MS scheme and sub-
tract only the divergent part of the fluctuation integral. Note that for con-
stant masses and fields, this is a contribution to the renormalisation of the
cosmological constant of order

∑

im
4
i and also contains mass and coupling

renormalisation terms due to the interaction part of the effective mass matrix
M2

ij .
Taking into account the factor

√−g = an (using conformal time), and
noting that the M̃2

ij differ by a factor a2 fromM2
ij, the equivalent Lagrangian

for general FRW is
Lct = −an−4δζM̃2

klM̃2
lk . (4.5)

When discussing the energy-momentum tensor it will be convenient to have
this Lagrangian decomposed into the usual mass, coupling constant and other
gravity-related counterterms. This is presented in Appendix F.

Introducing this counterterm Lagrangian and given that

∂

∂φ̃i

Lct = 2δζM̃2
kl

(

4λilφ̃lδik + 2δklλkiφ̃i

)

= 4δζ
∑

l

[

2M̃2
ilλilφ̃l + λliM̃2

llφ̃i

]

, (4.6)
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the equations of motion for the classical fields become

φ̃′′
i + (m2

i + (ξi −
1

6
)R)a2φ̃i (4.7)

+
∑

j

λij

[

(φ2
j + 4δζM̃2

jj + Fjj)φ̃i + (8δζM̃2
ij + 2Fij)φ̃j

]

= 0 .

It follows from Eq. (4.2) and the renormalisation procedure that the combi-
nation 4δζM̃2

ij +Fij is finite. This is entirely analogous to the case without
coupling to gravity. There is, however, one important difference: in addition
to the renormalisation scale the scale factor a(τ) appears in the prefactor aǫ

and this modifies the finite terms. In order to be able to identify the different
contributions to Fij separately we write

Fij = − Lǫ

16π2
M̃2

ij(τ) + Ffin
ij + Fadd

ij , (4.8)

where the finite part of the fluctuation integral is given by

Ffin
ij = F sub

ij + F ft
ij . (4.9)

Here we define

F sub
ij =

∫

k2dk

2π2

∑

α

1

2Ωα0

[

Re (fα
i f

α∗
j )− fα

i0f
α
j0 +

∑

β

fα
i0f

β
j0

Ṽαβ(τ)

Ωβ0(Ωα0 + Ωβ0)

]

(4.10)
as the subtracted fluctuation integral, that is finite, but in general has to be
computed numerically. From F reg

ij , Eq. (4.2), we have

F ft
ij =

∑

α

[

m2
α0

16π2
fα
i0f

α
j0

(

ln
m2

α0

a2µ2
− 1

)

+
∑

β

fα
i0f

β
j0

Ṽαβ(τ)

16π2

(

ln
m2

α0

a2µ2
−

m2
β0

m2
α0 −m2

β0

ln
m2

β0

m2
α0

− 1

)]

(4.11)

as finite terms that are left over after removing the divergent part. However,
among those we have identified separately

Fadd
ij = − 1

288π2
a2Rδij , (4.12)

which arises from the O(ǫ) term in the expansion of M̃2
ii:

M̃2
ii =

(

m2
i + (ξi − 1/6)R

)

a2+a4−n

(

3λiiφ̃i
2
+
∑

j 6=i

λijφ̃
2
j

)

+
ǫ

36
a2R+O(ǫ2) .

(4.13)
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This is the only term that has no usual 4D counterpart and is generated
from taking the n-dimensional FRW model. It gives a finite contribution to
the scalar field coupling to gravity ξi and it may be in principle absorbed
into a more general renormalisation scheme than MS. Note that such term
survives even in the case of 4D conformal coupling ξi = 1/6.

Finally, the renormalised equation of motion for the classical fields reads

φ̃′′
i + (m2

i + (ξi −
1

6
)R)a2φ̃i (4.14)

+
∑

j

λij

[

(φ̃2
j + Ffin

jj + Fadd
jj )φ̃i + 2(Ffin

ij + Fadd
ij )φ̃j

]

= 0 .

Here we have taken the limit ǫ → 0 already, and it is understood that the
potential Ṽαβ in F fin

ij is computed in 4 dimensions. Likewise, the fluctuations

are computed using the 4-dimensional reduction of M̃2
ij in their equation of

motion.
Note that the occurrence of ln a(τ) in the finite terms M̃2

ij is not nec-
essarily a small correction. Neither is the “potential” Vαβ small: the terms
(m2

i +(ξi−1/6)R) appear multiplied by a2. Indeed the qualitative rôle of the
ln a(τ) term in F ft

ij is to compensate a logarithmic increase of the subtracted
integral F sub

ij . This is illustrated by an example in Appendix G.

4.2 Renormalisation of the energy-momentum tensor

We can now proceed in the same way to the renormalisation of the energy-
momentum tensor. In Sec. 3.3 we have separated the quantum part of
the tt component of the energy-momentum tensor into a “kinetic” part and
some further contributions which can be written in terms of the fluctuation
integrals. The divergences of the latter have been discussed in the previous
section, so it remains here to analyse the kinetic part. Using the results of
Appendix C and in particular Eq. (C.18) we obtain

T q,kin
tt =

1

an

∫

dn−1k

(2π)n−1

∑

α

1

2Ωα0

[

Ω2
α0 +

1

2
|hαi ′|2

+
1

2
(M̃2

ij(0)−m2
α0δij)Re (h

α
i h

α∗
j )

]

. (4.15)

The divergent behaviour of the first term in the bracket is obvious, the one
of the second term is given by Eq. (C.20). The third term originally appears
with the mode functions fα

i ; the present form, with the reduce mode functions
hαi , is obtained by using that the parenthesis (M̃2

ij(0)−m2
α0δij) vanishes when
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multiplied with fα
i0 or fα

j0 due to the eigenvalue equation (3.31). Still the
term could lead to a divergence arising from the second order contribution
h
(1)α
i h

(1)α∗
j . One can convince oneself that this leading term vanishes. The

expansion of h
(1)α
i and h

(1)α∗
j contains factors fβ

i0 or fβ
j0 (see Eqs. (C.8) and

(C.9)); the parenthesis then reduces to (m2
β0−m2

α0)δij and this is found to be
multiplied with a term that is symmetric in α and β. So, using the integrals
given in Appendix E we can write

T q,kin
tt = − 1

64π2a4
Lǫ

[

∑

α

m4
α0

−
∑

αβ

ṼαβṼβα

]

+ T q,kin,fin
tt . (4.16)

Here
T q,kin,fin
tt = T q,kin,sub

tt + T q,kin,ft
tt , (4.17)

where the subtracted integral is given by

T q,kin,sub
tt =

1

a4

∫

k2dk

2π2

∑

α

1

2Ωα0

[

1

2
|hαi ′|2 −

∑

β

ṼβαṼαβ

4Ωβ0(Ωα0 + Ωβ0)

+
1

2
(M̃2

ij(0)−m2
α0δij)Re (h

α
i h

α∗
j )

]

(4.18)

and the finite terms of the regularised integrals are

T q,kin,ft
tt =

1

64π2a4

[

∑

α

m4
α0

(

ln
m2

α0

a2µ2
− 3

2

)

−
∑

αβ

ṼαβṼβα

(

ln
m2

α0

a2µ2
−

m2
β0

m2
α0 −m2

β0

ln
m2

β0

m2
α0

− 1

)]

. (4.19)

In both of these equations it is understood that n = 4.
Besides T q,kin

tt the tt component of the energy-momentum tensor contains
further quantum contributions, which have been expressed by fluctuation
integrals, see Eq. (3.43). Collecting all these finite pieces we define

T q,fin
tt = T q,kin,fin

tt +
1

2
VijFfin

ij (4.20)

+
3

a4

∑

i

(

ξi −
1

6

)[

aH
d

dτ
Ffin

ii −
(

a2H2 +
Ra2

6

)

Ffin
ii

]

,

where we have already set n = 4.
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For the singular terms we find instead

T q,sing
tt = − Lǫ

64π2

1

an
M̃2

ijM̃2
ij

+
n− 1

an

∑

i

(ξi − ξn)

(

n− 2

2
a2H2 +

Ra2

2(n− 1)

)

Lǫ

16π2
M̃2

ii

−n− 1

an

∑

i

(ξi − ξn)
Lǫ

16π2

d

dτ
M̃2

ii . (4.21)

Here it is understood that everything is still defined for general n. The
counterterms are (see Eqs. (2.6) and (3.41))

T ct
tt =

1

an

{

1

2

∑

i

δm2
i a

2φ̃2
i

+2(n− 1)
∑

i

δξi

(

aHφ̃′
i −

n− 2

4
a2H2φ̃i

)

φ̃i

+
a4−n

4

∑

ij

δλijφ̃
2
i φ̃

2
j

}

+ δΛ̃ + δZ̃Gtt + δα̃(1)Htt . (4.22)

Adding the singular part and the counterterms one finds that the divergences
are cancelled, but, as in the case of Fij some additional finite terms remain
in the limit n→ 4. These are

T q,add
tt = lim

n→4
(T q,sing

tt + T ct
tt ) =

H

96π2a3

∑

i

(

aHM̃2
ii −

d

dτ
M̃2

ii

)

+
1

16π2

∑

i

(

ξi −
1

6

)[

1

36
(1)Htt +

1

72
R2 − 6

H2

a2
M̃2

ii

]

. (4.23)

It is understood that n is set equal to 4 in M̃2
ii and

(1)Htt. The result agrees
with the one for the single-field case found in Ref. [36]. There T q,add

tt was
in addition presented in an expanded form, using the explicit expressions
for M̃2

ii and
(1)Htt. Here we refrain from displaying such a rather lengthy

formula. We should mention that the calculations for checking the cancel-
lation of divergences and for obtaining T q,add

tt are quite cumbersome, they
have been performed using the computer algebra code REDUCE [44]. Note
that these additional terms are time-dependent and similar time-dependent
pieces are contained in the subtracted integrals eq. (4.18), as it happens for
the ln a(τ) terms in F̃ij. Both together ensure that the energy-momentum
tensor is covariantly conserved.
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There is still a further finite contribution to the energy-momentum tensor,
the conformal anomaly, which can in any case not be renormalised away [38].
As discussed there and in Ref. [36] it cannot be determined within our
framework but has to be taken over from a more general analysis. It is
obtained by setting, for N scalar fields,

δβ̃ = −δγ̃ =
N

2880π2
Lǫ . (4.24)

As (2)Hµν = Hµν in 4 dimensions, the n = 4 part of these tensors cancels, and
so does the singularity. But there is a finite remainder from the extension to
n 6= 4. We obtain [36]

T ano
tt = lim

n→4

N

2880π2
Lǫ

(

(2)Htt −Htt

)

=
N

2880π2

(

H
R′

a
+RH2 +

1

12
R2 + 3H4

)

. (4.25)

Notice that these additional terms are vanishing for the case of pure de Sitter
or radiation dominated expansion, so they are negligible in the inflationary
phase, but they could have an effect in the reheating phase.

Finally, the renormalised tt component of the energy-momentum tensor
is given by

T ren
tt = T cl

tt + T q,fin
tt + T q,add

tt + T ano
tt . (4.26)

As we have seen in Sec. 3.3, T q µ
µ , the unrenormalised quantum contribu-

tion to the trace of the energy-momentum tensor can entirely be expressed in
terms of the fluctuation integrals Fij and derivatives thereof, see Eq. (3.50).
So the finite part is simply given by

T q,finµ
µ =

3

a4

∑

i

(ξi −
1

6
)

[

d2

dτ 2
Ffin

ii − 2aH
d

dτ
Ffin

ii

+

(

2H2 − 2

3
R

)

Ffin
ii

]

+
1

a4

∑

ij

M̃2
ijFfin

ij . (4.27)

Likewise, the divergences of T q µ
µ are related in a straightforward way to those

of the fluctuation integrals. Therefore, the part that is singular as n→ 4, is
given by

T q,singµ
µ = − Lǫ

16π2an

{

(n− 1)
∑

i

(ξi − ξn)

[

d2

dτ 2
M̃2

ii − (n− 2)aH
d

dτ
M̃2

ii

+
1

2

(

(n− 2)2H2 − n

n− 1
R

)

M̃2
ii

]

+
∑

ij

M̃2
ijM̃2

ji

}

. (4.28)
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We have to add the appropriate counterterms which have the form (see Eqs.
(2.6) and (3.46))

T q,ctµ
µ =

1

an

{

2(n− 1)
∑

i

δξi

[

φ̃′
i −

1

2
(n− 2)aHφ̃i

]2

(4.29)

+2(n− 1)
∑

i

δξiφ̃iφ̃
′′
i

+n

[

1

2

∑

i

δm2
i φ̃

2
i +

1

4

∑

ij

δλija
4−nφ̃2

i φ̃
2
j + δΛ̃

]}

+δZ̃Gµ
µ + δα̃(1)Hµ

µ .

We again find, using REDUCE, that the divergences cancel in the sum of
T q,sing µ
µ and T q,ctµ

µ . There remain finite terms, however, as for Ttt. These are
given by

T q,add µ
µ = lim

n→4
(T q,singµ

µ + T q,ctµ
µ ) = − 1

32π2a4

∑

i,j

M̃2
ijM̃2

ji

− 1

96π2a4

∑

i

[

d2M̃2
ii

dτ 2
− 2aH

dM̃2
ii

dτ
+ 2a2H2M̃2

ii

]

(4.30)

− 1

16π2

∑

i

(

ξi −
1

6

)

[

12
H

a3
dM̃2

ii

dτ
+

1

a2
(R− 18H2)M̃2

ii−
1

18
R2− 1

36
(1)Hµ

µ

]

.

These agree, for the single-field case, i.e., N = 1, with Eq. (7.28) of Ref.
[36], except for a misprint there: (R + 18H2) should read (R − 18H2), as
here. The expanded form (7.29) in Ref. [36] is correct. We again refrain
from presenting such an expanded form.

The anomalous part is obtained as before

T ano µ
µ = lim

n→4

N

2880π2
Lǫ

(

(2)Hµ
µ −Hµ

µ

)

=
N

2880π2

(

R′′

a2
+ 2H

R′

a
+ 2RH2 − 12H4

)

. (4.31)

Finally, we have to add the classical part, Eq. (3.39), with n = 4. So we
finally have

T ren µ
µ = T cl µ

µ |n=4 + T q,fin µ
µ + T q,add µ

µ + T ano µ
µ . (4.32)
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Figure 1: The evolution of the scale parameter a(t) for set I.

5 Simulations: the hybrid model

While we have discussed here the renormalisation of a relatively general
model of N coupled fields, the original incentive of our investigation was
the application to the hybrid model of inflation. In that case we have a
system of only two fields and we can write the Lagrangian as

L =
√
−g
{

1

2
gµν∂µφ∂νφ+

1

2
gµν∂µχ∂νχ− 1

2
m2φ2 − 1

4
α(χ2 − v2)2

−1

2
λφ2χ2 − 1

12
R
(

φ2 + χ2
)

}

, (5.1)

Here v is the vacuum expectation value of χ. Furthermore, we have to
make use of a bare cosmological constant Λ̃ = αv4 so that the minimum
of the classical potential has the value zero. Even when choosing the MS
prescription for the renormalisation of the masses and couplings we have to
make sure that the zero point of the quantum fluctuations at the minimum
vanishes, so we have to add a suitable finite counterterm δΛ̃. Of course this is
“fine tuning” and represents the practical aspect of the cosmological constant
problem. We have restricted our simulations to the case ξ1 = ξ2 = 1/6, the
conformal couplings. This considerably simplifies the dynamics, and this
choice would be natural in a supergravity theory.
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Figure 2: The evolution of the inflation field φ(t) for set I.

As parameter set I we choose (in Planck units) v = 1,m = 0.01, λ = 10−5,
α = 10−5. The initial values of the fields are φ(0) = 4 and χ(0) = 0.01. In
Fig. 1 we show the evolution of the scale parameter a(t). We see an initial
exponential expansion, followed by a power behaviour a ≃ t0.66 as expected
for a matter dominated universe. The exponential behaviour is not due to a
slow roll of the “inflaton” field φ which oscillates with a rapidly decreasing
amplitude, see Fig. 2. Rather it is the field χ, displayed in Fig. 3 that
takes some time before falling from the metastable maximum to the stable
minimum. Quantum fluctuations build up after the field χ starts to fall from
χ = 0 to χ = v = 1. Of course both the classical as well as the quantum
energy density decrease with the expansion of the universe. We therefore
plot in Fig. 4 the ratio ρfl/ρ of the fluctuation energy and the total energy
densities. The fact that the classical energy density is not converted entirely
into fluctuation energy is typical for the one-loop approximation in which the
classical fields and the fluctuations remain coherently coupled.

The covariant energy conservation, Eq. (2.17) with n = 4, is fulfilled with
a relative error less than 1 ppm.

We also display, in Figs. 5 and 6, the integrands of the fluctuation in-
tegrals F11 and F22, including the factor k2/(2π2). For F11 we display the
unsubtracted integrand, the integrand with the zeroth order term removed,
and fully subtracted with zeroth and first order in V removed, see Eq. (4.10).
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Figure 3: The evolution of the waterfall field χ(t) for set I.
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Figure 4: Ratio of fluctuation energy density to total energy density for set I.
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Figure 5: The integrand of the fluctuation integral F11: (a) without subtrac-
tion; (b) after removing the leading term; and (c) with zeroth and first order
in V subtracted, respectively, for set I; crosses: the numerical results; solid
lines: in parts a and b these indicate the asymptotic behaviour p and p−1,
respectively; in part c the solid line reproduces the approximation Eq. (G.8).
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Figure 6: The integrand of the fluctuation integral F22 for set I at t = 6306;
the crosses are the numerical results, while the solid line is the asymptotic
approximation Eq. (G.8).

The subtraction is actually performed using the functions hαi introduced in
Appendix C in order to avoid small numerical differences. At large momenta
the integrands are seen to behave as p, p−1 and p−3 respectively. For the fully
subtracted integrand we compare the numerical result with the approximate
formula (G.8). The agreement is almost perfect: the time at which this inte-
grand is extracted is t = 3154. There the field φ has reached its asymptotic
value already and corrections due to the field χ are small. The integrand for
F22 is plotted at t = 6306. There the field χ has come close to its asymptotic
value 1, but is still oscillating around it. Here the approximate formula (G.8)
describes well the asymptotic behaviour, but one notices a strong peak at low
momenta p . .1. This is in agreement with the fact that a significant part
of the classical energy has been converted into fluctuation energy, as already
displayed in Fig. 4. Obviously it is the waterfall field whose fluctuations at
low momenta have been strongly excited.

6 Conclusions

We have presented here a general analysis of the renormalisation of a set
of coupled scalar fields in a spatially flat FRW universe with non-minimal
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gravitational coupling and higher curvature gravity terms in the one-loop
approximation. By a suitable subtraction procedure we obtain the equations
of motion for the classical fields and the energy-momentum tensor in renor-
malised form. The latter appears of course on the right-hand side of the
Friedmann equations. The counterterms are found in the standard form of
quantum field theory, they do not depend on numerical cutoffs nor on the
initial conditions. The expressions to be evaluated on the computer are fi-
nite from the outset, in particular all the subtracted integrals are finite and
numerically well-behaved.

The analysis of the divergences used here differs from the procedure used
often in the context of quantum field theory in curved space: the adiabatic
subtraction, using the eikonal expansion. We have not seen this approach be-
ing applied to a coupled channel system; as far as we see this meets problems
of principle: while ordinary functions and their derivatives commute, this
does not hold for matrix valued functions. Our renormalisation procedure
does not suffer from these shortcoming and can be applied to the general
case of coupled scalar fields. We expect it to be easily generalised to contain
fermionic fields as well and be viable also for supersymmetric models.

The example of coupled scalar fields that has attracted most attention is
the hybrid model of inflation. We have now implemented this renormalisation
procedure for this specific case and obtained first encouraging results: the
energy-momentum conservation is recovered in our scheme to high precision
and our asymptotic formulae for the divergences describe the divergent fluc-
tuation integrals with very good accuracy. In the renormalisation procedure
we obtain additional finite terms, some of which arise from the n dimensional
FRW setting and have no 4D counterpart. These terms are in some cases
large and time-dependent, containing ln(a(τ)), but they cancel correspond-
ing time-dependent terms in the fluctuation integrals and they are therefore
crucial for obtaining consistent results, as is discussed in Appendix G.

We have shown for a very simple case that our renormalisation proce-
dure is solid and gives very stable numerical results. We plan to extend our
study to the inflationary phase and to different hybrid models in a future
publication.
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A Tensors in n-dimensional flat FRW

geometry

The extension of the FRW geometry to n dimensions is done in a specific
way: the three-dimensional space of FRW geometry is conformal to three-
dimensional Minkowski space; it is this three-dimensional space that we ex-
tend to 3− ǫ = n− 1 dimensions in the same way as it is done in the usual
dimensional continuation.

For the Christoffel symbols one finds

Γ t
ij = aȧ δij ; Γ j

kt = Γ j
tk =

ȧ

a
δjk . (A.1)

The non-vanishing components of the Riemann tensor are

R t
itk = äa δik , R t

ijt = −äa δij , (A.2)

R l
ttk =

ä

a
δlk , R l

tjt = − ä
a
δlj , (A.3)

for those of the Ricci tensor one finds

R tt = (n− 1)
ä

a
, R ij =

[

−äa− (n− 2)ȧ2
]

δij . (A.4)

This leads to the Ricci curvature scalar

R = 2(n− 1)
ä

a
+ (n− 1)(n− 2)

(

ȧ

a

)2

. (A.5)

Expressed in terms of Hubble’s constant

H(t) =
ȧ(t)

a(t)
(A.6)

it takes the form
R = (n− 1)

(

2Ḣ + nH2
)

. (A.7)

The relevant components of the Einstein tensor become

Gtt = −(n− 1)(n− 2)

2
H2 , (A.8)

Gµ
µ = −n− 2

2
R . (A.9)

28



The time-time components and the trace of the tensors (n)Hµν are given
by

(1)H tt = −6HṘ +
1

2
R2 − 6H2R (A.10)

+(n− 4)
(

−2HṘ− (n + 1)RH2
)

,

(2)H tt = −2HṘ +
1

6
R2 − 2H2R + (n− 4)

(

−1

2
HṘ (A.11)

− R2

24(n− 1)
− 1

4
(n+ 2)H2R +

1

8
(n− 1)(n− 2)2H4

)

,

H tt = −2HṘ +
1

6
R2 − 2H2R (A.12)

+(n− 4)

(

− R2

6(n− 1)
−H2R +

1

2
(n− 1)(n− 2)H4

)

,

(1)H µ
µ = −6R̈− 18HṘ (A.13)

+(n− 4)

(

−2R̈− 2(n+ 2)HṘ− 1

2
R2

)

,

(2)H µ
µ = −2R̈− 6HṘ+ (n− 4)

(

−1

2
R̈− 1

2
(n + 3)HṘ (A.14)

− nR2

8(n− 1)
+

1

4
(n− 2)2H2R− 1

8
n(n− 1)(n− 2)2H4

)

,

H µ
µ = −2R̈− 6HṘ+ (n− 4)

(

−2HṘ− R2

2(n− 1)
(A.15)

+(n− 2)H2R− 1

2
n(n− 1)(n− 2)H4

)

.

B Removing the initial singularity

The initial conditions we have discussed in Sec. 3.2 lead after renormalisa-
tion to singularities in the fluctuation integrals when τ → 0. They contain
terms proportional to V̇αβ(0) and V̈αβ(0) which behave as τ ln[(mα0+mβ0)τ ]
and τ 2 ln[(mα0 +mβ0)τ ] respectively. This does not affect the equations of
motion, but the energy-momentum tensor, which contains the first and the
second derivatives of the fluctuation integrals, that are infinite as time goes to
zero. This means that these initial singularities will appear in the Friedmann
equations as well. In Ref. [43] it was shown how to remove such singularities
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by a modification of the initial state. Here we will just briefly repeat these
results.

The general concept of the Bogoliubov transformation supposes the re-
placement of the naive initial state by a transformed vacuum state, annihi-
lated by a superposition of annihilation aα(k) and creation a+α (−k) operators.
For this purpose first we define the transformation

ãα(k) =
∑

β

√

Ωα0

Ωβ0

[

Cαβaβ(k)− Sαβa+β (−k)
]

(B.1)

and then a new vacuum state |0̃ >

ãγ(k)|0̃ >=
√

Ωγ0

Ωα0

Cγα

[

aα(k)−
√

Ωα0

Ωβ0

ραβa
+
β (−k)

]

|0̃ >= 0 , (B.2)

with ρ = C−1S symmetric matrix. By means of the expectation value of
aα(k)a

+
β (k

′) in the new vacua we define a matrix Mαβ

< 0̃|aα(k)a+β (k′)|0̃ >= (2π)2δ3(k− k′)2
√

Ωα0Ωβ0Mαβ(k) , (B.3)

which is related to the matrix ρ as follows

M − ρMT ρ+ = I . (B.4)

Following the schema presented in Appendix A of [43] one sees that the
cancellation of the dangerous terms we have mentioned above requires

Imραβ =
1

2Ωα0Ωβ0

1

(Ωα0 + Ωβ0)2
V ′
αβ(0) , (B.5)

Re ραβ =
1

2Ωα0Ωβ0

1

(Ωα0 + Ωβ0)3
V ′′
αβ(0) . (B.6)

So after ρ is known we have to determine the fluctuation integrals and
the energy-momentum tensor in the Bogoliubov-transformed vacuum. But
for the numerical implementation it is more convenient to redefine the mode
functions

f̃α
i (τ ;k) =

∑

β

√

Ωα0

Ωβ0

[

fβ
i (τ ;k)Nβα + fβ∗

i (τ ;k)ρβγ∗Nγα

]

, (B.7)

where the matrix N is defined as N × N = M . Here f̃α
i are solutions of

the same mode equations as fα
i are. For the fluctuation integrals and the

energy-momentum tensor the expressions presented in Sec. 3.3 remain valid,
with the mode functions fα

i replaced by the Bogoliubov transformed ones f̃α
i .
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C Perturbative Expansion

The perturbative expansion of the mode functions for the case of coupled
system in curved space-time follows a scheme introduced in Ref. [37]. We
split the mode functions fα

i (τ ; k) into the free part and higher order terms
represented by the reduced mode functions hαi (τ ; k) with the ansatz

fα
i (τ ; k) = e−iΩα0τ [fα

i0 + hαi (τ ; k)] . (C.1)

The mode equations (3.25) are equivalent to the following integral equation

fα
i (τ ; k) = e−iΩα0τfα

i0 +

∫ τ

0

dτ ′∆ij(τ − τ ′; k)Vjk(τ
′)fα

k (τ
′; k) , (C.2)

with the potential Vij introduced in Eq. (3.44) and with the retarded kernel
of the free equation

∆ij(τ − τ ′; k) =
∑

β

i

2Ωβ0
Θ(τ − τ ′)fβ

i0f
β
j0[e

iΩβ0(τ−τ ′) − e−iΩβ0(τ−τ ′)] . (C.3)

Then the reduced mode functions satisfy the integral equation

hαi (τ ; k) =

∫ τ

0

dτ ′
∑

β

i

2Ωβ0
fβ
i0f

β
j0[e

i(Ωα0+Ωβ0)(τ−τ ′) − ei(Ωα0−Ωβ0)(τ−τ ′)]

×Vjk(τ
′)[fα

k0 + hαk (τ
′; k)] (C.4)

and the corresponding differential equations become

hαi
′′ − 2iΩα0h

α
i
′(τ ; k) = −

∑

j

[

Vijf
α
j0 + (M̃2

ij −m2
α0δij)h

α
j (τ ; k)

]

. (C.5)

The initial conditions (3.33) and (3.34) imply hαi (0; k) = hαi
′(0; k) = 0.

Now we expand the reduced mode functions hαi with respect to orders in
potential Vij

hαi (τ) = h
α(1)
i (τ) + h

α(2)
i (τ) + h

α(3)
i (τ) + . . . , (C.6)

where h
α(n)
i denotes the nth order in Vij . For our calculations we will need

only the first and second terms of this expansion, therefore we introduce

notation h
α(n)
i (τ) for the sum over all orders in Vij starting with the nth

order, i.e. h
α(1)
i = h

α(1)
i + h

α(2)
i . Using the iteration one can obtain reduced
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mode functions of any order. In first order we have

h
α(1)
i (τ ; k) =

∑

β

i

2Ωβ0
fβ
i0f

β
j0f

α
k0

[
∫ τ

0

dτ ′Vjk(τ
′)ei(Ωα0+Ωβ0)(τ−τ ′)

−
∫ τ

0

dτ ′Vjk(τ
′)ei(Ωα0−Ωβ0)(τ−τ ′)

]

. (C.7)

The large-momentum behaviour of the Fourier-type integrals is analysed in
Appendix D. To leading order in 1/k we find

Re h
α(1)
i (τ ; k) ≃

∑

β

fβ
i0Ṽβα(τ)

2Ωβ0(Ωα0 + Ωβ0
)

(C.8)

and

Im h
α(1)
i (τ ; k) ≃ −

∑

β

1

2Ωβ0

∫ τ

0

dτ ′fβ
i0Ṽβα(τ

′) , (C.9)

where we have introduced the notation

fβ
j0f

α
k0Vij = Ṽβα . (C.10)

Ṽαβ is symmetric in the indices, as is Vjk.
For the fluctuation integrals (3.36) we need to compute

Re (fα
i f

α∗
j ) = fα

i0f
α
j0 + fα

i0Re h
α
j + fα

j0Re h
α
i + Re (hαi h

α∗
j )

= fα
i0f

α
j0 + fα

i0Re h
α(1)
j + fα

j0Re h
α(1)
i + fα

i0Re h
α(2̄)
j

+fα
j0Re h

α(2̄)
i + Re (h

α(1̄)
i h

α(1̄)∗
j ) . (C.11)

For large momenta the first term is constant, of course. The second and third

terms behave as 1/k2, see Eq. (C.8). The term Re (h
α(1̄)
i h

α(1̄)∗
j ) obviously

contains Imh
α(1)
i Imh

α(1)
j which likewise behaves as 1/k2, see Eq. (C.9). It

would imply a nonlocal divergence. This contribution can be shown to cancel
against a similar term in fα

i0Re h
α(2)
j + fα

j0Re h
α(2)
i , however. For the single

field case this has been discussed in Ref. [37] (see there below Eq. (56)).
The second and third term appear in the integrand of fluctuation integral

as:

∑

α

1

2Ωα0

[

fα
i0Re h

α(1)
j + fα

j0Re h
α(1)
i

]

≃ −
∑

α,β

fα
i0f

β
j0

Ṽβα

2Ωα0Ωβ0(Ωα0 + Ωβ0)
, (C.12)
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where we have used Eq. (C.8).
We have already used the Wronski relation at τ = 0 when defining the

initial conditions in Sec. 3.2. Now we will consider the Wronskian in gen-
eral, which will be useful for simplifying the mode integrals occurring in the
energy-momentum tensor

W = fα∗
i fβ

i
′ − fα∗

i
′fβ

i = −2iΩα0δαβ . (C.13)

From this we obtain the relation

i(Ωα0 + Ωβ0)(f
α
i0h

β
i + fβ

i0h
α∗
i + hα∗i h

β
i ) = fα

i0h
β′
i − fβ

i0h
α∗′
i + hα∗i h

β′
i − hα∗′i hβi .

(C.14)
For our purposes we will need only the α = β part of this relation, i.e.:

Ωα0(2f
α
i Re h

α
i + |hαi |2) = fα

i0Im hα′i + Im hα∗i h
α′
i . (C.15)

This relation can be used to simplify the kinetic term in the quantum part
of the tt component of the energy-momentum tensor. Using the expansion
in terms of reduced mode functions and Eq. (C.15) one finds

∑

α

fα
i
′fα∗

i
′

2Ωα0

=
∑

α

1

2Ωα0

[

Ω2
α0(f

α2
i0 − 2fα

i0Re h
α
i − |hαi |2) + |hα′i |2

]

. (C.16)

This can be combined with
∑

α

fα
i f

α∗
i

2Ωα0
=
∑

α

1

2Ωα0

[

fα2
i0 + 2fα

i0Re h
α
i + |hαi |2

]

(C.17)

to obtain
∑

α

1

2Ωα0

[

fα
i
′fα∗

i
′ + Ω2

α0f
α
i f

α∗
i

]

=
∑

α

1

2Ωα0

[

2Ω2
α0f

α2
i0 + |hα′i |2

]

. (C.18)

When integrated over momentum the first term in the bracket, including the
prefactor 1/2Ωα0 leads to a quartic divergence. The second term is dominated

at large momenta by the square of the imaginary part of h
α(1)
i

′
(see Eq. (C.9)):

1

2Ωα0
|hαi ′|2 ≃ 1

2Ωα0
Im
(

hαi
′
)2 ≃

∑

β

1

8Ωα0Ω2
β0

ṼβαṼαβ , (C.19)

up to terms of order k−4. This implies a logarithmic divergence. Therefore
the subleading terms are not important, and we may replace this asymptotic
estimate by

1

2Ωα0
|hαi ′|2 ≃

∑

β

1

4Ωα0Ωβ0(Ωα0 + Ωβ0)
ṼβαṼαβ . (C.20)

This has the advantage that it can be integrated in closed form and is of the
same form as other logarithmically divergent contribution, see Eq. (C.12).
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D Large-momentum behaviour of a Fourier

transform

When analysing the reduced mode function h
α(1)
i , Eq. (C.7), at large mo-

mentum we encounter the expression

i

∫ τ

0

dτ ′Vjk(τ
′)
[

ei(Ωα0+Ωβ0)(τ−τ ′) − ei(Ωα0−Ωβ0)(τ−τ ′)
]

. (D.1)

For α = β this integral has been analysed for large k in Ref. [37].
For α 6= β the analysis is somewhat more involved. The first exponential
exp [i(Ωα0 + Ωβ0)(τ − τ ′)] will oscillate strongly when k → ∞. So this part
of the integral will be dominated by the region around τ = τ ′, i.e., the upper
end of the integration interval. The large-momentum behaviour can be anal-
ysed by repeated integrations by parts, as for the case α = β, see below. The
second exponential exp [i(Ωα0 − Ωβ0)(τ − τ ′)] will approach unity as k → ∞.
Indeed

Ωα0 − Ωβ0 =
m2

α0 −m2
β0

Ωα0 + Ωβ0

≃
m2

α0 −m2
β0

k
(D.2)

as k → ∞, so the exponent goes to zero in this limit.
Considering the two parts separately we find for the first one, via inte-

grations by parts,

i

∫ τ

0

dτ ′Vjk(τ
′)ei(Ωα0+Ωβ0)(τ−τ ′)

= − 1

Ωα0 + Ωβ0
Vjk(τ)

+
i

(Ωα0 + Ωβ0)2
[

V ′
jk(τ)− V ′

jk(0)e
i(Ωα0+Ωβ0)τ

]

+ . . . (D.3)

and for the second one, by expanding the exponential,

−i
∫ τ

0

dτ ′Vjk(τ
′)ei(Ωα0−Ωβ0)(τ−τ ′)

= −i
∫ τ

0

dτ ′Vjk(τ
′)−

m2
α0 −m2

β0

Ωα0 + Ωβ0

∫ τ

0

dτ ′Vij(τ
′)(τ − τ ′)

+i
(m2

α0 −m2
β0)

2

2(Ωα0 + Ωβ0)2

∫ τ

0

dτ ′Vij(τ
′)(τ − τ ′)2 + . . . (D.4)

When contracted with fβ
j0f

α
k0 the second term on the right hand side does

not contribute as Ṽαβ = fβ
j0f

α
k0Vjk is symmetric in α and β.
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E Dimensionally regulated integrals

For the dimensional regularisation we need some identities (D = 4− ǫ):

∫

dD−1k

(2π)D−1

1

2Ωα0Ωβ0(Ωα0 + Ωβ0)
,

=
1

16π2

[

Lǫ − ln
m2

α0

µ2
+ 1 +

m2
β0

m2
α0 −m2

β0

ln
m2

β0

m2
α0

]

, (E.1)

∫

dD−1k

(2π)D−1

1

2Ωα0
= −m2

α0

16π2

[

Lǫ − ln
m2

α0

µ2
+ 1

]

, (E.2)

∫

dD−1k

(2π)D−1
Ωα0 = −m4

α0

32π2

[

Lǫ − ln
m2

α0

µ2
+

3

2

]

(E.3)

where Lǫ =
2
ǫ
− γ + ln 4π.

In the limit m2
β0 → m2

α0 the finite terms in the first of these equations
reduce to

lim
m2

β0
→m2

α0

[

− ln
m2

α0

µ2
+ 1 +

m2
β0

m2
α0 −m2

β0

ln
m2

β0

m2
α0

]

= − ln
m2

α0

µ2
. (E.4)

F Counterterms

Using the explicit form of M̃2
ij the counterterm Lagrangian Eq. (4.5) can be

decomposed into the usual mass, coupling constant and other counterterms
as

Lct = −1

2

(

δm2
i + δξiR

)

a2φ̃2
i −

a4−n

4
δλijφ̃

2
i φ̃

2
j (F.1)

+an
(

1

2
δZ̃R +

1

2
δα̃R2 − δΛ̃

)

.

Note that the first terms do not have a prefactor an, as it has been incorpo-
rated into the rescaled fields φ̃i.
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When we compare this to the expansion of the right hand side of Eq. (4.5)
we find

δm2
i =

1

16π2
Lǫ

[

3λiim
2
i +

∑

j 6=i

λijm
2
j

]

, (F.2)

δξi =
1

16π2
Lǫ

[

3λii(ξi − 1/6) +
∑

j 6=i

λij(ξj − 1/6)

]

, (F.3)

δλii =
1

16π2
Lǫ

[

9λ2ii +
∑

j 6=i

λ2ij

]

, (F.4)

δλij =
1

16π2
Lǫλij [3λii + 3λjj + 4λij] , (F.5)

δZ̃ = − 1

16π2
Lǫ

∑

i

(ξi − 1/6)m2
i , (F.6)

δα̃ = − 1

32π2
Lǫ

∑

i

(ξi − 1/6)2 , (F.7)

δΛ̃ =
1

64π2
Lǫ

∑

i

m4
i . (F.8)

These are in agreement with the counterterms found for the case of a single
field [36]. We recall that the last three renormalisation constants are re-
lated to renormalisation of the left-hand side of Einstein’s equations, which
have been redefined as renormalisation of the energy-momentum tensor, see
Eqs. (2.5) and (2.6).

The counterterms do not by themselves define the renormalisation.
Choosing them as given above defines the MS scheme. They can be mo-
dified by finite terms in order that the renormalised theory satisfies certain
requirements. E.g., if we want our universe to become matter or radiation
dominated at late times we will have to ensure that the effective cosmolo-
gical constant remains zero. We will also want Newton’s constant to retain
its observed value. The details of such finite renormalisation depend on the
specific model and usually involve tedious calculations. We do not address
this issue here.

G An instructive example

The fluctuation integrals obviously play a central rôle in the one-loop appro-
ximation to non-equilibrium dynamics. In particular it plays a rôle for fixing
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the parameters in the equilibrium theory, one would not like the renormali-
sation conditions to be dependent on the expansion of the universe. As we
have mentioned already the ln a(τ)- term in the finite parts F ft

ij is new here
and suggests a logarithmic increase. It can become very large if the universe
expands by many e-foldings. So it is interesting to analyse the behaviour of
the subtracted integral F sub

ij as well. We will do this for just one field, and
setting for simplicity ξ = 1/6. Furthermore we will assume that the universe
has ended up, at least approximately, in its ground state, i.e. that the clas-
sical field φ has reached its equilibrium value, which we assume to be 0 and
that the fluctuations have almost died out, in a sense we will specify shortly.

The mode equation for f(k, τ)is given by

f ′′ + (k2 + M̃2(τ))f = 0 . (G.1)

If the classical field has reached its minimum M2 is still time dependent

M̃2(τ) ≃ m2a2 , (G.2)

so the modes are still under the influence of a time-depending “potential”.
At least for large k we can approximately solve the mode equation using the
semiclassical approximation

f(k, τ) ≃ C(k)(k2 +M2(τ))−1/4 exp(±iS) , (G.3)

with

S =

∫ τ

τ0

dτ ′
√

k2 + M̃2(τ ′) . (G.4)

So we have

|f(k)|2 ≃ C2(k)
√

k2 + M̃2(τ)
. (G.5)

We will fix the constant C(k) by the assumption that the system is, at least
as far as the high frequency modes are concerned, already in its adiabatic
vacuum at τ0. Then for sufficiently large k

C2(k) ≃
√

k2 + M̃2(τ0) . (G.6)

Then with M̃2 = m2a2 and M2(τ0) = m0 we have

V(τ) = m2a2(τ)−m02 . (G.7)

and the integrand of subtracted fluctuation integral becomes

k2

4π2

[

1√
k2 +m2a2

− 1
√

k2 +m2
0

+
m2a2 −m2

0

2
√

k2 +m2
0

3

]

. (G.8)
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Integrating from k = 0 to infinity we obtain

F sub ≃ 1

16π2

(

m2a2 ln
a2m2

m2
0

−m2a2 +m2
0

)

, (G.9)

with corrections due to the low-energy modes. The finite term F ft here is
given by

F ft =
1

16π2

[

m2a2 ln
m2

0

µ2a2
−m2

0

]

, (G.10)

where we have used the single-field version of Eq. (4.11) For the finite value
Ffin we therefore get

Ffin = F ft + F sub ≃ m2a2

16π2

(

ln
m2

µ2
− 1

)

. (G.11)

The logarithmic dependence on a has disappeared. The factor a2 is natural.
In the equation of motion the fluctuation integral adds to φ̃2 = a2φ2.

As an application of interest we may consider the broken symmetry case.
We have a Higgs field χ, with a classical vacuum expectation value v. If
its self-coupling is denoted by α and if we use the MS scheme the one-loop
corrected equilibrium position is determined by

< χ̃2 >= v2a2 + αFfin . (G.12)

With Eq. (G.11) we see that the expectation value of χ itself becomes inde-
pendent of a, as it should. Were it not for the ln a term in F ft, the vacuum
expectation value would shift continuously with the expansion of the uni-
verse.

Of course there are corrections, but this is to be expected. In particular,
if the fluctuations have thermalised, the vacuum expectation value of the
Higgs field becomes a function of temperature. So our estimate would be
strictly valid only after the temperature has reached 0.

We would like to add that the heuristic estimates for the behaviour of the
quantum fluctuations which we have used here are corroborated by numerical
simulations. Actually they may be used for estimating the high momentum
contribution to the subtracted fluctuation integral.
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