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1  Synthesis of nanoparticles 
 
The particles were prepared by thermal decomposition of an iron(III) oleate R1. Briefly, 36.5 g 
sodium oleate (~120 mmol, Sigma-Aldrich, 82 %) and 10.8 g FeCl3·6H2O  (40 mmol, Sigma-
Aldrich, 97 %) were dissolved in 140 mL n-hexane, 80 mL ethanol and 60 mL deionized 
H2O. The mixture was refluxed for 4 h, the organic phase was separated and washed with 
deionized H2O, and the solvent was removed on a rotary evaporator. The iron oleate was 
dissolved in 200 mL 1-octadecene (Sigma-Aldrich, 90%) and subjected to a vacuum for 90 
min at 120 °C. The mixture was transferred to a 1 L three-necked round bottom flask 
equipped with a Dean-Stark condenser to which 5.7 g oleic acid (20 mmol, Sigma-Aldrich, 
90%) were added. Truncated maghemite nanocubes were produced by slowly heating the 
solution to 320 °C at 2.6 °C min-1 where the mixture was refluxed for 30 minutes, prior to a 
rapid cool down. A small portion of the reaction product was later purified into a black paste 
after several dilution/flocculation cycles using the solvent/non-solvent pair n-hexane/ethanol. 
Decantation of the supernatant was aided by using a magnet. The particle concentration in the 
toluene dispersions was estimated from the solids contents of the paste as determined from 
TGA experiments in air (39 wt%). 
 
We find that the nanocrystals synthesized under gentle reflux conditions (i.e., use of a Dean-
Stark condenser) always consist of truncated cubes provided that the experimental conditions 
(i.e. heating rate, surfactant/precursor molar ratio) defined above are maintained within 
relatively narrow boundaries. Preliminary studies have also indicated that the ration of sodium 
oleate to oleic acid influences the faceting and thus the degree of truncation of the nanocubes 
R2. This will be the subject of future studies. 
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2  Morphological analysis 
2.1  Edge length distribution 
 

 
Figure S1: Histograms of the edge length of the cubic nanoparticles. The data is fitted to a 

Gaussian function.  
 
Transmission electron microscopy (TEM) images and selected area electron diffraction 
(SAED) patterns of the nanocrystals were obtained using a JEOL JEM-2000 FX microscope 
equipped with a LaB6 filament operated at 200 kV (Cs = 3.4 mm, point resolution = 0.31 nm). 
The specimens were prepared by depositing 2 µL of a toluene dispersion of nanoparticles (C 
~ 1014 particles/mL) on carbon-coated copper grids and the solvent was allowed to evaporate 
rapidly. The images were recorded with a CCD camera (Keen View, SIS analysis, 1376×1032 
px2, pixel size 23.5×23.5 µm2) at 100 k× magnification. High resolution TEM (HRTEM) 
images of the above-mentioned specimens were obtained using a JEOL JEM-3010 
microscope equipped with a LaB6 filament operated at 300 kV (Cs = 0.6 mm, Cc = 1.3 mm, 
point resolution = 0.17 nm) and a CCD camera (KeenView, SIS analysis, 1376×1032 px2, 
pixel size 6.45×6.45 µm2) at 800 k× magnification.  The edge length, li, was manually 
determined of at least 200-300 nanocubes from the TEM micrographs. The mean cube edge 
length, l, and its standard deviation, σ, were determined by fitting the corresponding 
histogram (Figure S1) with a Gaussian distribution function: 

      (1) 

The statistical analysis gives in an edge length, l = 8.6 ± 0.6 nm.  
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2.2 Small angle X-ray scattering (SAXS) 

 
Figure S2: SAXS of iron oxide nanocubes dispersed in toluene. Refinements using a 

spherical (blue line) and a truncated cubic (red line) form factor are shown.  
 
The small angle X-ray scattering (SAXS) data of dispersed iron oxide nanocubes measured at 
the JUSIFA beamline at HASYLAB, DESY, Germany, is shown in Figure S3. Data have 
been fitted using the expressions for (a) a spherical form factor and (b) a truncated cubic form 
factor. Particles with a diameter of 10.12(1) nm and a lognormal size distribution of 6.6(1) % 
were obtained using the spherical form factor. Truncated cubes with an edge length lSAXS = 
8.5(1) nm and a lognormal size distribution of 6 % were obtained through the cubic form 
factor. 
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3  Structural characterization 

3.1  Selected area electron diffraction 
 
 

 
Figure S3: Selected area electron diffraction patterns of the nanocubes taken from a 

collection of randomly oriented nanoparticles. The first six reflections are indexed to the 
inverse spinel structure (JCPDS Card # 19-0629) 
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4  Magnetic measurements 
  

 
Figure S4: Magnetization versus applied field curves for the iron oxide nanocubes at room 

temperature. The open symbols and the lines correspond to the experimental data points 
and the fitting with Langevin's equation, respectively. 

   
Magnetic measurements using a Quantum Designs Physical Property Measuring System 
(PPMS-9) equipped with a superconducting magnet and a vibrating sample magnetometer 
(VSM) option, were carried out on a small amount (ca. 10 mg) of a paraffin dispersion with a 
concentration of ca. 0.1 wt.% of the iron oxide nanocubes. The M-H curves were measured 
using a maximum field µ0H = 1.5 T (1.2 MA/m = 15 kOe). The demagnetizing portion was 
fitted with the Langevin equation, i.e., . m = 
µ0MSVmag, µ0 is the permeability in vacuum (µ0 = 4·10-7 Tm/A), Vmag corresponds to the 
volume of the particle, MS is the saturation magnetization, k is Boltzmann's constant, T the 
temperature, M the magnetization, χ the susceptibility at high fields, and H the applied field. 
A particle volume of Vmag = 495 nm3 was thus obtained for the cubes. These values would 
correspond to ideal cubes with an edge length lmag = 7.9 nm. The saturation magnetization of 
the sample was found to be 59.6 emu/g. 
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5  Interparticle energies 
 

 
Figure S5:  3D view of the bct unit cell, with a=13.10(5) nm and c=17.8(5) nm. 

 
The attractive interparticle van der Waals (vdW) energy for a reference particle in a given 
array can be estimated at first approximation by summation of the interaction potentials 
exerted on a particle by its first- (fnn), second- (snn), and third nearest neighbours (tnn). The 
magnitude of the interparticle vdW energy is dependent not only on the size and distance 
between the objects but also on their shape. Hence, the inherent anisotropic morphology of 
the nanocubes and the body-centered tetragonal (bct) structure requires different geometrical 
models to be used in order to account for this anisotropy (see Figure S6). There are three basic 
types of interactions to consider; face-face, edge-edge, and corner-corner. Table 1 illustrates 
the number of neighbours and their type of type for a reference particle in a bct lattice as well 
as a hypothetical simple cubic (sc) lattice. Note that particles at distances h > l are not 
considered. 
 

The interparticle distances are readily obtained considering the dimensions of the bct 
unit cell a=13.1 nm and c=17.8 nm (c/a=1.36) obtained through GISAXS data and the cube’s 
edge length lSAXS = 8.5 nm. Thus, the body diagonal is  nm. The 

portion of the bct body diagonal contained within a cube is nm, where  is 

the angle between the body diagonal  and the face diagonal of the basal plane 
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. The experimental interparticle distance, , along t, , then becomes 

nm.  In the case of a hypothetical sc array, the geometry is simpler and 

the value for the face-face interparticle distance,  = 3.8 nm, was obtained by manually 
measuring the interparticle distances in a square array from TEM images. This distance agrees 
well with twice the length of the oleic acid molecule and previously reported values for the 
separation distancesR1a.  

 
The interparticle distances and in a hypothetic sc array are not expected to 

vary with τ when the array is formed with particles with a degree of truncation in the range 0< 
τ < 0.58, i.e., ranging between an ideal cube and an Archimedean truncated cube, 
respectively. However, the interparticle distances in the bct array should be strongly 
dependent on τ. This can be quantified considering that (1) a corner-corner distance h0 = 0.6 
nm is the minimum allowable separation distance and (2) the face-face and edge-edge 
interparticle distances in the basal plane of the tetragonal structure are constant (constant 
intralayer distances h1 and h2). We assume a maximum distance between the ABAB layers 
hAB = 3.8 nm (variable interlayer distance), which refer to two times the distance of a dense 
oleic acid layer. We let h0 vary linearly with the degree of truncation in the interval 0 < τ < 
0.45; h0 ≡ 0.6 nm in the interval 0.45 < τ < 0.58.  
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5.1 Face-face and edge-edge interactions 
   
The interparticle attractive energies for two (perfect, non-truncated) cubes with an edge 
length, l, interacting face-face and edge-edge at a distance h can be calculated using Hamaker-
type expressions. These are given by Eqs. (3) and (6), respectivelyR4. The interparticle energy 
associated with two truncated cubes, should to the first approximation vary with the area of 
the truncated facet, which in the case of cubic maghemite would correspond to the {100} 
exposed planes. We find that the facial area diminishes only 10 % as the degree of truncation 
increases from zero to τ = 0.45. Regarding the edge-edge interactions, the volume of the cube 
at the distance h2 at τ = 0.45 decreases only 15 %. Hence, for the sake of simplicity, we have 
estimated the face-face and interactions assuming perfect, non-truncated cubes. 
 

       (3)  

 where  
    (4) 

  

   (5) 

and 

       (6)  

 with  
     (7) 

  

    (8) 

 
 
where A is the Hamaker constant for iron oxide in hydrocarbon medium (A = 1.6·10-20 J), k is 
Boltzmann's constant, T the temperature, and Kf and Ke the pair-wise integration functions for 
face-face and edge-edge interactions, respectively. 



9 

5.2 Corner-to-corner approximation 

 
Figure S6. (Left) Illustration of the geometric scaling approximation for diagonally 
interacting particles. (Right) Truncated cubes with τ=0.58, 0.45 and 0.3 and their 

corresponding spheres, with diameter D used for the approximation of the diagonal 
interaction energy. 

 
The interaction energy associated with two truncated cubes interacting diagonally should vary 
with the area of the truncated facet, which in the case of cubic maghemite would correspond 
to the {111} exposed planes, and the interparticle distance.  

 
We have approximated the corner-corner interaction of two truncated cubes at 

moderate truncations (0.3 <τ < 0.58) with two spheres. The size of the spheres was 
determined from the diameter of the circle that touches a minimum of three of the sides of the 
2D projection of the cubes, (see Figure S7). Translated to 3D, this results in an 
equivalent sphere, which describes conveniently the interaction volume at short interparticle 
distances. For an ideal truncated cube (one of the Archimedean solids) it can be shown that 

 so that .  Note that at decreasing truncations ( , ) , i.e., the 

sphere shrinks to a point, leading to an incremental underestimation of the attractive 
interparticle energy whereas at large truncations (τ > 0.58), the interacting areas become 
increasingly large and the interaction would resemble more a face-on interaction. 
 
 Hence, at moderate truncations the corner-to-corner interaction can be approximated 
with the well-know expression for two spheres with equal diameter, D, spaced at a distance 
h:R5 

 

       (9) 

 with  

    (10) 

where Ksp is the pair-wise integrated function for two equal spheres. 
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5.3 Summary 
 

         
Figure S7:  Variation of the corner-to-corner contribution to the interparticle energies as a 
function of τ for a truncated cube in a bct lattice as described in Table S1 (black line). The 

contributions from face-face (red line), and edge-edge (blue line) interacting ideal cubes 
are also included.  

 

___  
Figure S8: Interaction energies for a truncated cube in sc (black) and bct (red) lattice. The 

hatched region indicates the experimental distribution of τ. 
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The interparticle energies for the sc and bct lattices have been calculated using Eqs. (3), (6), 
and (9), and are plotted in Figure S7. The individual contributions of the corner-corner (eight-
fold), face-face (four-fold), and edge-edge (four-fold) interactions are shown in Figure S8. 
The model is based on the assumptions that (1) the face-face and edge-edge interactions in the 
bct (and sc) structures do not vary with τ, and (2) that neither the interparticle distance h1 nor 
h2 of the bct structure vary with τ. The kink in the curves at τ = 0.45 is a consequence that 
beyond this degree of truncation, the interparticle distance h0 is not allowed to decrease to a 
value smaller than h1 = 0.6 nm. Figure S8 shows how the sum of all contributions to the 
interparticle energies varies with the degree of truncation, τ, for the sc and bct lattices. The 
results indicate that it is the reduced interparticle distance along the diagonals that renders the 
bct structure with a higher stability than the sc lattice. This simple model also suggests the 
formation of a range of structures with decreasing symmetry, such as sc → fcc → bct to a 
probable body-centered cubic (bcc) when the degree of truncation is increased towards a 
cuboctahedron.  
 
 

 

 



12 

6 Estimation of the magnetic dipole interactions 
 

6.1 Dipole interactions between nanoparticle pairs 

 
Figure S9: vdW (red broken line) and dipolar (black solid line) interparticle energy for a 

nanocube pair calculated using Eqs. (3) and (11) at various separation distances. The 
dashed horizontal line indicates 3/2 kT. 

 
The pair-wise magnetic dipolar interaction energy, Udip, can be calculated using an 

expression for two point dipoles with moments µi at a separation distance r as shown in Eq. 
(11). It must be noted that although the nanoparticles are superparamagnetic at room 
temperature, the calculations will be performed considering that the nanoparticles do sustain a 
stable magnetic moment µ1 = µ2 = µ = 2.1 · 104 µB (where µB corresponds to Bohr’s 
magneton), as determined from the magnetic measurements shown in Fig. S4. This 
approximation is valid considering that the Zeeman energy, EZeeman, is sufficiently large under 
an applied magnetic field of µ0H = 0.03 T (see Eq. (12)). 
 

        (11) 

 
        (12) 

 
Figure S9 shows both the face-face vdW and dipolar pair-wise interparticle energy for 

nanocubes at various separation distances calculated according to Eqs. (3) and (11), 
respectively, where the magnetic dipolar interactions were estimated assuming a head-to-tail 
configuration of the dipoles. We find that the magnetic dipolar two-body interaction is 
significantly stronger than the particle thermal energy (~3/2 kT) at separation distances below 
~10 nm while the vdW pair interaction for the nanocubes is too weak at separation distances 
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larger than 2 nm to form stable clusters. This suggests that it is the applied magnetic field 
which promotes the formation of stable clusters or chains of particles aligned along the 
dipolar axis in solution.  

6.2 Dipole interactions within mesocrystals 
 
We have also made an estimation of the (multi-body) magnetic dipole interactions between 
the particles in a mesocrystal assuming both bct and sc arrangements using the expression 
given by Eq. (11). Due to the large Zeeman energy (see Eq. (12)), a ferromagnetic 
arrangement of all nanoparticle moments perpendicular to the substrate (i.e., parallel to the c 
lattice constant) will be assumed in a first approximation.  
 For the bct arrangement with a = 13.1 nm and c = 17.8 nm, the following nearest 
neighbor interaction energies are obtained: 
 
face-face:   = 1.687 · 10-21 J 
  = -1.345 · 10-21 J 
 
edge-edge:  =  5.97 · 10-22 J 
 
corner-corner: = -7.87 · 10-22 J 
 
leading to a magnetic dipole interaction energy of  
 

 = 4  + 2  + 4  + 8  = 1.45 · 10-22 J 
 
 For the sc arrangement the contributions are:  
 
face-face:   = 1.687 · 10-21 J 
   = -3.374 · 10-21 J 
 
edge-edge:  =  5.97 · 10-22 J 
   =  -2.98 · 10-22 J 
 

corner-corner: = 0 J 
 
leading to a magnetic dipole interaction energy of  
 

 = 4  + 2  + 4  + 4  + 8  = 0 J 
 
The dipole interaction energy for a particle in the bct arrangement, , tends to 

diminish with every further coordination shell taken into account whereas the dipole 
interaction energy for a particle in an sc arrangement, , tends to cancel out. 
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Figure S10: FC/ZFC magnetization measurements of (a) a dilute dispersion of nanocubes 
and (b) bct ordered nanocubes mesocrystals under and applied field µ0H = 5 mT. 

 
Figure S10 (a) and (b) present field cooled and zero-field cooled magnetization 

measurements of nanocubes dispersed in toluene and deposited mesocrystals, respectively. 
The superparamagnetic blocking temperature was determined as TB = 85 K for the non-
interacting dispersion and TB = 105 K for the deposited mesocrystals. From the difference of 
the observed blocking temperatures it is possible to estimate the difference in energies of the 
non-interacting and interacting nanocubes using 
 

€ 

ΔEmesocrystals − ΔEdispersion = ln τ
τ0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ kB TB ,mesocrystals −TB ,dispersion( ) = 5.7⋅ 10−21J    (13) 

 
with an attempt frequency of 1/τ0 = 109 s-1 and a characteristic timescale of τ = 1 s.  
 

The van der Waals interaction energy at room temperature in a body centered tetragonal 
mesostructure depends on the degree of truncation as shown in Figure S8. We find that for 
nanocubes with a degree of truncation τ = 0.45(5), the interaction energy per particle is 

€ 

UvdW (0.45) = −6kBT = −2.5⋅ 10−20J , and even for a degree of truncation of 0.40, we obtain an 
interaction energy, 

€ 

UvdW (0.40) = −2.4kBT ≈ −1⋅ 10
−20J , larger than the dipolar interaction 

energy. 
 

The calculations show that the magnetic dipolar interactions are more important than the 
van der Waals interactions to form stable two-particle (or chained) clusters. However, due to 
the directionality of the dipoles in the mesocrystal, even the largest contribution to the dipole 
interaction energy, which is the  contribution, is significantly lower than the additive van 
der Waals interactions. For this reason, the van der Waals interaction energy is considered to 
be the dominating multi-body interaction in the nanoparticle arrays controlling the preference 
of the bct against the sc mesocrystal structure. 

(b) (a) 
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