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Abstract

We investigate both the hyperbolic action and the determinant ratio action designed to fix
the topological charge on the lattice. We show to what extent topology is fixed depending on
the parameters of these actions, keeping the physical situation fixed. At the same time the
agreement between different definitions of topological charge – the field theoretic and the index
definition – is directly correlated to the degree topology is fixed. Moreover, it turns out that the
two definitions agree very well. We also study finite volume effects arising in the static potential
and related quantities due to topology fixing.
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1 Introduction and motivation

Phenomena related to topology of gauge fields are of inherent non-perturbative nature. Using
lattice techniques to investigate topology is, therefore, a natural choice. However, a lattice
discretization leads to fundamental problems, e.g. naively discretizing the topological charge
density yields non-integer values for the topological charge in general. Moreover, with different
discretizations significantly different results can be encountered rendering it difficult to establish
a unique concept of topology on the lattice.

To stress the importance of topology, we mention the mass of the η′ meson, which originates to
a large extent from topological effects. In addition, the low lying Dirac eigenvalues are sensitive
to the topological charge [1], which is also visible in random matrix theory [2] and in chiral
perturbation theory in the so-called ǫ-regime [3, 4, 5].

Therefore, it is highly desirable to have a well defined notion of topology on the lattice. One
approach in this direction is to use the standard continuum expression of the topological charge
density, q ∝ FF̃ , with a lattice discretization of the field strength, in particular improved versions
of it. This is combined with suitable smearing techniques smoothing the sampled gauge field
configurations a posteriori. Another approach is to use the index of the overlap operator, which
leads to a conceptually clean integer definition by means of the index theorem (but may also
depend on parameters of the kernel of the overlap operator). While it has been demonstrated
that smearing and other filtering methods agree to a large extent on the locations of topological
structures [6, 7, 8], the agreement of the total topological charge is not satisfactory for precision
measurements.

A different approach to arrive at a unique definition of topological charge is to restrict the gen-
eration of lattice gauge configurations a priori to those, which are smooth enough to resemble
continuous gauge configurations. It has first been shown by Lüscher [9] that the topologi-
cal charge has an integer valued so-called geometric definition on lattice configurations, whose
quantum fluctuations are bounded, i.e. whose plaquettes are close to the identity. In order to
implement such a constraint on the plaquette values, modified gauge actions can be used such
as the hyperbolic action of ref. [10]. It has been demonstrated in practical simulations that the
use of the hyperbolic action (and variants of it) indeed tends to fix topological charge [11, 12].

Constraints on the plaquette that guarantee the locality of the overlap operator [13, 14] represent
similar admissibility conditions. Obeying these conditions assures that the kernel of the overlap
operator has a spectral gap and hence the eigenvalue density of zero or near-zero eigenvalues
vanishes. As a consequence, zero mode crossings and in turn changes of topological charge are
avoided.

Such a method has been implemented in [15] with the aim to perform simulations with dynami-
cal overlap fermions. The idea is to introduce a determinant ratio employing Dirac operators at
negative quark mass, which leads to the desired spectral gap and hence forbids topology changes.
This is, because current dynamical overlap algorithms including approximations of the quark
determinant make changes in the topological sector (i.e. overcoming the corresponding disconti-
nuity) very costly, which results in a scaling with O(V 2) [16]. When performing simulations with
fixed topological charge, there is no need to treat topological tunneling and simulations with
dynamical overlap fermions become feasible as they are currently carried out by the JLQCD
collaboration. For a recent review of these simulations see [17], where it is also demonstrated
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that topology is indeed fixed and that the method outlined above can be used in practice.

While the simulations of the JLQCD collaboration aim at obtaining QCD results, which could
be compared to experiment, we want to address a more theoretical question. It is our goal to
investigate, whether using a topology fixing action (either the hyperbolic action or the deter-
minant ratio action) will lead to an agreement regarding the values of the topological charge,
when different lattice definitions are used. Besides the theoretical and conceptual interest in this
question a practically very useful consequence could be that much less computer time demand-
ing definitions of the topological charge than the index of the overlap operator can be used.
This would open the possibility to address topology on much larger lattices than it is presently
feasible with the overlap operator. A first investigation concerning the agreement of different
definitions of topological charge using the hyperbolic action has been performed in [11].

In this work, we will concentrate on two definitions of topological charge, the field theoretic
definition via an improved field strength tensor, which also involves some additional smearing,
and the fermionic definition via the index of the overlap operator. As we will show below we
find that using topology fixing actions goes hand in hand with a better agreement between these
two lattice definitions of topological charge.

It is important to note that working at a fixed value of the total topological charge in a finite
volume violates cluster decomposition. In sufficiently large volumes local topological fluctuations
still take place in every fixed topological sector. Therefore, fixing topology on the lattice to e.g.
the trivial sector is supposed to provide correct physical results in the infinite volume limit with
cluster decomposition becoming restored. We expect that fixing topology induces particular
finite volume effects in accordance with [18, 19], where these effects have been addressed by
using the θ-dependence of physical quantities.

Due to these finite volume effects physical observables receive different values, when evaluated in
different topological sectors in finite (and small) volumes. In this paper we address the question
by a preliminary investigation of the dependence of Wilson loops, the static potential and the
Sommer parameter r0. We indeed find clear evidence that such a dependence is present.

The paper is organized as follows. In the next section we write down two definitions of topological
charge on the lattice. The two sections afterwards are devoted to the implementation of two
topology fixing actions, the hyperbolic action and the determinant ratio action. We compare
obtained results to those from the standard Wilson action. In section 5 we investigate the
dependence of the static potential and related quantities on the topological sector. We close
with a brief comparison and conclusions.

2 Definitions of the topological charge

2.1 Field theoretic definition

The straightforward definition of topological charge on the lattice is the discretization of the
standard continuum expression,

Qf =
1

32π2

∑

x

ǫµνρσTr
(

Fµν(x)Fρσ(x)
)

, (1)
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where Fµν(x) is some lattice field strength tensor consisting of appropriate linear combinations
of Wilson loops. Instead of the naive discretization of the field strength tensor, which combines
only plaquettes, i.e. the smallest possible Wilson loops W(1,1), we employ an improved field
strength tensor [20]

Fµν(x) = k1C
(1×1)
µν (x) + k2C

(2×2)
µν (x) + k3C

(3×3)
µν (x), (2)

where C
(n×n)
µν (x) are the clover averages of n× n Wilson loops attached to the lattice site x. In

order to achieve O(a4) improvement, we choose k1 = 1.5, k2 = −0.15 and k3 = 1/90.

In addition, smoothing or filtering techniques are needed to come closer to integer values for Q,
i.e. reducing renormalization factors originating from short-range fluctuations. We use 10 steps
of APE smearing1 before evaluating eq. (1). APE smearing [22, 23] is an iterative procedure,
where links are replaced by weighted averages of the old links Uµ and their attached staples

Ũν
µ(x) = Uν(x)Uµ(x + ν̂)U †

ν (x + µ̂) projected back to the gauge group:

Uµ → PSU(3)

{

(1 − α)Uµ +
α

6

∑

ν 6=±µ

Ũν
µ

}

. (3)

The projection onto SU(3) is not unique. PSU(3)(W ) projects W onto that V ∈ SU(3) that max-

imizes Re(Tr(V W †)), where the maximum is found iteratively as implemented in the CHROMA
software for lattice QCD [24]. Setting the weight parameter α = 0.45, APE smearing has been
argued to be equivalent to RG cycling [25].

Smearing suppresses UV fluctuations in every observable, but is also biased towards classical
solutions in the long run. Even in the short run it may destroy small topological objects. Hence,
10 steps can be considered as a compromise between obtaining topological charges closer to
integer values and the destruction of topological objects.

2.2 Definition via the index

An alternative and conceptually clean way of defining the topological charge motivated by the
index theorem in the continuum is to use the index of the overlap operator [26, 27]. The
overlap operator, which is a solution of the Ginsparg-Wilson relation [28], has been introduced
by Neuberger [29, 30] and reads for massless quarks

Dov = 1 + A/
√

A†A , A = DW − m0, (4)

where DW is the Wilson Dirac operator and we have chosen the mass parameter m0 = 1.6 (as
in [15, 31]). In the massless limit, which we consider here, the overlap operator (cf. eq. (4)) has
exact zero modes with a definite chirality. This allows to define the topological charge as

Qi =
1

2

∑

x

Tr
(

γ5Dov(x, x)
)

= index(Dov) = N+ − N− , (5)

where N+(−) denotes the number of zero modes with positive (negative) chirality. To identify
the zero modes we follow the techniques described in [32, 33].

1Stout smearing [21] has been shown to lead to very similar results for the topological charge [8].
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2.3 Comparison of topological charge definitions on standard Wilson gauge

configurations

Let us give an example for the difference of the resulting topological charges, when using the two
definitions given above. We consider gauge configurations generated with the standard Wilson
action

SW[U ] = β
∑

P

SP (UP ) , SP (UP ) = 1 − UP , UP =
1

3
Re

(

Tr(W(1,1))
)

, (6)

where UP denotes the plaquette variable and β = 6/g2
0 .

In the left panel of Figure 1 we plot the Monte Carlo time history2 of the difference of the two
topological charge definitions,

∆Qk = Qf
k − Qi

k, (7)

as function of the configuration index k using β = 6.18 (this corresponds to a ≈ 0.07 fm) and
a lattice volume of 164. We also show the corresponding histogram in the right panel of that
figure. As can clearly be seen frequent non-zero values of ∆Qk are encountered. This shows that
the two definitions of the topological charge yield different results. In particular, configurations
with |∆Qk| > 0.5 would by rounding be ascribed to different topological sectors. Interestingly,
we observed that most of these configurations are associated with transitions in the index along
the Monte Carlo time and that during such transitions the field theoretical definition typically
recognizes the new topological charge not as quickly as the index definition does.
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Figure 1: The difference of the topological charge ∆Qk = Qf
k−Qi

k as function of the configuration
index k (left) and the corresponding histogram (right) (Wilson plaquette gauge action).

Since we are already considering highly improved definitions of the topological charge, we do
not follow the line of improving the topological charge or the filtering even further.

An alternative route might be the application of improved actions. For example with the concept
of perfect actions [34] it can be expected that different definitions of the topological charge lead
to coinciding values.

2One unit of Monte Carlo time corresponds to ten sweeps of link updating.
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Another possibility, which we will follow in this work, is to use actions that fix topology. Such
actions have been tailored to address questions related to topology of gauge fields and give rise
to the expectation that again better agreement of different topological charge definitions will be
reached. Particular realizations of topology fixing actions are the hyperbolic action discussed
in [35, 12] and actions employing a determinant ratio of Wilson-type fermions [11, 15]. We will
give the precise form of these actions in the next two sections. We will also discuss, whether
using these actions indeed leads to a better agreement of the topological charge obtained from
different definitions.

3 The hyperbolic action

The hyperbolic action provides a cut-off for small plaquette values (i.e. large action density). It
is given by

Shyp
ǫ,n [U ] = β

∑

P

Shyp
ǫ,n,P (UP ) , Shyp

ǫ,n,P (UP ) =

{

SP (UP )
(1−SP (UP )/ǫ)n if SP (UP ) < ǫ

∞ otherwise
, (8)

where for the rest of the paper we will use n = 1. This form of the action has been suggested and
used in [36, 37] for conceptual studies of chiral gauge theories on the lattice and it is motivated
by the locality studies of the overlap operator [13]. There it has also been shown that for

SP (UP ) < ǫ =
2

5d(d − 1)
=

1

30
(9)

the Wilson kernel of the overlap operator has a spectral gap and hence zero mode crossings
and, therefore, changes of topology are forbidden. Note that the bound in eq. (9) has later been
improved [14] to

SP (UP ) < ǫ =
1

(1 + 1/
√

2)d(d − 1)
≃ 1

20.5
. (10)

As we will describe below these theoretical bounds are typically not reached in practical simu-
lations and, therefore, the fixing of topology will be imperfect.

Note that the form of the action (cf. eq. (8)) does not allow the application of a heatbath
algorithm. Therefore, it has been simulated by using a local Hybrid Monte Carlo algorithm as
proposed in [38] and discussed in its application to the present case in [12].

The aim of our simulations is to use the hyperbolic action (and the determinant ratio action
to be discussed later) in the same physical situation (i.e. same physical volume and lattice
spacing) defined by the example of the Wilson gauge action discussed in section 2 and Figure 1.
Consequently, when decreasing the value of ǫ, also the value of β has to be decreased in order
to stay at the same physical lattice spacing as was demonstrated in [12].

In fact we took the same combinations of parameters (β, 1/ǫ) detailed in [12], but performed
independent simulations. The results for the plaquette expectation value 〈UP 〉, the integrated

plaquette autocorrelation time τplaq
int and the acceptance rate and the step size of our local HMC
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algorithm are given in Table 1. In addition we list the frequency of topology changes ftop in the
corresponding runs, where we measured the topological charge through the index of the overlap
operator. In the last column we give the static force parameter r0/a [39] as computed from
smeared Wilson loops using standard procedures [40]. From this the lattice spacing in physical
units can be inferred, using r0 = 0.5 fm.

β 1/ǫ 〈UP 〉 τplaq
int acceptance rate dτ ftop r0/a

6.18 0.0 0.61185(2) 8.2(9) 0.998 0.1 0.0223 7.17(9)

1.5 1.0 0.599858(5) 2.2(2) 0.997 0.1 0.0066 7.09(8)

1.0 1.18 0.601518(3) 1.20(6) 0.995 0.1 0.0047 7.30(7)

0.8 1.25 0.598366(3) 1.13(5) 0.992 0.1 0.0038 7.08(8)

0.3 1.52 0.601035(2) 0.82(2) 0.877 0.1 0.0008 7.5(2)

Table 1: Simulation parameters and results for the hyperbolic action (eq. (8), lattice volume

164). 〈UP 〉 denotes the plaquette expectation value, τplaq
int the corresponding integrated plaquette

autocorrelation time, dτ the Monte Carlo step size, ftop the frequency of topology changes and
r0/a the static force parameter.

Table 1 clearly shows that, when staying in the fixed physical situation of r0/a ≈ 7, which
amounts to a lattice spacing of approximately 0.07 fm, the frequency of topology flips is getting
smaller, when decreasing ǫ as has already been noted in [12]. Note, however, that even at our
smallest value of ǫ = 0.66 (1/ǫ = 1.52 in Table 1) topology is not completely fixed.

In fact at r0/a ≈ 7 it will not be possible to fix topology completely. The qualitative argument
for this is the following: a roughly constant plaquette expectation value can be viewed as an
indicator of being in a fixed physical situation. This is also suggested by Table 1: a value of
r0/a ≈ 7 corresponds to 〈UP 〉 ≈ 0.6. Decreasing ǫ beyond the desired value 〈SP 〉 is impossible,
since according to eq. (8) the weight of all configurations with action density SP > ǫ becomes
zero. Hence, there is a critical value ǫcrit ≈ 〈SP 〉, which is the lowest value that can be reached for
a given physical situation. For our present case ǫ cannot be lowered below ǫcrit ≈ 1− 0.6 = 0.4.

In Table 2 it is demonstrated that going to larger values of r0/a (i.e. to smaller values of the
lattice spacing) the frequency of topology changes is reduced as expected. This indicates that at
sufficiently small lattice spacings the hyperbolic action will lead to a complete fixing of topology.
However, this will presumably happen at so small values of the lattice spacing that numerical
simulations will be extremely demanding.

β 1/ǫ dτ ftop r0/a

0.25 1.52 0.01 0.0041 6.7(2)

0.3 1.52 0.01 0.0012 7.5(1)

0.1 1.64 0.01 0.0048 6.4(1)

0.15 1.64 0.01 0.0007 8.1(2)

Table 2: Simulation parameters and results for the hyperbolic action of eq. (8). Going to smaller
values of the lattice spacing (i.e. to larger values of r0/a) amounts to decreasing the frequency
of topology changes ftop.

As a consequence of the above discussion our situation of r0/a ≈ 7 can only be achieved, when
using values of ǫ >

∼ 0.4. In practice, we stopped our simulation at ǫ = 1/1.52 ≈ 0.66, because
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for smaller values it is rather difficult to do a fine tuning of ǫ and/or β to the desired physical
situation. Naturally the question arises, whether for this value of ǫ there is already agreement
between the topological charge values obtained from the two different definitions explained in
section 2. As measure for the (dis)agreement we use

∆Q =
1

Nconf

Nconf
∑

k=1

|∆Qk|, (11)

where the difference ∆Qk is defined in eq. (7).

In the left panel of Figure 2 we show the frequency of topology changes and in the right panel
of the same figure the values of ∆Q as functions of β. ∆Q exhibits a similar behavior as ftop:
it decreases as topology is fixed more and more. We conclude that topology fixing actions have
indeed the potential to assure a unique results for the topological charge from different defini-
tions. Remember, however, that at typical values of the lattice spacing it is not possible to fix
topology sufficiently strongly with the hyperbolic action. Therefore, we consider an alternative
approach using the determinant ratio action.
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Figure 2: The frequency of topology changes ftop (left) and the difference of the topological
charge ∆Q (right) as functions of β for approximately fixed r0/a (hyperbolic action). Note
that we do not show statistical errors for ftop, because of the long autocorrelation time of that
quantity; nevertheless we consider the value of ftop as an indicator to what extent topology is
fixed.

4 The determinant ratio action

The idea of fixing topology originates from the locality property of the overlap operator [13].
For a sufficiently fine lattice spacing (a . 0.1 fm) the kernel operator A2 has a spectral gap and
hence the overlap operator is local. This can be proven analytically using the theoretical bounds
on ǫ for very small values of the lattice spacing. It has also been checked numerically.

A spectral gap of the kernel operator in turn implies that there are no zero mode crossings and
hence a change of topology (when using the index definition) is forbidden. This line of arguments
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suggests to include in the partition function a term

Rdet =
det

(

A†A
)

det
(

A†A + µ2
tm

) . (12)

Note that here the kernel operator A (cf. eq. (4)) is evaluated at negative quark mass −m0 to
guarantee the existence of a spectral gap. In the denominator in eq. (12) a regulating twisted
mass term µ2

tm has been introduced, which controls the range of near zero modes that are to be
suppressed.

The determinant ratio action has been suggested in [11, 15]. There it has also been checked that
it indeed fixes topology, when the topological charge is determined by the index of the overlap
operator. The determinant ratio action has been extensively used in simulations with dynamical
overlap fermions (see [17] for a recent review) to avoid slowing down the algorithm at changes
of the topological charge (see section 1).

Here, we use the determinant ratio action as a local modification of the Wilson plaquette action.
We do not include any dynamical fermions and, therefore, work in the quenched approximation.
Our main motivation is to compare the field theoretic and the index definition of the topological
charge and to determine to what extent they yield consistent results.

The determinants that appear in eq. (12) are treated by means of pseudo fermionic fields and a
global Hybrid Monte Carlo algorithm [41]. Details of this HMC algorithm can be found in [42].
It uses even/odd preconditioning [43], mass shift [44, 45] and multiple time step integrators.

In a first step we have confirmed the results in [11, 15] that the topological charge, when
computed via the index of the overlap operator, is indeed fixed. To this end we generated initial
configurations on 164 lattices with topological charge Qi = 0, 1, 2 and performed simulations
with the determinant ratio action. We have chosen β = 6.063, m0 = −1.6 and µtm = 0.2 (see
below). We found that on samples of 300 configurations separated by 10 trajectories not a single
topology change took place. Thus, topology seems to be fixed.

To be able to perform a meaningful comparison with the hyperbolic action results from section 3,
we tuned the value of β such that r0/a ≈ 7. The results of this tuning are collected in Table 3,

where we list β, the average plaquette 〈UP 〉, the plaquette integrated autocorrelation time τplaq
int ,

the acceptance rate and the force parameter r0/a. Note that these results correspond to the
Qi = 0 sector. The main results of this table are that a value of β = 6.063 leads to the desired
scale of r0/a ≈ 7 and that the change in β to reach this physical situation is much milder than
in the case of the hyperbolic action.

β 〈UP 〉 τplaq
int acc. rate r0/a

5.900 0.58850(3) 3.7(6) 0.85 5.43(4)

6.000 0.59877(3) 3.0(5) 0.89 6.40(9)

6.050 0.60358(3) 2.9(5) 0.90 6.69(6)

6.063 0.60482(2) 2.3(3) 0.90 6.97(5)

6.100 0.60830(3) 2.5(4) 0.91 8.04(22)

Table 3: Simulation parameters and results for the determinant ratio action of eq. (12).
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The crucial question is, of course, whether the two definitions of the topological charge, Qf (cf.
eq. (1)) and Qi (cf. eq. (5)), agree. In Figure 3 the β dependence of ∆Q (eq. (11)) is shown
for the simulations detailed in Table 3. Note that in all these runs Qi = 0, i.e. all simulations
were performed in the topologically trivial sector. One can clearly see that ∆Q decreases, when
approaching the continuum limit by increasing β. For β = 6.063, i.e. for r0/a ≈ 7, ∆Q ≈ 0.02
indicates rather good agreement between the two definitions.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 5.85  5.9  5.95  6  6.05  6.1  6.15

∆Q
 

β

Figure 3: ∆Q as function of β for the determinant ratio action. Note that contrary to Figure 2
here we change the physical situation, i.e. the value of r0/a (cf. Table 3).

In the upper panels of Figure 4 we show the Monte Carlo history of ∆Q, the disagreement of the
two definitions, at β = 6.063. When rounding the field theoretic results to the nearest integer,
there is agreement for almost all gauge configurations. Only for the lower values of β we have
encountered in rare cases differences bigger than 0.5. Corresponding plots for the hyperbolic
action (β = 0.3, 1/ǫ = 1.52) look essentially identical (cf. the lower panels of Figure 4).

We close this section with a short remark about autocorrelation times. As can be seen in
Table 3 the autocorrelation times of the plaquette turn out to be rather short in our simulations.
However, it is important to realize that the plaquette does not provide the largest autocorrelation
time of the system. This can be seen from Figure 5, where we show the autocorrelation times
of smeared Wilson loops (extension R × T ) as functions of R keeping T = 7 fixed. Note
that the autocorrelation time in Figure 5, tint, is measured in units of configurations and each
configuration is separated by ten Monte Carlo iterations. Therefore the autocorrelation times
of the Wilson loops in Figure 5 are an order of magnitude larger than the the ones for the
plaquette given in Table 3. Clearly, autocorrelation times become larger, when increasing R
until at R ≈ 6 they level off and reach plateaus. The increase of the smeared Wilson loops
autocorrelation times is not a property characteristic for the topology fixing actions only [46].
In particular, when computing the static potential and from that r0/a one should use these
larger autocorrelation times, when computing statistical errors.
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Figure 4: The difference of the topological charge ∆Qk = Qf
k−Qi

k as function of the configuration
index k (left) and the corresponding histogram (right) for the determinant ratio action at β =
6.063 (upper panels) and for the hyperbolic action at β = 0.3, 1/ǫ = 1.52 (lower panels).

5 Dependence of the static potential and related quantities on

the topological sector

Another important issue, which we intend to address in more detail in a subsequent publication,
is the dependence of physical observables on topology, in particular the finite size effects in a
given topological sector. Such results could be confronted with the theoretical expectations of
[18, 19].

Here we study in a first step the Q dependence of the static potential and related quantities. We
employed the determinant ratio action at β = 6.063 using 164 lattices. To identify the topological
charge we used the index definition Qi. We computed smeared Wilson loop averages 〈W(R,T )〉
(extension R × T ), the static potential V (R) at separation R and the Sommer parameter r0

in the topological sectors with charges Qi ∈ {0 , 1 , 2 , 4}. As can be seen from Table 4, there
are substantial differences between results computed in different topological sectors going well
beyond a 5σ effect, in particular when comparing Qi = 0 and Qi = 4. This is also visible from
Figure 6: while the static potentials for different Qi sectors look rather similar (left), a zoomed
plot shows a clear dependence on the topological charge (right).
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Figure 5: Autocorrelation times of smeared Wilson loops with extension R×T as a functions of
R with T = 7 fixed, here shown for a fixed topological sector, Q = 0 (determinant ratio action,
β = 6.063, lattice volume 164). Note that the autocorrelation time in Figure 5 is measured in
units of configurations and each configuration is separated by ten Monte Carlo iterations.

Qi 〈W(1,1)〉 〈W(4,4)〉 〈W(7,7)〉 V (4) V (7) r0/a

0 0.94776(2) 0.4090(6) 0.0931(7) 0.2177(3) 0.3326(8) 6.97(5)

1 0.94770(3) 0.4074(6) 0.0911(8) 0.2189(3) 0.3364(9) 6.84(4)

2 0.94765(2) 0.4057(6) 0.0895(7) 0.2201(3) 0.3393(9) 6.77(4)

4 0.94743(2) 0.4000(4) 0.0832(5) 0.2245(2) 0.3515(7) 6.48(3)

Table 4: Dependence of various observables related to the static potential on the topological
sector defined by Qi. 〈W(R,T )〉 denotes smeared Wilson loop averages (extension R × T ), V (R)
the static potential at separation R and r0 the Sommer parameter (determinant ratio action,
β = 6.063, lattice volume 164).

In a recent paper by the JLQCD Collaboration [31] a similar analysis was carried out: r0

was computed for the topological sectors Qi ∈ {0 , 2 , 4}, but no dependence on Qi within
statistical errors has been established. Note, however, that compared to our simulations the
spatial extension of the lattice L (in physical units) was larger by a factor of about 1.7 and
the temporal extension larger by a factor of ≈ 3.4, yielding in total a factor of about 17 for
the lattice volume V = L3 × T . Assuming that the Qi dependence of r0 is of the same form
as that derived for spectral quantities in [18, 19] the absence of a Q-dependence is consistent,
because the dominating finite volume correction, when fixing topology, is proportional to 1/V ,
which presumably would shrink the deviations seen here to the 1 to 2σ level. Note also that
in [31] dynamical quarks were used, which, in principle, could have an effect since topological
fluctuations are suppressed. Moreover, the lattice spacing used in this reference was significantly
larger (0.12 fm compared to 0.07 fm).
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Figure 6: The static potential as a function of the separation for the topological sectors Qi =
{0 , 1 , 2 , 4} (left), and a zoomed plot of the same results (right).

6 Discussion and summary

In this paper we were mainly concerned with the question, whether different definitions of
the topological charge lead to consistent results, when using topology fixing gauge actions.
To address this question, we employed two modifications of the Wilson plaquette action, the
hyperbolic action, which implements Lüscher’s admissibility condition, and the determinant
ratio action, which leads to a spectral gap.

As a result we could establish that there is a correlation between the degree topology is fixed
and the agreement of both topological charge definitions used herein in the sense that the better
topology is fixed the better the agreement comes out. Let us accept for a second the index of the
overlap operator at a given value of m0 as a reference definition of the topological charge, which
is not unreasonable given the conceptual cleanness. Then we find that the hyperbolic action is
not able to fix topology completely, even for the smallest value of ǫ ≈ 0.66 reached in this paper.
We argued that in fact with a value of r0/a ≈ 7 it will not be possible to achieve such a complete
fixing of the topological charge. On the other hand the determinant ratio action fixes topology
at once for r0/a >

∼ 5.4, i.e. already at rather coarse lattice spacings. Note that in [31] it has been
found that even at r0/a ≈ 4.2 no change of the topological charge could be observed. Of course,
it is still possible that modifications of the overlap kernel operator such as changing the value of
m0 or smearing the gauge configurations may lead to different values of the topological charge
Qi (the index), a question that clearly deserves further studies.

When fixing topology in a finite volume, as is necessary for certain numerical simulations, a
number of conceptual questions arise. As a first step towards addressing such problems, we
studied the dependence of the static potential on the topological charge. For our lattice size
with linear extent of L ≈ 1.2 fm we found a clear dependence of the static potential at distances
of about R ≈ 0.5 fm, when computed in the topological charge sectors Q = 0 and Q = 4. It will
be very interesting to see, whether this difference vanishes when taking the infinite volume limit.
It is our goal to investigate the volume dependence of physical observables in fixed topological
sectors. This will also allow us to test the predictions for the finite size effects given in [18, 19].

In this work we focused on global aspects of topology. It would also be interesting to investigate,

12



 0

 100

 200

 300

 400

 500

 600

 0.595  0.6  0.605  0.61  0.615

Hyperbolic              Detratio                    Wilson

β=0.8
β=6.063

β=6.18

Figure 7: The plaquette distributions for the Wilson, the hyperbolic (β = 0.8) and the the
determinant ratio (β = 6.063) action (roughly at a the same physical situation). Cf. also
Figure 3 in [12].

how topology is locally realized in topology fixed gauge configurations. Moreover, we expect that
the mechanism of topology fixing is rather different for the two actions we have used. This can
be seen from Figure 7, where we show the plaquette distributions for the Wilson, the hyperbolic
and the determinant ratio action at the same physical situation.

As shown in more detail in Figure 3 of [12] the hyperbolic action shows an asymmetric distribu-
tion for 1/ǫ >

∼ 1.52, since small plaquette values are suppressed. In fact this suppression has been
the original motivation for fixing topology. In contrast to that the distribution of the determi-
nant ratio action is very similar to the distribution of the Wilson plaquette action. This can be
made more quantitative by fitting Gaussian functions to these distributions with mean values
µ and widths σ as parameters. The results of these fits are listed in Table 5 confirming that
the value of σ is almost smaller by a factor of two for the hyperbolic action. Nevertheless, the
determinant ratio action fixes the reference topological charge completely. This result suggests
that the suppression of small plaquette values is not a necessary condition for fixing topology.
It would be interesting to investigate this in more detail.

action β 1/ǫ µ σ

Shyp 0.8 1.25 0.598360(9) 0.000254(4)

Sdet 6.063 - 0.604808(9) 0.000479(7)

SW 6.18 - 0.611857(9) 0.000497(7)

Table 5: Results from Gaussian fits ∝ exp−(x−µ)2/2σ2

to the plaquette distributions shown in
Figure 7.
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