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1. Introduction

The Large Hadron Collider (LHC) allows us to explore an energy
regime far beyond what has been accessible in direct measure-
ments up to now. Operating at the TeV scale it will shed light
on the mechanism of electroweak symmetry breaking. The large
center-of-mass energy allows the production of new heavy parti-
cles — if they exist. It is expected that the results obtained from
the LHC will significantly influence our future understanding of na-
ture. The high potential of the LHC in making an important step
forward towards a deeper understanding of elementary particle
physics comes not for free. Experimentally as well theoretically the
LHC is a very challenging experiment. The large multiplicity in the
individual event together with pile-up and the complications due
to the underlying event make the experimental analysis at the LHC
highly non-trivial. The separation of known Standard Model (SM)
physics from new physics is very demanding, in particular since in
many cases the new physics signals are overwhelmed by the large
SM backgrounds. Sophisticated methods have been devised in the
past to cope with this situation within the experiments with re-
spect to theoretical predictions.

Colliding protons at LHC interact primarily through strong inter-
actions and Quantum Chromodynamics (QCD) plays an important
role in this context. It is well known that perturbative QCD predic-
tions are in general plagued by a large (residual) renormalization
and factorization scale dependence. It is not rare that predictions
for cross sections change by 100% when the scales are varied in
a reasonable range. To reduce the large scale uncertainty next-
to-leading order (NLO) calculations are required, which generally
consist of two ingredients: one contribution from the virtual cor-
rections and a second contribution from real emission of one ad-
ditional parton. With respect to the virtual contributions much
progress has been achieved recently, although the evaluation of
one-loop amplitudes for “large” multiplicities (2 → 3, 2 → 4) is
still a highly non-trivial enterprise. Fortunately, as far as the real
corrections are concerned the situation is much better and effi-
cient methods exist for the numerical evaluation of the required
matrix elements. However, the integral over the phase space leads
to soft and collinear singularities, which we denote here generi-
cally as infrared (IR) divergencies. In combination with the virtual
corrections, all IR cancel between the two contributions for the
physical observables of interest [8–10].

General algorithms, typically classified either as slicing or sub-
traction methods, are available for the extraction of soft and
collinear singularities encountered in the real corrections. In both
cases one makes use of the universal behavior of QCD amplitudes
for soft and collinear configurations. IR singularities are nowadays
usually regulated within dimensional regularization, so the same
regulator has to be applied to the real corrections in a way that
numerical integration over the phase space in 4 dimensions is pos-
sible in the end.

In slicing methods the idea is to separate the phase space into
resolved and unresolved contributions [11–14]. Unresolved regions
at NLO are those where one parton becomes soft or two become
collinear. In these regions the matrix elements are approximated
using the QCD factorization theorems. After this simplification the
unresolved regions can be integrated analytically in d = 4 − 2ε di-
mensions and the emerging singularities cancel analytically against
the corresponding ones in the virtual corrections. Resolved regions
on the other hand exclude all IR singularities by definition and can

be integrated numerically in 4 dimensions. A one-dimensional il-
lustration of the slicing approach is shown below,

1∫
0

f (x)

x1−ε
dx ≈ f (0)

δ∫
0

1

x1−ε
dx +

1∫
δ

f (x)

x
dx + O (ε)

= 1

ε
f (0) + ln(δ) f (0) +

1∫
δ

f (x)

x
dx + O (ε), (1.1)

where f (x) is an arbitrary function, which is regular at x = 0. It is
a drawback of the slicing method that partial results exhibit a log-
arithmic dependence on the cut δ which separates resolved from
unresolved configurations. This logarithm — which cancels when
the two parts (resolved and unresolved) are combined — is man-
ifest in the analytic integration of the unresolved terms. However,
for the resolved terms the logarithmic dependence arises from
the numerical phase space integration. Since the matrix elements
in the unresolved phase space regions are only approximate one
tends to make the respective region around singular configurations
as small as possible. This procedure, though, would result in large
numerical cancellations and a loss of accuracy in the sum of the
resolved and unresolved parts compared to the accuracy reached
in the numerical integration. In practice this requires a compro-
mise between the quality of the approximation and the numerical
effort to achieve a certain precision in the sum of both, resolved
and unresolved contributions.

Subtraction methods make use of our knowledge about QCD
factorization in the soft and collinear limits to construct suitable
“counter-terms”. These have to match pointwise all singularities in
the real-emission matrix elements and, at the same time, should
be simple enough to be integrated analytically in d = 4 − 2ε di-
mensions over the entire phase space [1,15,2]. A one-dimensional
example is shown in Eq. (1.2).

1∫
0

f (x)

x1−ε
dx =

1∫
0

f (x) − f (0)

x
dx + f (0)

1∫
0

1

x1−ε
dx + O (ε)

=
1∫

0

f (x) − f (0)

x
dx + 1

ε
f (0) + O (ε). (1.2)

Here the cancellation of the singularity takes place at the integrand
level — i.e. the divergencies cancel pointwise — and the integrals
are easier to evaluate numerically. However, care must be taken
with respect to the numerical accuracy. Deep in the singular re-
gions the individual contributions become arbitrary large and, due
to limited numerical precision of floating point arithmetic, their
cancellation might be incomplete leading to potentially wrong re-
sults. While our one-dimensional example in Eq. (1.2) admits the
construction of a suitable subtraction term in a straightforward
manner this no longer true when considering complicated scat-
tering amplitudes. Fortunately, this formidable problem has been
solved with the Catani–Seymour dipole formalism [1,2]. (Similar
algorithms are presented in Refs. [15,16].) Based on the factoriza-
tion of soft and collinear singularities in an SU(N) gauge theory
all subtraction terms are constructed from universal functions and
process specific amplitudes. It turns out, though, that for compli-
cated processes the complete subtraction term is a sum over many
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different contributions — tedious to derive by hand. On the other
hand, the method is completely algorithmic, thus an automation
is feasible. This is a timely problem and its solution is the aim of
the present work [17,18]. We note that it has recently also been
addressed by other groups [19–22], see also [23].

In passing let us briefly mention that the attractive features of
the subtraction approach (universality of counter-terms and nu-
merical stability) have led to extensions of the formalism to next-
to-next-to-leading order (NNLO), see e.g. [24–27]. Presently, the
proposed schemes at NNLO apply to processes without colored
partons in the initial state and an arbitrary number of mass-
less particles (colored or colorless) in the final state. The nec-
essary counter-terms are either derived from so-called antenna
functions [28] or alternatively defined as universal counter-terms
based on QCD factorization in the various soft and collinear lim-
its of singly- and double-unresolved parton configurations [29–32].
Ongoing work at NNLO is concerned with extensions to colored
partons in the initial state as needed for the LHC.

The outline of the paper is as follows. In Section 2 we review
the general features of the Catani–Seymour algorithm [1,2] and
in Section 3 we describe the details of its implementation in the
AutoDipole package. Particular emphasis is put on the details of
the numerical evaluation of subtraction terms via an interface to
MadGraph [3–5], which uses the HELAS library [6,7] for the com-
putation of helicity amplitudes. Section 4 illustrates with a few
examples of how to use AutoDipole in practice. The examples serve
also as a non-trivial cross check of the implementation when com-
pared with existing results from the literature. Finally, we conclude
in Section 5 and list some technical details of the implementation
and the comparison with the literature in Appendices A–C.

2. Review of the Catani–Seymour subtraction formalism

We consider a generic scattering process for the production of
an n-parton final state. At NLO accuracy in QCD the corresponding
cross section may be written as:

σNLO = σLO + δσNLO, (2.1)

where σLO denotes the Born contribution at leading order (LO)
and the genuine NLO correction δσNLO receives contributions from
three different sources,

δσNLO =
∫
n

dσvirt +
∫

n+1

dσreal +
∫

dx

∫
n

dσfact. (2.2)

By dσvirt we denote here the contributions from the virtual cor-
rections and by dσreal the ones from the real emission of one
additional parton. For hadrons in the initial state there is a third
contribution dσfact due to the factorization of initial state singu-
larities. The subscript on the integral signs in Eq. (2.2) indicates
the dimensionality of the phase space: The virtual corrections are
integrated over an n-parton phase space while the real emissions
are integrated over an (n + 1)-parton phase space. All three contri-
butions are individually divergent and thus require regularization
in intermediate steps until the divergencies are canceled. In the
Catani–Seymour formalism the expression for δσNLO in Eq. (2.2) is
rewritten schematically:

δσNLO =
∫

n+1

(dσreal + dA) +
∫
n

(
dσvirt +

∫
1

dA′
)

+
∫

dx

∫
n

(
dσfact + dA′′), (2.3)

with

0 =
∫

n+1

dA +
∫
n

∫
1

dA′ +
∫

dx

∫
n

dA′′. (2.4)

The expressions dA, dA′ and dA′′ are defined such that they ren-
der the individual pieces in Eq. (2.3) finite. In the Catani–Seymour
formalism, they correspond to the sum of all dipoles (dA), the in-
tegrated dipoles (

∫
1 dA′), I-term, and the terms arising from mass

factorization (dA′′) including the so-called P-, K- and H-terms.
The explicit form of dA is constructed from the knowledge

about the soft and collinear factorization of QCD amplitudes, which
exhibit a simple factorization for collinear configurations. The ex-
pression for dA in Eq. (2.3) is obtained as a sum over potentially
collinear partons since the factorization for soft configurations can
be derived from the collinear behavior of the amplitudes. For soft
singularities however only color-ordered amplitudes exhibit a sim-
ple factorization, which implies in general non-trivial color corre-
lations at the level of the squared matrix elements. These color
correlations are reflected by the reference to an additional (so-
called) spectator parton. The subtraction dA is thus written as a
sum of individual dipoles in the following form:

dA =
∑

D(i, j;k), (2.5)

where the sum runs over all colored partons in scattering process
and the possible configurations for {i, j;k} are determined from
the real corrections for which the subtraction term is constructed.
The generic form of the dipoles is given by

D(i, j;k) = dij × 〈1, . . . ĩ j, . . . , k̃, . . . ,n|Vi j,k|1, . . . ĩ j, . . . , k̃, . . . ,n〉.
(2.6)

The singular behavior is contained in the pre-factor dij which is es-
sentially the intermediate propagator before the splitting into i + j.
The bra (〈. . . |) and ket (| . . .〉) notation for the amplitude is used
since it appears as a vector in color and spin space. Accordingly
Vi j,k acts as an operator in color and spin space and introduces
the non-trivial color and spin correlations mentioned above.

As a concrete example we display the expression for D(gi, g j,k)

with all three partons in the final state, i.e.

D(gi, g j,k) = − 1

2pi · p j
〈1, . . . ĩ j, . . . , k̃, . . . ,n|Tk · Ti j

T2
i j

V gi g j ,k

|1, . . . ĩ j, . . . , k̃, . . . ,n〉. (2.7)

D(gi, g j,k) describes the situation of a collinear splitting of the
gluons i and j (emitter pair) in the presence of a spectator par-
ton k. Here, the Ti are the color charge operators depending on
the partons being in the fundamental or adjoint representation of
the color SU(3) (for details we refer to [1,2]). The function V gi g j ,k
is given by

V μν
gi g j ,k

= 〈μ|V gi g j ,k|ν〉

= 16παsμ
2εC A

[
−gμν

(
1

1 − zi(1 − yij,k)

+ 1

1 − z j(1 − yij,k)
− 2

)
+ (1 − ε)

1

pi · p j

(
zi pμ

i − z j pμ
j

)(
zi pν

i − z j pν
j

)]
, (2.8)

where zi and yij,k are some functions of the Lorentz scalars si j , sik ,
and s jk and αs is the strong coupling. The quantity,

〈1, . . . ĩ j, . . . , k̃, . . . ,n|Tk · Ti j|1, . . . ĩ j, . . . , k̃, . . . ,n〉, (2.9)
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is called the color linked Born amplitude squared (CLBS). The am-
plitude (| . . .〉) is deduced from the real emission by the factor-
ization of one splitting. The color factor is extended by two color
operator insertion, Tk · Ti j . The CLBS has the reduced kinematics
as input. In the example the original momenta (pi, p j, pk) are re-
duced to (p̃i j, p̃k) where for example, the p̃i j is defined as

p̃μ
i j = pμ

i + pμ
j − yij,k

1 − yij,k
pμ

k . (2.10)

Generally, (n +3) original momenta are reduced to the (n +2) mo-
menta in each dipole term. One distinguished feature of the dipole
subtraction is that the reduced kinematics satisfy the on-shell con-
ditions and momentum conservation, which makes it possible to
evaluate the reduced Born amplitude by existing codes for LO cal-
culations. In the gluon emitter case like the example above, the
second term in the square bracket in Eq. (2.8) introduces spin cor-
relations of the gluon. In that case we need also to evaluate the
CLBS where the helicity of the emitter gluon in the amplitude is
different from the one in the conjugate. In the next section we ex-
plain how the three main ingredients, the generation of the dipole
terms, the CLBS, and the dipoles with a gluon emitter, are imple-
mented in our package.

The other two functions
∫

1 dA′ and dA′′ in Eq. (2.3) are eas-
ily explained. The first one (

∫
1 dA′) denotes the integrated dipoles

which cancel the corresponding IR divergencies in the virtual con-
tributions at NLO. They can be constructed from universal insertion
operators I, to be sandwiched between the bra (〈. . . |) and ket
(| . . .〉) amplitudes of the corresponding Born process, i.e. in the
reduced kinematics with (n + 2) momenta. The expressions for the
I-terms depend on the parton type, e.g. for massless partons we
have

I
({p}, ε) = − αs

2π

1

Γ (1 − ε)

∑
i

1

T2
i j

Vi(ε)
∑
j �=i

Ti · T j

(
4πμ2

2pi · p j

)ε

,

(2.11)

where the sum runs over all parton momenta {p} in the Born kine-
matics (corresponding also to the NLO virtual corrections). The
poles in dimensional regularization are contained in the function
Vi , that is Vi(ε) ∼ 1/ε2 and ∼ 1/ε for massless partons [1]. For
massive partons [2], the corresponding function Vi(ε,mi,m j) con-
tains single poles Vi(ε,mi,m j) ∼ 1/ε from soft gluons and the Vi
depend logarithmically on the parton masses mi which screen the
collinear singularity, see also [16,33]. The formulation suggested in
[2] (and used in AutoDipole) allows for a smooth interpolation in
the limit mi → 0. The color operator insertions, Ti · T j , lead again
to non-trivial color correlations and require the evaluation of the
same CLBS in Eq. (2.9) with the phase space of n final state par-
tons.

The last term in Eq. (2.3) (dA′′) abbreviates the so-called P-, K-
and H-terms. They are needed for mass factorization of initial state
singularities in hadron collisions to be absorbed in renormalized
parton distributions and, likewise, also for the final-state singu-
larities in processes with identified hadrons giving rise to scale
dependence of the fragmentation functions. For instance in the
case of initial state divergencies the P-operator takes the follow-
ing form

Pa,b({p}, x,μ2
F

) = αs

2π
P ab(x)

1

T2
b

∑
i �=b

Ti · Tb ln
μ2

F

2xpa · pi
, (2.12)

where μF is the factorization scale and P ab are the standard
(space-like) LO splitting functions containing the well-known ‘+’-
distributions in their diagonal components. Like the I-operators
in Eq. (2.11), the P-operators act on the amplitudes of the cor-
responding Born process, leading to color correlations and giving

rise to the CLBS as in Eq. (2.9). Here the dependence of P in
Eq. (2.12) on the parton momentum fraction x leads to convolu-
tions when integrated with the Born squared matrix elements or
CLBS, see Eq. (2.3), and the implementation needs a prescription
for ‘+’-distributions (see e.g. Eq. (B.26) in [34]).

Similar definitions as in Eq. (2.12) hold for the K- and H-
operators. They also contain distributions 1/(1 − x)+ that are
singular in the collinear limit and parametrize the factorization
scheme dependence, K for factorization in the initial state and H
in the final state. These remarks conclude our brief review of the
Catani–Seymour dipole formalism. For details the reader is referred
to the original literature [1,2].

3. The AutoDipole package

The AutoDipole package constructs all necessary subtraction
terms of the Catani–Seymour formalism [1,2] for a given scatter-
ing process with n colored partons in a fully automatic manner. It
can handle both massless and massive partons and it also allows
for additional (non-colored) SM particles in the scattering process,
e.g. couplings of quarks to γ , Z -, W ±-bosons and so on.

Let us briefly sketch the details of our implementation of the
dipole subtraction formalism, because there is a large freedom in
the way how this can be performed. For instance, in Refs. [35,
36] the implementation was realized in form of two independent
C/C++ libraries providing all the necessary functions to evaluate
the dipole terms. As a slight disadvantage of this approach the
produced code is non-local and that there is some redundancy in
the calculation. In the present work we follow a different strategy.
The main idea here is to have a code generator which will pro-
duce an optimized flat code. To realize this we have constructed
a Mathematica program which acts as such a generator and its
output is interfaced with MadGraph [3–5]. To that end we found
the stand-alone version of MadGraph suitable and for the numeri-
cal evaluation of all subtraction terms, we use helicity amplitudes
provided by MadGraph (which are based on the HELAS library [6,
7]).

3.1. Structure of the code

The complete layout of the code of the AutoDipole package is
displayed in Fig. 1. The major part of the source code in the pack-
age (all contained in the directory lib) is written in Mathematica.
This includes all algorithms for the generation of the dipole terms
as well as the evaluation of the I-, P- and K-operator insertions
sandwiched between the Born amplitudes in the appropriate kine-
matics. The use of a computer algebra program like Mathematica
has the clear advantage here that all terms are accessible to sym-
bolic manipulation. This feature is very useful for general studies
of the IR behavior of scattering amplitudes.

In using AutoDipole we are primarily interested in the gener-
ation of Fortran code for all subtraction terms of Eq. (2.3). The
essential parts of the flowchart are displayed in Fig. 2. From a given
input process, the Mathematica code generates all dipole terms.
The important files here are dipole.f, reducedm.f, and the
shell script for the interface with MadGraph, where dipole.f
contains all dipole terms except for the reduced kinematics and
the CLBS. The routine reducedm.f calculates the reduced kine-
matics of each dipole term as defined in Eq. (2.10). The sub-
sequent run of a patched version of MadGraph (contained in
the directory patch) via the interface produces the files, cma-
trix.f and allcolormat.inc. The routine cmatrix.f eval-
uates all CLBS as in Eq. (2.9). It includes the file allcolor-
mat.inc, which contains all extended color matrices by the two
color operator insertions. We use the latest version of MadGraph
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Fig. 1. The directory structure of the AutoDipole package.
Fig. 2. The flowchart of the execution of AutoDipole.

(MG_ME_SA_V4.4.30). All the process specific Fortran files men-
tioned above are stored in a new directory under process, see
Fig. 1.

In short, the evaluation of the generated Fortran code for the
dipole terms proceeds along the following chain, see Fig. 2. The
routine reducedm.f receives a given phase space point as input
and calculates the reduced kinematics of each dipole term. Next,
the routine cmatrix.f (with the reduced kinematics as input)
computes the CLBS of each dipole term together with the ex-
tended color matrices in allcolormat.inc. Finally the routine
dipole.f returns the values of all dipole terms having received
the reduced kinematics and the CLBS as input. All this is done au-
tomatically when the user executes the command ./runD (see
Sections 4.2 and 4.3) to calculate the subtraction term for a spe-
cific phase space point.

The algorithm of dipole term generation by the Mathematica
code is shown in Section 3.2. A detailed account of the calculation
of the CLBS is given in Section 3.3 and some aspects of the spin
correlations for the particular case of a gluon emitter are presented
in Section 3.4. The check of IR safety is explained in Section 3.5.
An explanation of how to run AutoDipole is deferred to Section 4.

3.2. Algorithm of dipole generation

Let us start with a short description of the Mathematica code
generating all dipole terms. This procedure makes use of the fol-
lowing three steps:

1. Choose all possible emitter pairs from the external legs.
For a given real emission 2 → (n+1)-particle scattering process

we abbreviate the set of initial (final) state partons collectively as
{initial} ({final}), i.e. the scattering reaction reads generically

{initial} → {final}. (3.1)

Fig. 3. The four categories of dipoles (Dipole 1, . . . , 4), the seven possible splittings
and their order of creation in AutoDipole, see Table 2 for details.

Then, the first step in the construction of the dipoles is the choice
of the emitter pair, that is the root of the splitting of the quarks
and gluons. This also specifies the kind of splitting. At NLO in
QCD, there exist seven possible splittings, which we group into
four classes and we enumerate these types of dipoles accordingly,
Dipole 1, . . . , and Dipole 4. The ordering is shown in Fig. 3. Due
to the factorization of the splitting each dipole is associated to a
certain reduced Born process and the following equations show
schematically the operations performed on the sets of partons in
Eq. (3.1) in order to construct the corresponding reduced Born pro-
cess,

Dipole 1: {initial} → {final} − g, (3.2)

Dipole 2: {initial} → {final} − f f̄ + g, (3.3)

Dipole 3: {initial} − f + g → {final} − f , (3.4)

Dipole 4: {initial} − g + f̄ → {final} − f , (3.5)

where g is a gluon and f ( f̄ ) a quark (anti-quark). The notation
in Eqs. (3.2)–(3.5) indicates which partons are removed from or
added to the respective sets {initial} and {final}. The cases Dipole 3
and 4 can also occur with a reduced Born cross section where f
and f̄ are exchanged. The groups Dipole 2, 3 and 4 also need to
account for the existence of various quark flavors, i.e. they exhibit
manifest flavor dependence, see Table 2 for details.

2. Choose all possible spectators for each emitter pair.
The spectator is one external field which is different from both

fields of the emitter pair and its choice is a purely combinatorial
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Fig. 4. The order of creation of the integrated dipoles in AutoDipole with insertion of the I-operator (left) and of the P- and K-operators (right), see Tables 3 and 4 for details.
procedure. We use indices, i, j, and k, for fields in a final state
and, respectively, indices, a and b, for an initial state field. For a
spectator in the final (initial) state denoted by k (b), this condition
means k �= i, j (b �= a). It emerges from a special feature of the sub-
traction formalism namely that the squared matrix elements with
the Casimir operator, 〈T2

i 〉, is expressed, due to color conservation,
through CLBS 〈Ti ·Tk〉(i �= k) which always includes one color dipole
configuration in the part.

3. Construct the dipole terms from the chosen combinations of
emitter and spectator.

The previous steps provide all such combinations as pairings of
the type (emitter, spectator)= (i j,k), (i j,b), (ai,k), and (ai,b). Each
case corresponds to one dipole term, for which we use the short-
hands Di j,k , Da

i j , Dai
k , and Dai,b , respectively. Detailed information

about all pairings of emitter and spectator as well as the potential
presence of a mass parameter is given in Table 2 in Appendix A.
For explicit expressions we refer to [1,2].

Here it is worth to stress a few points. First of all, the chosen
order for the generation has the advantage of grouping together
the reduced Born matrix elements. The CLBS in the same category
exhibit the same Lorentz structure, only the extended color matrix
is different. This ordering leads to a block-diagonal structure in the
evaluation of the color correlations. It leads to flat Fortran code in-
cluding higher readability. Additionally, for the category Dipole 1
the Casimir operator T2

i j in the denominator always cancels against
the same one in the dipole splitting function. This cancellation
leads to manifest simplifications. Finally, in our set-up we have
access to the symbolic expression and can easily identify or ex-
tract partial subsets of dipole terms, if needed. For example we
may want to discard the t − t̄ (heavy-quark) splitting in the cate-
gory Dipole 2, because this splitting does not give rise to poles in
ε . Our way of generating the dipoles in the package easily allows
this selection. The user can discard dipoles of a specific category
in the input file parameter.m (see Section 4).

At this stage it remains to discuss the generation of all terms in-
volving the I-, P- and K-operators. This is sketched in Fig. 4. Given,
that these operators originate from the phase space integral over
unresolved parton of the dipole terms, it is clear that we only need
a subset of all previously generated terms. From all reduced Born
amplitudes generated for the regularization of the real emission
contributions (i.e. Fig. 3) we need only the CLBS in the category
Dipole 1 for all I-, P-, and K-operator insertions. Hence, no new
information is required and the Mathematica package assembles
the respective expressions (along with the color correlations, see
Section 3.3) in the Fortran files Iterm.f and PKterm.f.

3.3. The color linked Born amplitude squared

The numerical evaluation of Born amplitudes (or their squares)
is a routine task for many publicly available packages designed for
automated LO calculations. As announced above, we choose the
stand-alone version of MadGraph [3–5] for this purpose and the
added feature needed is the evaluation of the color link operators,
see e.g. Eq. (2.7). This can be done by a patch and allows us to
obtain all CLBS in an automatic way, see Fig. 2.

The generation of the amplitudes in MadGraph proceeds via
Feynman diagrams and the color factors are separated from each
diagram. During the evaluation everything is expressed in terms of
generators of the fundamental representation of the color SU(3).
A typical example is that the factor f abc of the gluon three-point
vertex is rewritten in terms of the fundamental generator ta

i j with
the help of the identity,

f abc = −2i
(
Tr

[
tatbtc] − Tr

[
tctbta]). (3.6)

The color factors of each diagram are sorted in a unique order and
they are expressed in a sum. When a specific term of a diagram is
identical to one of the other diagrams, both are combined as

M =
∑

a

CaJa, (3.7)

where Ca denotes the independent color factors. Each Ca has fun-
damental and adjoint color indices corresponding to the external
quarks and the gluons, respectively. Ja is the joint amplitude, e.g.
J1 = +A1 − A3 + · · · where Ai is the partial amplitude of i-th di-
agram (with the color factor stripped off). The invariant matrix
element squared is finally expressed in the form,

|M|2 = (
J)†CF
J, (3.8)

where the color matrix CF is defined as

(CF)ab =
∑
color

C∗
a Cb. (3.9)

For the CLBS we need to evaluate Eq. (3.8) with an insertion of two
additional color operators to the emitter and spectator legs. This is
precisely what our patch of MadGraph does (see Fig. 1 and the di-
rectory lib/patch). The subroutines of MadGraph for the color
factor calculations are well structured and the original routines to
add the color factors ta

i j and f abc can be applied to the additional
color insertions for the CLBS. The color algebra of the SU(3) is per-
formed numerically and the resulting extended color matrix CF is
written to the file allcolormat.inc, see Fig. 2.
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We have realized the two color operator insertions for all
CLBS in an automatic way and we have also checked that Mad-
Graph with our interface works for a set of rather involved pro-
cesses. As a simple example let us discuss the color insertions
required for the process g(a)g(b) → u(1)ū(2)g(3). The reduced
Born process g(a)g(b) → u(1)ū(2) has three diagrams and the
color factors are combined into two independent ones, (C1, C2) =
((tatb)12, (tbta)12). The components of the color matrix are given
by the traces, (CF)11 = (CF)22 = Tr[tbtatatb] and (CF)12 = (CF)21 =
Tr[tbtatbta]. Then the color matrix is calculated as

CF =
(

16/3 −2/3
−2/3 16/3

)
. (3.10)

In the CLBS we need for instance the fundamental operator in-
sertions into the legs 1 and 2. The components of the color ma-
trix CF are modified to (CF′)11 = Tr[tbtatctatbtc] and (CF′)12 =
Tr[tbtatctbtatc]. Then the modified color matrix is obtained as

CF′ =
(

1/9 10/9
10/9 1/9

)
. (3.11)

One of the more complicated examples consists of the two color
operator insertions into the process g(a)g(b) → t(1)t̄(2)g(3)g(4).
In MadGraph the normal SU(3) color matrix for the process is a
24 × 24 matrix. The first 15 components in the first row read (we
refrain from spelling out the rest),

CF = 1

54
(512,8,−64,80,8,−10,−1,−64,−64,8,

−1,−10,−1,62,−10, . . .). (3.12)

Upon insertions of two adjoint color operators for a gluon into the
legs 3 and 4 the extended routines calculate the modified color
matrix as

CF′ = 1

4
(8,0,8,16,0,−2,0,8,−1,−1,1,2,−8,−7,1, . . .),

(3.13)

and, of course, the result in Eq. (3.13) agrees with independent
checks.

3.4. Spin correlations for gluon emitters

As we have seen above the dipoles for the splittings g → gg
and g → qq̄ (which involve a gluon emitter) introduce spin corre-
lations (see e.g. Eq. (2.7)). Since our numerical evaluation of the
reduced Born amplitudes uses helicity amplitudes, we have to de-
rive the components of the tensor for the spin correlations in the
helicity formalism as well. To that end, we choose the definitions
in [37] which we here call the XZC gluon polarization vector.

Let us illustrate the necessary steps (formulated in [38]) with
the case of the massless dipole term D(gi, g j,k) in Eq. (2.7),

D(gi, g j,k) = − 1

2pi · p j
V μν

gi g j ,k

1

C A

(
A∗

μTk · Ti j Aν

)
, (3.14)

where V μν
gi g j ,k

is written schematically as

V μν
gi g j ,k

= 16παsμ
2εC A

(−C1 gμν + C2LμLν
)
, (3.15)

with Lμ = zi pμ
i − z j pμ

j and some Lorentz scalars C1,2 (e.g. given
in Eq. (2.8)). Moreover, in Eq. (3.14) we have expressed the CLBS
in Eq. (2.9) through amplitudes Aμ and Aν , where the polarization
vector ελ

μ(p̃i j) of the emitter gluon with momentum p̃i j has been
amputated. Then we can transform both the dipole splitting func-
tion V μν and the amplitude Aμ to a helicity basis by inserting the
polarization sum

∑
λ ελ∗

μ ελ
ν as

A∗
μV μν Aν =

∑
λ′,λ

A∗
λ′ V λ′λ Aλ, (3.16)

V λ′λ = ελ′∗
μ V μνελ

ν , (3.17)

and we obtain the dipole D(gi, g j,k) in a ±-helicity basis as

D(gi, g j,k) = − 1

2pi · p j
16παsμ

2ε

× [(
C1 + C2|E+|2)(A∗+Tk · Ti j A+ + A∗−Tk · Ti j A−

)
+ 2C2 Re

(
E∗+E− A∗+Tk · Ti j A−

)]
. (3.18)

Here we have used gauge invariance, the on-shell condition for the
gluon and orthogonality of the polarization vectors, which gives
rise to the relations ελ∗ · p̃i j = A · p̃i j = L · p̃i j = p̃2

i j = 0. The quantity
E± needed to express the dipoles in a helicity basis is defined as
(see e.g. [38])

E± = ε± · L. (3.19)

As a subtlety, we would like to point out the following. In the
HELAS library [7,6] the gluon polarization vector is calculated by
the subroutine VXXXXX and taken to be in a helicity basis but
the phase conventions are different from the ones in [37]. Thus
we have to relate these conventions to our choice [37]. Although
it may be natural to use the same definition for the gluon polar-
ization vectors as in HELAS for the dipole splitting functions (e.g.
V μν

gi g j ,k
in Eq. (3.15)) we have the freedom not to do so because

of gauge invariance and the on-shell condition. In our implemen-
tation we have chosen the latter option with the advantage that
the calculation of the dipole splitting functions can be completely
separated from the part for evaluation of the CLBS. With the XZC
definitions E± in Eq. (3.19) is expressible in terms of spinor prod-
ucts which can be easily implemented in Fortran code.

The polarization vectors of HELAS [7,6] are written in a helicity
basis as

ε±
μ[HELAS](k,q) = 1√

2
(∓εμ(1) − iεμ(2)), (3.20)

with the explicit expression for the vectors in a linear basis, εμ(1,2)

given in [7,6]. Likewise, for XZC [37] we have

ε+
μ[XZC](k,q) = 〈q − |γμ|k−〉√

2〈qk〉∗ , (3.21)

where the relation ε+∗
μ[XZC] = ε−

μ[XZC] holds and q is an arbitrary
reference momentum. The difference between the conventions
Eq. (3.20) and Eq. (3.21) amounts to a complex phase,

ε±∗
[XZC](k,q) · ε∓

[HELAS]
(
k,q′) = ∓e±iφ(k). (3.22)

The phase difference contributes to only the second term in the
square bracket in Eq. (3.18) and it is then rewritten as

+2C2 Re
(
E∗+E− A∗+Tk · Ti j A−

)
[XZC]

= −2C2 Re
((

e+iφ(k)E+
)2(

A∗+Tk · Ti j A−
)
[HELAS]

)
, (3.23)

where the CLBS is also taken in the helicity basis for the gluon
emitter as in HELAS. The quantity E+ = ε+

[XZC] · L in Eq. (3.23) can
be computed according to Eq. (3.19) in the conventions of [37] in
terms of spinor products as (see e.g. [38])

e+iφ(k)E+ = e+iφ(p̃i j)
zi〈p j pi〉〈p̃i j pi〉∗√

2〈p j p̃i j〉
, (3.24)

where we have set k = p̃i j and chosen q = p j for the reference
momentum in Eq. (3.21). Explicit expressions for the vector E+
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in Eq. (3.19) for all required momentum configurations (massless
and massive) are given in Appendix B. For the dipole terms includ-
ing the massive partons, the result for E+ in Eq. (3.19) contains
terms like 〈pi − |pk|p̃ai−〉 with on-shell momenta p2

k = m2
k . In or-

der to express these terms through spinor products we have used
flat momenta,

p�

k = pk − m2
k

2pk · p̃ai1
p̃ai, (3.25)

which are massless because (p�

k)
2 = 0. Due to the equations of

motion /̃pai |p̃ai−〉 = 0, we can rewrite the quantities under con-
sideration, e.g.

〈pi − |/pk|p̃ai−〉 = 〈pi − |/p�

k|p̃ai−〉, (3.26)

so that they are accessible to standard spinor calculus, see also [39]
for the spinor helicity formalism including massive fermions. Our
treatment of the spin correlations is contained in the Mathemat-
ica sources where the expressions for E+ (as given in Appendix B)
are implemented. During the automated generation of all subtrac-
tion terms for numerical evaluation the results are written to the
output in the Fortran file, dipole.f, see Fig. 2.

3.5. Checking the soft and collinear limits

Let us discuss the checks for the AutoDipole package. First,
there is the standard quality check on the automatic generation
of the dipole terms because the result according to Eq. (2.3) has to
be finite when approaching the singular regions. Second, since the
Catani–Seymour formalism is well established, we can compare the
output of AutoDipole with results of independent implementations
in the literature.

The AutoDipole package performs automatically for all gener-
ated subtraction terms a numerical check of all IR limits. For that
purpose the subtracted squared matrix element for the process un-
der consideration are constructed and sampled over all limits to
test the cancellation of the IR singularity. For a given soft/collinear
limit Li , we pick up the set S(i) of the corresponding dipoles to
test whether the quantity

lim
Li

[
|M|2 −

∑
j⊂S(i)

D( j)

]
, (3.27)

is soft/collinear safe. The code lists all limits Li , and the corre-
sponding sets S(i). A concrete example will be presented in Sec-
tion 4.2. The leading soft/collinear singularity of the squared ma-
trix element |M|2 behaves in the soft limit as 1/k2 for a gluon of
momentum k and in the collinear one as 1/(2pi · p j) = 1/si j for
two collinear momenta pi and p j . The set of the corresponding
dipoles cancels this leading singularity pointwise as

|M|2 −
∑

j⊂S(i)

D( j) = 1

x2

(
a0 + a1x + a2x2 + · · ·) − 1

x2
a0, (3.28)

where x = k(
√

si j) is the respective Lorentz scalar depending
on the momenta in the soft (collinear) limit. The difference in
Eq. (3.28) is integrable over the real emission phase space. The
numerical accuracy, however, has to be controlled, because deep
in the singular regions the individual contributions in Eq. (3.28)
become very large and with the limited numerical precision of
floating point arithmetic the cancellation might be imperfect. For-
tunately, the stability of the numerical cancellation can be tested
automatically. Normalizing Eq. (3.28) one can check the slope of
the quantity,

|M|2 − ∑
D

|M|2 = 1

a0

(
a1x + a2x2 + · · ·). (3.29)

Based on Eq. (3.29) AutoDipole tests the cancellation and returns
values for the fiducial regions for the Lorentz invariants si j .

We have extensively tested the soft and collinear finiteness of
the generated subtraction terms for numerous scattering processes
in e+e− , ep and pp-collisions including massive quarks and weak
gauge bosons. Among those are a large class of 2 → 4 scattering
processes as needed in the NLO QCD correction to 2 → 3 reactions.
We have also tested scattering processes with 2 → 5 and 2 → 6
partons, like e.g.

uū → dd̄ggg ,
gg → W +ūdgg ,
gg → tt̄ ggg ,
gg → tt̄bb̄g ,
gg → tt̄bb̄gg ,

which are currently under investigation in view of phenomenolog-
ical applications for the LHC.

In addition, we have been able to obtain also perfect agree-
ment with published results [36,40]. For the NLO QCD corrections
to pp → tt̄ + 1 jet production results for the real emission con-
tributions have been presented at individual phase space points in
[36]. We agree at least to 14 digits for the matrix elements squared
and at least to 12 digits for the sum of the subtraction terms. All
details of our comparison are shown in Table 5 in Appendix C. We
have also checked against the results for the NLO QCD corrections
to pp → W +W − + 1 jet [40], in particular the real emissions in
the channel uū → W +W − gg . Also here we have obtained very
good agreement as documented in the last entry of Table 5. The
AutoDipole package provides a shell script to reproduce some of
the numbers in that Table 5 (see Section 4.4).

Let us briefly comment on the integrated dipoles in Eq. (2.3)
originating from the I-operators. Here, a complete check is more
involved because for a given process scheme dependence enters,
i.e. whether the singularities of the NLO virtual contributions are
factorized with respect to the d-dimensional or 4-dimensional
Born amplitude.

Nevertheless, partial checks of the singularity structure are
straightforward. The matrix element squared with the sum of all
I-insertions is written schematically as

〈1, . . . ,n|I|1, . . . ,n〉 = C−2
1

ε2
+ C−1

1

ε
+ C0, (3.30)

where C−1 and C−2 are process (and kinematics) dependent coef-
ficients. For the leading pole ∼ 1/ε2, the coefficient C−2 obeys the
following simple relation

C−2 = αs

2π
|MBorn|2((nq + nq̄)C F + ng C A

)
, (3.31)

where MBorn is the corresponding Born amplitude. The number of
external massless (anti-)quarks is nq (nq̄) and ng the number of
external gluons. In QCD the standard SU(N) color factors take the
numerical values C F = 4/3 and C A = 3.

Apart from simple relations like Eq. (3.31) the coefficients for
color and spin averaged results for the I-operator could again be
compared with the published literature for pp → tt̄ +1 jet produc-
tion at NLO in QCD [36]. We have obtained agreement to at least
14 digits as shown in Table 6. The numbers in Table 6 can again
be reproduced with a simple command explained in Section 4.4.

4. Running AutoDipole

This section is meant to be a short manual to the AutoDipole
package. We explain the installation procedure, the use and discuss
a few processes as examples.
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4.1. Install

The package, AutoDipole_V1.2.3.tar, is available for
download from [41] (or else from the authors upon the request).
In addition, one must also obtain the stand-alone version of Mad-
Graph (MG_ME_SA_V4.4.30) e.g. by download from [42] and put
it (in the form of .tar.gz or .tar) in the AutoDipole package
directory. Then execute the installation procedure by1

./install.sh

and the directory structure as displayed in Fig. 1 emerges. Repeti-
tion of this command always allows the user to recover the initial
settings described in this section.

4.2. A short example

Let us next illustrate the use of AutoDipole. First of all, one
has to specify all partonic real emission processes which appear
at NLO in the observable under consideration. To that end, as a
concrete example let us choose a simple process, uū → dd̄g which
contributes to hadronic di-jet production, pp → 2 jets at NLO. This
example exhibits all features of the Catani–Seymour formalism, i.e.
it needs dipoles and I-operators as well as the P- and K-terms. We
start with the Mathematica part of AutoDipole. The package can
simply be included through the driver file as

<<driver_user.m

Next, we can run the package for the process uū → dd̄g with the
command

GenerateAll[{u,ubar},{d,dbar,g}]

Upon running the AutoDipole package successfully, all gener-
ated Fortran files are stored in a (newly created) directory under
process, for the example at hand /process/Proc_uux_ddxg.
AutoDipole returns the message:

**********************************************’
Run has been succeeded.
In order to run the generated code, please
enter in the newly created directory under
./process make
./runD
**********************************************’

The real matrix element squared |M|2 and the sum of all dipole
terms

∑
i D(i) are evaluated at 10 phase space points with this

command. Also the check of cancellations in all infrared limits for
the subtracted matrix element can performed. The respective com-
mand is:

make checkIR
./checkIR

Likewise, the integrated dipoles (I-operators) as well as the
contribution of the P- and K-terms at 10 points in phase space can

1 The AutoDipole package (version 1.2.3 and earlier) is assumed to be used with
MadGraph (stand-alone version MG_ME_SA_V4.4.30). Upgrades to newer versions of
MadGraph require the user to set the MadGraph version in the first line of in-
stall.sh by hand before installation. We have tested that AutoDipole version
1.2.3 also works with the MadGraph stand-alone version MG_ME_SA_V4.4.39. An
automated test of the installation can be executed with the command check.sh
as detailed in Section 4.4.

be evaluated in the subdirectories Proc_uux_ddxg/Virtual
and Proc_uux_ddxg/PK with the commands:

make runI
./runI

make runPK
./runPK.

The present example uū → dd̄g runs with the default settings of
AutoDipole. For further illustration the package also comes along
with a prepared list of examples so that explicit numbers can be
obtained by executing the shell scripts explained in the next sub-
section.

If the user wants to include the generated Fortran code with
the subtraction terms into his/her own project for further numer-
ical evaluations, he/she needs (i.e. has to copy) a number of files
for that purpose. The complete list of generated files is given in
Table 1. Note that most of the functions are only needed inter-
nally and are not meant to be called by the user directly. We
assume here that all input momenta {pi} are generated from phase
space routines supplied by the user and that the HELAS library
libdhelas3.a is linked.

Dipole terms: directory process/Proc_uux_ddxg
From the file check.f the call of the relevant subroutines for

the evaluation of the dipole terms is obvious. The user needs to
copy the following files:

matrix.f (generated by AutoDipole)
dipole.f |
reducedm.f |
cmatrix.f |
allcolormat\#.inc |
emitspecinfo.inc |
nexternal.inc |
nexternal2.inc (generated by AutoDipole)

coupl.inc (process independent file)
couplings.f (process independent file)

param_card.dat (parameter input file)

To use the generated code, one first has to initialize MadGraph.
The parameters are determined in param_card.dat and are as-
signed to the definitions in coupl.inc with the help of the sub-
routine setpara in couplings.f as

include ’coupl.inc’
call setpara(’param_card.dat’,.true.)

to be used subsequently in the subroutines cmatrix#,
cmatrix#dh, and smatrix through the common blocks. The
symbol # here and above denotes an integer number (e.g. # = 1).
For the dipoles only the strong coupling constant αs as well as the
top and bottom masses are needed in the evaluation. These three
parameters appear as

AL=g**2*(4.d0*pi)**(-1)
mt=tmass
mb=bmass

and are passed to the subroutine dipole through the common
blocks,
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Table 1
The file content of the AutoDipole package. In names of subroutine and files (e.g. cmatrix#) the symbol # denotes an integer number,
typically # = 1.

File (subroutine) Input Output

[Dipole terms]
matrix.f (smatrix) {pi} |M|2 for real emission
dipole.f (dipole) {pi} D(i)
reducedm.f (reducedm) {pi} reduced {p̃i}
cmatrix.f (cmatrix#) reduced {p̃i} CLBS (like helicity)
cmatrix.f (cmatrix#dh) reduced {p̃i} CLBS (unlike helicity)
check.f (program checkdipole) {pi} in inputm.h check of D(i), |M|2

[I-terms]
matrixLO1.f (smatrix) {pi} |MBorn|2
Iterm.f (Iterm) {pi} Ci of I-terms
cmatrix.f (cmatrix#) {pi} CLBS
checkVirt.f (program checkVirt) {pi} in inputmLO.h check of Ci of I-terms

[P- and K-terms]
matrixLO1.f (smatrix) {pi} |MBorn|2
PKterm.f (PKterm) {pi} Pt(i), K(i) (P- and K-terms)
cmatrix.f (cmatrix#) {pi} CLBS
checkPK.f (program checkPK) {pi} in inputmLO.h check of Pt(i) and K(i)

[Check of soft/collinear limits]
collinear.f {pi} collinear limits of {pi}
checkIR.f (program checkIR) collinear limit of {pi} (|M|2 − ∑

D)/|M|2

Common input files

[Process dependent]
allcolormat#.inc extended color matrices (used in cmatrix#)
emitspecinfo.inc information of emitter for dipoles (used in cmatrix#)
param_card.dat parameters for CLBS
nexternal.inc field numbers of real emission process for dipoles and of Born process for I-, P- and K-terms
nexternal2.inc field number of reduced Born process
inputm.h phase space points for dipole checks
inputmLO.h phase space points for I-, P-, and K-term checks

[Process independent]
coupl.inc common block of parameters
couplings.f reads parameters in param_card.dat and assigns them in coupl.inc
common /usedalpha/ AL
common /MASS/ mt,mb

Next, the evaluation of the squared matrix element for the real
emission process |M|2 proceeds in exactly the same way as in
MadGraph with the call

call smatrix(p,msq)

Finally, the dipole terms are evaluated by calling the subroutine

call dipole(p,dip,SumD)

which returns an array with the values for each dipole term (dip)
and the sum of the all dipoles (SumD) as output. For our ex-
ample process uū → dd̄g we have 15 individual dipoles. The re-
duced kinematics of each dipole (as determined by the subroutine
reducedm) can be accessed by the common block

double precision ptil(0:3,1:n1,n2)
common /OUTPUTM/ ptil

where n1 = 4 and n2 = 15 in the definition of the momenta for
the example at hand.

I-terms: directory process/Proc_uux_ddxg/Virtual
Our program checkVirt.f for checks of the I-terms again

provides an example for the use of the subroutines to evaluate
the I-terms. In addition to the eight files from cmatrix.f to
param_card.dat listed above for the evaluation of the dipoles,
the user has to copy one file:

Iterm.f

Then, the initialization phase is exactly the same as before and for
the evaluation of the I-terms, one has to call the subroutine

call Iterm(p,coef,SumI)

which provides the value of the coefficients (i.e. the array coef)
as well as the sum (SumI) of all I-terms as output. If the user
also wants to compute the LO matrix element |MBorn|2 he needs
the file matrixLO1.f. The execution of the subroutine with the
command

call smatrix(p,msqLO)

is performed again exactly as in MadGraph.

P- and K-terms: directory process/Proc_uux_ddxg/PK
The user needs the following file to evaluate the P- and K-

terms:

PKterm.f
matrixLO1.f

as well as the eight files from cmatrix.f to param_card.dat
already discussed for the dipoles. The initialization phase is un-
changed but the user has to provide the parton momentum frac-
tion x from the mass factorization as additional input. The P- and
K-terms for the first leg are computed by the call

call PKterm1(p,x,SumP,SumK)
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which returns separately the sum of all P- and K-terms (SumP
and SumK). For the second parton in initial state (as in hadron-
hadron collisions) the corresponding P- and K-terms are evaluated
by calling PKterm2.

4.3. General usage

For a specific application of AutoDipole, the user needs to per-
form the following three steps:

1. Setup of parameters : parameter.m
2. Run of package : GenerateAll[{initial},{final}]
3. Run and checks of the generated code at :

/process/Proc_xx_xx/ .

Let us explain each of these steps in more detail.

1. Setup of parameters

Generally, the user has to supply all process parameters needed
for the dipole subtraction procedure by editing the file,

parameter.m

where (following the MadGraph conventions) all values with the
dimension of a mass are in units of [GeV]. Let us explain all vari-
ables in the file together with the chosen default values.

Parameters for dipole terms

ep=0:
The parameter of dimensional regularization of space–time,
D = 4 − 2ε . The default choice eliminates higher orders (posi-
tive powers) of ε in the dipole terms.

kap=2/3:
κ is free parameter in some expressions for massive dipoles
[2]. The value κ = 0 leads to the simplest results for the dipole
terms, while κ = 2/3 produces the simplest expressions of the
I-terms.

skipdipole={ }:
This set specifies the kind of dipoles to be skipped during the
creation. For example, the set skipdipole={2t} omits the
creation of the Dipole 2-(5) with the t − t̄ splitting (see Table 2
in Appendix A).

mur=174.30:
The value of the renormalization scale. The default value is the
same as the default value of the top-quark mass in MadGraph.

acccut=10∧(-3):
This value is used for the checking the quality of the infrared
cancellations in the generated code upon scanning over all
possible collinear configurations.

Parameters for I-terms

mFlist={ }:
This set lists all heavy quarks which possibly contribute
to the I-terms with a gluon emitter in final state, e.g. as
mFlist={t,b}.

lightflavors=1:
This is the number of the light flavors which contributes to
the I-terms with a gluon emitter in initial and final states.

replistVirtual={ }:
This set enables user defined symbolic replacements to sim-
plify the virtual contribution, e.g. of the type,
replistVirtual={Gamma[1-eps]-> (4*Pi)∧(eps)*somesym-

bol∧(-1)} which results in the replacement, (4π)ε

Γ (1−ε)
=

somesymbol.

sijexpansion=0:
This parameter determines whether the typical factors of di-

mensional regularization like (
4πμ2

2pi ·p j
)ε in the I-terms are ex-

panded (0) or not (1).

Parameters for P- and K-terms

KFSff=0, KFSgg=0, KFSfg=0, and KFSgf=0:
Theses parameters specify the factorization scheme. In the MS
scheme (default choice) they are all vanishing.

lightquarksPK3={u}:
This set specifies all light flavors to be added to the initial
gluon of the reduced Born process in the P- and K-terms (see
group (6) in Table 4 in Appendix A).

muFfort=174.30:
This is the value of the factorization scale μF , which has the
same default value as the renormalization scale μR .

The other parameters which are used by MadGraph are deter-
mined in the file patch/Models/sm/param_card.dat.

The default values for the most important ones are the follow-
ing (in units of [GeV] for masses),

αs = 0.1180
αem = 0.007547169811320755
Top mass = 174.3
Bottom mass = 4.7
W mass = 80.419
Z mass = 91.188
Higgs mass = 120.0

These parameters are used consistently throughout the run of the
package. Any other changes of SM parameters like e.g. G F , the
CKM-parameters, the decay widths of heavy fields, and so on,
are done in the same MadGraph file, param_card.dat. Simi-
larly, also control over all interactions in the SM proceeds entirely
through MadGraph, i.e. through the file, patch/Models/sm/
interactions.dat in the exactly same way as in the normal
use of MadGraph. All MadGraph parameters are explained in [42].

2. Run of package

For general QCD processes (including leptons and SM bosons)
we run AutoDipole by executing the Mathematica command:

GenerateAll[{initial},{final}]

where the sets labeled initial and final contain all external
particles of the respective scattering process. The following fields
are available in the present version of the package:

Fermions:
(u,d,b, t, e−,μ−, ū, d̄, b̄, t̄, e+,μ+) = (u,d,b,t,e,muon,ubar,

dbar,bbar,tbar,ebar,muonbar),

Bosons:
(gluon,photon, W +, W −, Z ,Higgs) = (g,gamma,Wp,Wm,Z,h),

where the right hand side denotes the input format of AutoDipole.
The available quark fields include the first family (u and d-quarks)
which serves as a template for light quarks and, respectively, the
third family (b and t-quarks) as one for heavy quarks. In practice
this suffices as far as the subtraction formalism is concerned, be-
cause generally QCD scattering processes at NLO will be insensitive
to the individual flavor of the quarks, and the sum over all light
quark flavors can be trivially taken afterwards. If one intends to
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study particular channels, e.g. in W ± production, flavor separation
is required, though.

As a result of the run, AutoDipole produces the following infor-
mation about the created dipoles and the I-, P- and K-terms:

– All analytical expressions for the dipole terms are written in
the order given in Table 2 along with the reduced Born process
(emitter,spectator) and the reduced kinematics for each dipole
term. Also, the number of created dipole terms is shown group
by group, namely Dipole 1, 2, 3, and 4 and their subgroups
(see Fig. 3). The number of massive dipole terms is given sep-
arately.

– All soft and collinear limits together with the corresponding
dipole terms are returned.
For example, for the process g(1)g(2) → t(3)t̄(4)g(5)g(6) (see
next Subsection) the fifth collinear limit is denoted Lc(5) =
(5,6): Sc(5) = {17,18,19,20}. This means that the collinear
divergence of the pair (5(g),6(g)) is canceled by the set of the
dipoles, Sc(5) and the set consists of the dipoles number 17,
18, 19, and 20. In the same way, the soft limit and the corre-
sponding dipoles are displayed. E.g. for the soft limit of gluon
5(g), Ls(1) = (5): Ss(1) = {Sc(1),Sc(2),Sc(5),Sc(6),Sc(7)},
which means that the soft divergence of 5(g) is canceled by
the set of the dipoles, Ss(1). This set in turn consists of the
sets of collinear limits Sc(1), Sc(2), and so on.

– The analytical expressions of all I-terms are shown in the or-
der as given in Table 3 prior to the expansion in ε as well as
the individual coefficients of the poles C−2, C−1, and C0 (see
Eq. (3.30)) after the ε expansion. Also the total number of all
created I-terms is displayed by group by group (see Table 3).

– The analytical expressions of all created P- and K-terms are
shown in the order given in Table 4 together with the total
number of P- and K-terms.

– Finally, AutoDipole outputs a summary with the numbers of
all created dipoles, I-, P- and K-terms and the reduced Born
processes.

This information, being rather detailed, helps with the identifica-
tion of individual terms according to the order of creation. The
Mathematica part of AutoDipole provides analytical and symbolic
expressions, which are easily accessible, if needed. These features
are primarily for an experienced user.

Upon running the AutoDipole package it occurs (on purely al-
gorithmic grounds) in some cases though, that a particular re-
duced Born cross section does not exist. For example, the process
e−e+ → uūg does give rise through the dipole 2-(5)-(u, ū) to the
Born process e−e+ → gg , which does not exist at tree level. In
such cases, an error message is displayed:

Reduced Born amplitude B2u does not exist.
Dipole 2u must be switched off.
Please set in the file ./parameter.m
skipdipole={ 2u }

Following the message the user has to modify the command
skipdipole and repeat the Mathematica run. In this way only
the relevant partial subsets of dipole terms is extracted and the
offending Born processes are skipped (thanks to skipdipole)
before calling the MadGraph part.

3. Run and checks of the generated code

Finally, as briefly explained above, the user can run the gener-
ated Fortran code for the regularized real emission process as well
as the I-, P- and K-terms. The checks proceed as follows:

Dipole terms
As mentioned above, the evaluation of the real matrix element
squared |M|2 and the sum of all dipole terms

∑
i D(i) at 10

randomly chosen phase space points as well as the check of
cancellations in all infrared limits for the subtracted matrix
element are automatically executed:

make
./runD

make checkIR
./checkIR

The latter command performs a scan over all possible collinear
configurations. For the expression

|M|2 − ∑
D

|M|2 , (4.1)

cf. Eq. (3.29), it is checked whether the cancellation works at
least to the accuracy defined by the value of the parameter
acccut in the file parameter.m. If the absolute value of the
normalized subtracted squared matrix element in Eq. (3.29)
drops below the pre-defined value of acccut sufficiently
deep in the collinear limit, the message,

Infrared safety of all collinear limits is
confirmed for S_ij/S > ...

is printed.

I-terms
The Fortran code to evaluate all I-terms is collected in the sub-
directory ./Virtual. There, the coefficients of the double
and single poles in the ε expansion C−2, C−1, C0 in Eq. (3.30)
can be evaluated at 10 randomly chosen phase space points
by:

make runI
./runI

This includes in particular the calculation of the double poles
according to

C−2

(αs/2π)|MBorn|2 , (4.2)

and the user can easily confirm that Eq. (3.31) holds.

P- and K-terms
Likewise, the mass factorization terms originating from the P
and K-terms is stored in ./PK and also evaluated at 10 ran-
domly chosen phase space points by the command:

make runPK
./runPK

This concludes our brief description of the user specific features
of the AutoDipole package.

4.4. Examples

The package includes a command to demonstrate the run for
several example processes. This helps to explain the package and at
the same time confirms that the installation was done successfully
and that the package works properly. These examples include the
computation of some of the numbers given in Tables 5 and 6 in
Appendix C. The command
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./lib/sh/check.sh

generates five processes in different kinematics,

1. e−e+ → uūg
2. e−u → e−ug
3. gg → tt̄ gg
4. ug → tt̄ug
5. uū → W +W − gg

provides suitable settings for the parameters of each process and
runs the package. For illustration, we only explain in the follow-
ing those settings which are changed with respect to the default
ones.

The processes from 1 to 4 use a value of αs =
0.1075205492734706 from [36] for the strong coupling constant.
For the processes 1 and 2 the contribution of the Z -boson ex-
change is switched off in the file interactions.dat for sim-
plicity. Moreover, in parameter.m the splitting 2u in process 1
(and 3u in 2) is skipped by the command skipdipole = {2u}
(and skipdipole = {3u} in 2, respectively) to exclude an in-
existent reduced Born process.

For the processes 3 and 4 the QED interaction is switched off in
the file interactions.dat in order to focus on the QCD cor-
rections only. Furthermore, a value of 174 [GeV] for the top mass
is used following [36] and the decay width of the top-quark must
be switched off in the file param_card.dat. For the compari-
son with [36] the t − t̄ splitting is skipped in parameter.m, i.e.
skipdipole ={2t}, and the renormalization and factorization
scales are set equal to the top mass value. For the I-terms five
light flavors are taken into account, lightflavors = 5.

Finally, process 5 uses the following settings [40] in the file
param_card.dat: W -mass = 80.425, αs =
0.1202629003906369, αem = 0.007543595708669335 and Fermi’s
constant G F = 1.16637×10−5, and the decay width of W -boson is
switched off. The results of processes 3, 4, and 5 should reproduce
the corresponding numbers in Tables 5 and 6.

The test run of all examples is finally checked by comparing all
computed values of the dipoles, I-terms, and the averaged matrix
element squared |M|2 for the processes 1 to 5 the with ones in
the data files in ./lib/check/. At the end of the run, e.g. for
example 3, the following message appears:

3.gg_ttxgg
|M|^2(Real) :Confirmed
Dipole :Confirmed
|M|^2(LO) :Confirmed
I-term :Confirmed

This confirms the successful installation and proper functioning
of the package. The generated code for all examples is stored in the
directory ./process as in a usual run and the directory of each
process includes in the file res_std the result of the comparison
with the data files from ./lib/check/. All parameters used for
each process are accessible in param_card.dat, so the user can
also run the respective files individually with usual commands of
the previous subsection.

5. Conclusion

We have presented the package AutoDipole which provides
an implementation of the Catani–Seymour dipole formalism [1,
2] to compute subtracted matrix elements squared in an auto-
matic way. The package (partial aspects of which have been dis-
cussed before [17,18]) consists of essentially three ingredients:

the automatic generation of all dipole terms via Mathematica
routines as well as the calculation of the color-correlated ma-
trix elements and the evaluation of different helicity amplitudes
with the help of MadGraph [3–5] (i.e. a patched stand-alone ver-
sion).

We have presented a complete discussion of the set-up of
the program and the details of our implementation as well as
the numerical evaluation of the squared matrix elements. Partic-
ular emphasis has been put on explaining the use of AutoDipole
which has been illustrated with sufficiently non-trivial examples.
The finiteness in the soft and collinear limits has been demon-
strated for a large number of processes in e+e− , ep and pp-
scattering. Also, checks for the complete set of dipoles have been
performed by comparing to various processes in the recent litera-
ture.

In comparison with other available software to generate sub-
traction terms for the real emission contributions AutoDipole has
a number of advantages. First of all, the algorithm is implemented
in a way so that analytic expressions are generated which are ac-
cessible to symbolic manipulation. Then, the chosen order for the
dipole generation produces flat Fortran code and allows to handle
scattering processes with 2 → 5 and 2 → 6 partons of relevance
for LHC phenomenology including the computation of the CLBS.
Finally, the structure of the package is highly modular and flexible
for further extensions.

Future improvements of the AutoDipole package will address
restricting the dipoles to small regions of phase space, as real-
ized e.g. through α-parameters [43]. This is advantageous when
performing the Monte Carlo integration over the phase space of
the real emission process. The implementation of such cuts af-
fects also the integrated dipoles and the case of massless partons
is available in the literature whereas for the case of massive par-
tons most cases can be found in [44,45]. The remaining integrals
for exhaustive coverage can be done e.g. with the methods of
[32]. Next, the current version of AutoDipole does not cover pro-
cesses with identified hadrons in the final state where one needs
fragmentation. Here, the so-called H-terms have to be taken into
account, which will be implemented in a later version of Au-
toDipole. Finally, the structure of our code is particularly suited
for extensions to physics beyond the Standard Model (BSM). The
main modification needed is the so-called model file of Mad-
Graph, which is currently already available for a large class of
BSM scenarios including e.g. the minimal supersymmetric exten-
sion of Standard Model for which the necessary modifications of
the dipole formalism are known [2]. All the extensions mentioned
above can be easily realized within the existing structure of our
code.

The AutoDipole package is available for download from [41]
or from the authors upon request. The MadGraph package (stand-
alone version) which includes the HELAS library may be obtained
from [42].
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Appendix A. Creation order of subtraction terms

Table 2
The emitter pair is denoted (i, j) or (a, i) and, respectively, the spectator k(�= i, j) or
b(�= a). D is a massless dipole and DM is a massive dipole. The equation numbers
refer to [1] for massless dipoles (D) and to [2] for massive ones (DM). Dipole 2 has
the other flavors, massless down and massive bottom quarks. Dipole 3 and 4 have
also the other light flavors, f = ū,d, d̄.

Emitter Spectator Dipole Condition Eq.

Dipole 1

(1) (i, j) = ( f , g) 1. k Di j,k mi = mk = 0 (5.7) in [1]

DMi j,k mi �= 0 or mk �= 0 (5.16) in [2]

2. b Di j
b mi = 0 (5.39) in [1]

DMi j
b mi �= 0 (5.50) in [2]

(2) (i, j) = (g, g) 3. k Di j,k mk = 0 (5.9) in [1]

DMi j,k mk �= 0 (5.19) in [2]

4. b Di j
b – (5.40) in [1]

(3) (a, i) = ( f , g) 5. k Dai
k mk = 0 (5.65) in [1]

DMai
k mk �= 0 (5.81) in [2]

6. b Dai,b – (5.145) in [1]

(4) (a, i) = (g, g) 7. k Dai
k mk = 0 (5.68) in [1]

DMai
k mk �= 0 (5.85) in [2]

8. b Dai,b – (5.148) in [1]

Dipole 2

(5) (i, j) = ( f , f̄ )

(i, j) = (u, ū) 9u. k Di j,k mk = 0 (5.8) in [1]

DMi j,k mk �= 0 (5.17) in [2]

10u. b Di j
b – (5.41) in [1]

(i, j) = (t, t̄) 9t. k DMi j,k – (5.17) in [2]

10t. b DMi j
b – (5.51) in [2]

Dipole 3

(6) (a, i) = ( f , f )

(a, i) = (u, u) 11u. k Dai
k mk = 0 (5.67) in [1]

DMai
k mk �= 0 (5.83) in [2]

12u. b Dai,b – (5.147) in [1]

Dipole 4

(7) (a, i) = (g, f )

(a, i) = (g, u) 13u. k Dai
k mk = 0 (5.66) in [1]

DMai
k mk �= 0 (5.82) in [2]

14u. b Dai,b – (5.146) in [1]

Table 3
The emitter is denoted i or a and, respectively, the spectator k(�= i) or b(�= a). I is
the massless insertion operator and IM is a massive one. The equation numbers
refer to [1] for massless insertions (I) and to [2] for massive ones (IM). The set of
the heavy-quark masses the running in the quark loop are abbreviated {mF }.

Emitter Spectator I-terms Condition Eq.

(1) i = f 1. k I f (i,k) mi = mk = 0 (C.27) in [1]

IM1(i,k) mi �= 0 or mk �= 0 (6.16) in [2]

2. b I f (i,b) mi = 0 (C.27) in [1]

IM2(i,b) mi �= 0 (6.52) in [2]

(2) i = g 3. k Ig (i,k) mk = {mF } = 0 (C.27) in [1]

IM3(i,k) mk �= 0 or {mF } �= 0 (6.16) in [2]

4. b Ig (i,b) {mF } = 0 (C.27) in [1]

IM4(i,b) {mF } �= 0 (6.52) in [2]

(3) a = f 5. k I f (a,k) mk = 0 (C.27) in [1]

IM5(a,k) mk �= 0 (6.52) in [2]

6. b I f (a,b) – (C.27) in [1]

(4) a = g 7. k Ig (a,k) mk = 0 (C.27) in [1]

IM7(a,k) mk �= 0 (6.52) in [2]

8. b Ig (a,b) – (C.27) in [1]

Table 4
The emitter is denoted a′ and different from spectator b(�= a′). The massless case is
abbreviated K and massive one KM. The equation numbers refer to [1] for massless
insertions (K) and to [2] for massive ones (KM). For the cases Dipole 3 and 4, f can
take the light flavors f = u, ū,d, d̄ and so on.

Emitter pair Spectator P and K Condition Eq.

Dipole 1

(3) (a,a′, i) = ( f , f , g) Kaa′
0 – (C.17) in [1]

5. k Paa′
k – (C.29) in [1]

Kaa′
k mk = 0 (C.31) in [1]

KMaa′
k mk �= 0 or {mF } �= 0 (6.55) in [2]

6. b Paa′,b – (C.29) in [1]

Kaa′,b – (C.33) in [1]

(4) (a,a′, i) = (g, g, g) Kaa′
0 – (C.18) in [1]

7. k Paa′
k – (C.29) in [1]

Kaa′
k mk = 0 (C.31) in [1]

KMaa′
k mk �= 0 or {mF } �= 0 (6.55) in [2]

8. b Paa′,b – (C.29) in [1]

Kaa′,b – (C.33) in [1]

Dipole 3

(6) (a,a′, i) = ( f , g, f )

(a,a′, i) = (u, g, u) Kaa′
0 – (C.15) in [1]

11u. k Paa′
k – (C.29) in [1]

KMaa′
k mk �= 0 (6.55) in [2]

12u. b Paa′,b – (C.29) in [1]

Kaa′,b – (C.33) in [1]

Dipole 4

(7) (a,a′, i) = (g, f , f̄ )

(a,a′, i) = (g, u, ū) Kaa′
0 – (C.16) in [1]

13u. k Paa′
k – (C.29) in [1]

KMaa′
k mk �= 0 (6.55) in [2]

14u. b Paa′,b – (C.29) in [1]

Kaa′,b – (C.33) in [1]

Appendix B. Correlation functions of gluon emitter

We use the following definitions of spinor products [37]:

〈k1k2〉 =
√

k−
1 k+

2 e+iφ(k1) −
√

k+
1 k−

2 e+iφ(k2) (B.1)

k± = |
k| ± kz (B.2)

e+iφ(k) = k⊥
|k⊥| (B.3)

k⊥ = kx + iky (B.4)

If the reduced momentum of the initial gluon emitter lies in z-axis
with l = El(1,0,0,±1) the spinor product are defined as 〈pi p̃ai〉z

to avoid an ambiguity in the intermediate steps of the calculation,

〈kl〉z =
{√

2Elk−e+iφ(k) (El = lz)

−√
2Elk+ (El = −lz)

(B.5)

z〈l1l2〉z =
{−2

√
E1 E2 (E1 = l1z and E2 = −l2z)

2
√

E1 E2 (E1 = −l1z and E2 = l2z)
(B.6)

The explicit forms of e+iφ(k)E+ in Eq. (3.23) are shown for all
massless and massive dipoles with a gluon emitter. Here we write
the quantity including the phase difference as E′+ = e+iφ(k)E+ . The
reduced momenta are ones used in the corresponding equations
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in [1,2], which are shown in Table 2. The p̃i j1 and p̃ai are massless
and the ˜pMij are massive ones.

B.1. Massless momenta

[Dipole 1-(2)-3(mk = 0) and Dipole 2-(5)-9u(mk = 0)]

E1′+ = e+iφ(p̃i j)
zi〈p j pi〉〈p̃i j pi〉�√

2〈p j p̃i j〉
(B.7)

[Dipole 1-(2)-4 and Dipole 2-(5)-10u(mk = 0)]

E2′+ = e+iφ(p̃i j)
zi〈p j pi〉〈p̃i j pi〉�√

2〈p j p̃i j〉
(B.8)

[Dipole 1-(4)-7(mk = 0) and Dipole 3-(6)-11u(mk = 0)]

E3′+ = 〈pi pk〉〈pk p̃ai〉�z√
2(1 − ui)〈pi p̃ai〉z

(B.9)

[Dipole 1-(4)-8 and Dipole 3-(6)-12u]

E4′+ = −sai〈pi pb〉z z〈p̃ai pb〉z√
2sab〈pi p̃ai〉z

(B.10)

B.2. Massive momenta

[Dipole 1-(2)-3((mk �= 0)) and Dipole 2-(5)-9u((mk �= 0))]

E M1′+ = e+iφ( ˜pMij)
z(m)

i 〈p j pi〉〈 ˜pMij pi〉�√
2〈p j ˜pMij〉

(B.11)

[Dipole 2-(5)-9t]

E M1′
9t+ = e+iφ( ˜pMij)

z(m)
i 〈p�

j p�

i 〉〈 ˜pMij p�

i 〉�√
2〈p�

j
˜pMij〉

(B.12)

with flat momentum

p�

i( j) = pi( j) − m2
i( j)

2pi( j) · ˜pMij

˜pMij (B.13)

[Dipole 2-(5)-10t]

E M2′+ = e+iφ( ˜pMij)
zi〈p�

j p�

i 〉〈 ˜pMij p�

i 〉�√
2〈p�

j
˜pMij〉

(B.14)

with

p�

i( j) = pi( j) − m2
i( j)

2pi( j) · ˜pMij

˜pMij (B.15)

[Dipole 1-(4)-7((mk �= 0)) and Dipole 3-(6)-11u((mk �= 0))]

E M3′+ = 〈pi p�

k〉〈p�

k p̃ai〉�z√
2(1 − ui)〈pi p̃ai〉z

(B.16)

with

p�

k = pk − m2
k

2pk · p̃ai
p̃ai (B.17)

Appendix C. Comparison with the tt + 1 jet

Table 5
The results of the |M|2 and the sum of all dipole terms are shown. The two imple-
mentations agree at least to 14 digits for the matrix elements squared and at least
to 12 digits for the sum of the subtraction terms. The phase space point used in
the last entry corresponds to the first one in ./lib/check/check5_uux_w+w-
gg/inputm_uux_w+w-gg.h.

b0 [GeV−4] d0 [GeV−4]

g(pa)g(pb) → t(pt )t̄(pt̄ )g(pc)g(pd)

AutoDipole 7.82039670869613 · 10−10 1.02594003852407 · 10−9

Ref. [36] 7.82039670869604(1) · 10−10 1.02594003852396(2) · 10−9

q(pa)q̄(pb) → t(pt )t̄(pt̄ )g(pc)g(pd)

AutoDipole 1.12077211361620 · 10−10 1.22619016939900 · 10−10

Ref. [36] 1.12077211361619(0) · 10−10 1.22619016939909(1) · 10−10

q(pa)g(pb) → t(pt )t̄(pt̄ )g(pc)q(pd)

AutoDipole 2.75641273146785 · 10−11 4.79768338384667 · 10−11

Ref. [36] 2.75641273146783(0) · 10−11 4.79768338384625(3) · 10−11

q̄(pa)g(pb) → t(pt )t̄(pt̄ )q̄(pc)g(pd)

AutoDipole 3.46150168295956 · 10−11 8.34555795894942 · 10−11

Ref. [36] 3.46150168295954(1) · 10−11 8.34555795894963(2) · 10−11

g(pa)g(pb) → t(pt )t̄(pt̄ )q̄(pc)q(pd)

AutoDipole 1.21420520114780 · 10−11 2.13553289076589 · 10−11

Ref. [36] 1.21420520114779(0) · 10−11 2.13553289076550(3) · 10−11

q(pa)q̄(pb) → t(pt )t̄(pt̄ )q̄(pc)q(pd)

AutoDipole 5.13710959990068 · 10−12 9.06330902408356 · 10−12

Ref. [36] 5.13710959990064(1) · 10−12 9.06330902408275(3) · 10−12

u(pa)ū(pb) → W +(pw+ )W −(pw− )g(pc)g(pd)

AutoDipole 0.627402537098012 · 10−9 0.114149934878320 · 10−8

Ref. [40] 0.627402537098007 · 10−9 0.114149934878319 · 10−8

Table 6
The coefficients for the color and spin averaged results for the I-operator. At least 14 digits agreements are obtained.

c−2 c−1 c0

gg → tt̄ g
AutoDipole 2.49467966948003 · 10−4 3.68989776683705 · 10−4 −4.05387364353899 · 10−4

Ref. [36] 2.49467966948004(1) · 10−4 3.68989776683706(1) · 10−4 −4.05387364353900(1) · 10−4

uū → tt̄ g
AutoDipole 1.38499897972387 · 10−5 2.88738914389178 · 10−5 −1.56576469322102 · 10−5

Ref. [36] 1.38499897972387(0) · 10−5 2.88738914389179(1) · 10−5 −1.56576469322102(0) · 10−5

ug → tt̄u
AutoDipole 3.84580760674706 · 10−6 7.73777480040817 · 10−6 −5.19929995897616 · 10−6

Ref. [36] 3.84580760674706(0) · 10−6 7.73777480040817(1) · 10−6 −5.19929995897616(1) · 10−6

gū → tt̄ū
AutoDipole 6.22738241305372 · 10−5 6.81530745255038 · 10−5 −1.52377227863896 · 10−4

Ref. [36] 6.22738241305372(0) · 10−5 6.81530745255037(1) · 10−5 −1.52377227863896(0) · 10−4
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