
Monte Carlo Simulations of Spin Systems on Multi-core Processors

Marco Guidetti∗1, Andrea Maiorano†2, Filippo Mantovani‡3, Marcello Pivanti§1, Sebastiano Fabio
Schifano¶1, and Raffaele Tripiccione‖1

1University and INFN Ferrara, I-44100 Ferrara (Italy)
2University of Roma La Sapienza, I-00100 Roma (Italy)

3Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany

Abstract We implement Monte Carlo algorithms for the sim-
ulation of spin-glass systems and optimize our codes for recent
multi-core CPU and GPU architectures. We consider both the
Ising (binary) and Heisenberg (floating-point) spin-glass models.
We provide performance figures for the Intel Nehalem and the
IBM Cell/BE CPUs and the Nvidia Tesla C1060 GPU; we also
draw a comparison with the performance of dedicated machines,
such as the Janus system.

Keywords Monte Carlo Simulations, Multi-core Architectures,
Spin-Glass Systems

1 Introduction
Spin models are ubiquitous in statistical mechanics, in-
teresting both as descriptions of the properties of several
condensed-matter systems and as a paradigm of complex-
ity. The study of the properties of these systems depends
critically on numerical Monte Carlo simulations. The
computational effort associated to this task is extremely
large: a state of the art simulation requires computing re-
sources in the order of tens of thousands of CPU- years.
This is made possible by the exploitation of the large
amount of parallelism available in the computation com-
bined, for the largest simulations performed in the recent
past, with the use of carefully optimized application-driven
machines. While a custom solution is still the most per-
forming, the advent of new generation processors (such
multi-core CPUs and GPUs) offers new opportunities to
tackle these simulations. In this paper we assess the effi-
ciency of these architectures for this computational prob-
lem and compare with the performance of dedicated sys-
tems.

Spin model are defined in terms of (generalized)-spins,
variables defined on the sites i of a discrete hyper-cubic D-
dimensional lattice of linear size L. For discrete models,
spins have values in a finite (usually small) set of numbers;

∗Email: guidetti@fe.infn.it
†Email: andrea.maiorano@roma1.infn.it
‡Email: filimanto@gmail.com
§Email: pivanti@fe.infn.it
¶Email: schifano@fe.infn.it
‖Email: tripiccione@fe.infn.it

in the simplest case (the Ising model) they take just two
values, si = ±1, i = 1 · · ·N = LD. For continuous models,
spins are real variables; in the Heisenberg model, each spin
is a 3D vector of unit length si defined at each site of the
lattice. A configuration Ck is the set of spins s(k)

i for all
lattice sites.

The Monte Carlo dynamics of these systems is governed
by simple energy functions:

E(Ck) =−∑Ji js
(k)
i s(k)

j (1)

The sum is taken only on nearest neighbor pairs of sites on
the lattice, characterized by interaction parameters Ji j. The
term sis j is a suitably defined scalar product (e.g., the usual
scalar product for Heisenberg spins or simply si xor s j for
the Ising model. The energy function determines the prop-
erties of the system. Spin configurations are distributed
according to the Boltzmann distribution

P(Ck)∼ e−βE(Ck), (2)

corresponding to the probability of the configuration for a
system kept at a temperature T = 1/β .

Monte Carlo algorithms explore the space of configu-
rations, generating random configurations Ck with proba-
bility in accordance with 2 (see e.g., [1] for an overview).
Statistical averages of observables over the configurations,
O(Ck), formally defined as

〈 O 〉 = ∑
Ck

O(Ck)P(Ck), (3)

can therefore be estimated as

〈 O 〉 ' ∑
CM

O(CM) (4)

where CM labels the configurations produced by the Monte
Carlo procedure. Monte Carlo algorithms proceed by ten-
tatively replacing the values of the spin at each site of the
grid, following appropriate rules (see again [1]) that de-
pend on the contribution of that spin to energy. The key
point is that energy depends only on the value of the spin

Para 2010 – State of the Art in Scientific and Parallel Computing – extended abstract no. 34
University of Iceland, Reykjavik, June 6–9 2010
http://vefir.hi.is/para10/extab/para10-paper-34.pdf

guidetti@fe.infn.it
andrea.maiorano@roma1.infn.it
filimanto@gmail.com
pivanti@fe.infn.it
schifano@fe.infn.it
tripiccione@fe.infn.it

Algorithm 1 Bit-wise algorithm to update one spin
Require: ρ pseudo-random number
Require: ψ = min{3, int(−(1/4β) logρ)}{encoded on

two bits}
Require: η = (not Xi){encoded on two bits}

1: c1 = ψ[0] and η [0]
2: c2 = (ψ[1] and η [1]) or ((ψ[1] or η [1]) and c1)
3: σ ′i = σi xor (c2 or not Xi[2])

and its nearest neighbors, so a very large amount of paral-
lelism is available: if we consider a checkerboard partition
of the grid we can update in parallel all white (or black)
sites.

The values of the couplings Ji j govern the properties of
the system. If all Ji j are equal (and positive) these mod-
els describe the well-known behavior of a ferromagnetic
material. If on the other hands the Ji j are randomly ex-
tracted (from a bimodal distribution Ji j =±1 for the Ising
model, from a Gaussian distribution with zero mean for
the Heisenberg model) we have a true spin-glass model. A
ferromagnet at zero temperature will run into one of the
two fully magnetized states (all spins aligned in the same
direction). At finite temperature it still has two opposite
(partially) magnetized states corresponding to (free) en-
ergy minima, and can eventually transition between them.
For the spin-glass cases (randomly selected Ji j) the situ-
ation is more complex: due to concurrent couplings the
energy landscape becomes rugged, and the time needed
to overcome barriers between minima grows exponentially
with system size; this is the main reason why simulations
are so time consuming.

There are two different opportunities for parallelism in
the simulation of these systems: first, we are physically
interested in averages of the properties of the system over
a large number of independent instantiations of the cou-
plings (we call each such instantiation a sample); this im-
plies a large number of independent simulations of systems
that do not interact among them. We call this trivial (but
useful) parallelism external. The second avenue for par-
allelism (we call it internal) exploits the opportunities –
described before – of the Monte Carlo dynamics of each
system. The challenge is then combining both opportuni-
ties in the most efficient way for each architecture.

2 Simulation Algorithm
In this section we discuss ways to exploit the parallelism
outlined in the previous section. A first approach to in-
ternal parallelism is instruction-level, using SIMD instruc-
tions within each computing-core, and processing several
spins in parallel. A further level of internal parallelism ex-
ploits data-level parallelism, partitioning the whole lattice
across the cores, and updating each sub-lattice in parallel.
In the following, we show how these options can be best
combined for a few target architectures, for both discrete
and continuous models.

2.1 Simulation Algorithms for the Ising Spin-Glass

Spin values for binary models can be coded in just one
bit, while CPUs operate on long words of k bits (e.g., k =
32,64,128), so it is useful to combine internal and exter-
nal parallelism. We proceed by mapping V (V = 2, . . . ,16)
binary-valued spins of w = k/V lattice samples on a single
CPU-word. We then use SIMD instructions to update in
parallel V spins for each of w independent lattices, so we
compound an internal parallelism of degree V and an ex-
ternal parallelism of degree w. We have used this approach
first for the IBM/Cell processor (see [2] for details) and
then ported it to the Intel architecture, using SSE instruc-
tions.

The actual steps of the algorithm (apart from random
number generation) are first formally optimized to just a
handful of logic operations, described by algorithm 1 (see
again [2] for details); we also replace the computation of
the logarithm with an access to a look-up table. The main
advantages of this scheme are that it exploits the SIMD
capabilities of the architecture leveraging on internal and
external parallelism and that it does not use conditional
statements, badly impacting on performance.

So far, we have discussed how to exploit instruction-
level parallelism within a core. We now consider how to
exploit multi-core parallelism. The idea is to divide the
whole lattice into sub-lattices, and assign each partition to
a different core. We split the lattice in C sub-lattices of
contiguous planes (C is the number of cores), and we map
each sub-lattice of L×L×L/C sites onto a different core.
Each thread, running on a different core, executes the pro-
gram defined by a loop in which it first updates all its white
spins and then updates all the black ones. White and black
spins are stored in data-structures called half-planes, each
housing L2/2 spins. Each core updates the half-planes of
one color performing the steps described by algorithm 2.
Each core houses a sub-lattice plus the boundary planes
with the adjoining sub-lattices, which have to be updated
at end of a sweep of the sub-lattice. Before performing
such operation, the cores must be synchronized.

On the Cell processor the details of the implementation
vary if the full simulation data-base stays within the local
store of the cores of if DMA operations have to be care-
fully scheduled to move data from/to main memory. For
this reason, performances vary significantly as a function
of the lattice size (see later). On the Intel Nehalem proces-

Algorithm 2 Program of each thread
1: update the boundaries half-plane (indexes (0) and

((L3/C)−1)).
2: for all i ∈ [1..((L3/C)−2)] do
3: update half-planes (i)
4: end for
5: exchange half-plane (0) to the previous core and half-

plane ((L3/C)−1) to the next core.

Algorithm 3 program of the host for a GP-GPU simulation
1: loop {loop on Monte Carlo steps}
2: MCupdate(black)
3: updateBorder()
4: MCupdate(white)
5: updateBorder()
6: end loop

sor, memory is shared (through a common L3 cache) so
the implementation is conceptually simpler. We have im-
plemented and compared the simulation program against:

• different libraries to handle intra-cpu parallelism:
openMPI, openMP and pthread.

• shared and distributed memory allocation. In the
shared case, the threads share the same data struc-
ture allocated by the main program, while in the dis-
tributed case each core copies the data items that it
needs into a private structure.

• different compilers: we have used both gcc and icc,
the Intel C compiler.

We obtain the best results using the pthread library, a
distributed memory allocation, and the icc compiler, (per-
formance gain is of the order of 10− 15%, compared to
the other options). We also find that a synchronization
performed by active waiting is slightly better than a syn-
chronization by pthread mutex-variables. The program has
been written using intrinsic functions to map operations
directly to SSE instructions, and can be compiled with a
variable number of threads and variable degree of internal
parallelism . Simulation on GP-GPU use the same update
algorithm used for CPUs, but the structure of the compu-
tation is slightly different. Following the CUDA termi-
nology, a 3D lattice of side L is divided into a 2D-grid of
(L/2×L/2) sub-lattices. Each sub-lattice is a 3D-grid of
(2× 2× L) sites. This partition has been chosen for the
following main reasons:

• ensure that each block fits on registers and shared
memory of the GPU streaming multiprocessors (SM),
for the most relevant sizes of L = 16 . . .128,

• generate many blocks to keep active as long as possi-
ble each SM and hide memory access latencies,

• generate a large number of warps (groups of 8 in-
structions that can be executed in parallel) per SM to
exploit memory coalescing, in order to improve the
bandwidth between the SM and the memory.

The main simulation-program runs on the host, copies the
lattice on the global memory of the GPU – replicating the
surface planes – and launches several GPU kernels as de-
scribed by algorithm 3. The MCupdate() kernel is invoked
to update the white or black spins. As we need to update

Algorithm 4 program of the GP-GPU
Require: color = {black, white}

1: load a set of (4×4×L) points
2: apply MC-step to bulk’s points
3: save bulk to memory {required to sync blocks}

L3/2 sites, the kernel runs on a thread-array configured as a
2D-grid of (L/2×L/2) blocks, where each block is config-
ures as a 3D-array of (2×2×L)/2 threads. This configu-
ration allows to have all threads of the block running while
the update step is performed. The updateBorder() kernel
is invoked on a grid of L blocks of L threads; it updates the
surface planes of the lattice by performing memory copies
in parallel .

The code executed by the GPU is organized as shown
by algorithm 4.

Each block loads a sub-lattice of (4× 4× L) sites, in-
cluding the bulk of spins to update, plus the planes of
neighbors necessary for the Monte Carlo update step. As
each block has been configures as a 3D-grid of (2× 2×
L)/2 threads, this step is performed by 8 coalesced mem-
ory read operation. Each thread then applies the Monte
Carlo update step to a single site, and stores the new value
to memory. In our implementation we also used the multi-
spin coded approach described above. We used one 32-
bit word to map one spin plus the value of three coupling
variables. This mapping allows to run in parallel up to 8
different simulations.

2.2 Heisenberg Simulation
The Heisenberg model, as outlined in the introduction, re-
quires floating point maths. Accuracy on long simulations
requires that double precision be used throughout. As in
the Ising model, we have exploited instruction parallelism
by updating in parallel two non-adjacent spins using SIMD
instructions, and data parallelism by dividing the lattice in
C sub-lattices, where C is the number of cores, each one
housing (L×L×L/C) spins. We have developed one im-
plementation for the Intel Nehalem processor and, one for
the Nvidia Tesla C1060 GPU.

On the Intel processor we use the pthread library to
manage parallelism among the cores and the gcc compiler,
as it allows to define vector variables; operations on such
variables are automatically mapped on SSE instructions
that update in parallel two non-adjacent spins of the sub-
lattice. We also use vector versions of the log and exp
functions – heavily used in this code – using intrinsics in-
structions.

On the GPU we follow the same approach of the binary
case, but the structure of the thread-array is slightly more
complex. As in the binary case, each block updates a sub-
lattice of (2× 2× L) sites, but due to larger register and
shared memory requirements to store the variables of the
model, the update procedure is performed by dividing the
sub-lattice in blocks of (2×2×k) sites. The value of k that

3D Edwards Anderson Model SUT (ns/spin)
L Janus I-NH Cell-BE Tesla C1060
16 0.0016 1.00 0.83 8.48
32 0.0016 0.24 0.40 1.56
48 0.0016 0.32 0.48 1.16
64 0.0016 0.18 0.29 0.72
80 0.0016 0.19 0.82 0.88
96 – 0.32 0.42 0.86
128 – 0.18 0.12 0.64

Table 1: System update time for the 3D Edwards Ander-
son (binary) model.

3D Heisenberg Model SUT (ns/spin)
L I-NH GHz Tesla C1060
16 55.4 DP –
32 38.0 DP 34.4 SP / 139.0 DP
48 32.5 DP 29.6 SP / 134.8 DP
64 29.6 DP 31.0 SP / 131.5 DP
80 29.9 DP 28.3 SP / 130.7 DP
96 30.8 DP 29.2 SP / 129.6 DP

128 30.5 DP 28.9 SP / 129.1 DP

Table 2: System update time for the 3D Heisenberg
model (SP=single precision, DP=double precision).

uses up all available memory space on the GPU stream-
ing multiprocessor depends on the lattice size L, however
k = 16 is an acceptable choice for most physically relevant
values of L. Our code has been tested on the Nvidia Tesla
C1060 GPU.

3 Results, Comparison and Conclusions
In this section we compare performance results for the
codes and the machines described above. Our benchmark
for the binary case is the Janus special-purpose machine,
[3], currently the most powerful system available for this
class of simulations (Janus, on the other hand, does not
support floating-point arithmetics).

For the GPU case, we also quote results for single-
precision versions of the code. Indeed, the Tesla C1060
system has rather poor support for double precision, while
the recently announced Nvidia Fermi [7] architecture does
support efficiently double precision: we regard our SP re-
sults as educated guesses of what the Fermi architecture
may achieve in DP.

We present results using two metrics relevant for physics
applications; system spin update time (SUT) is the average
time needed by the Monte Carlo procedure to update one
spin of one system, while global spin update time (GUT)
is SUT divided by the number of replicas that the simula-
tion handles concurrently. SUT is a measure of how well
we exploit internal parallelism, while GUT measures both

internal and external parallelism. According to the physics
program underlying the simulation, either of the metrics
(or both) are relevant.

In table 1 and 2 we report our results for the SUT metric.
The corresponding GUT values will be presented in the
full paper. Some comments are in order:

• Multi-core and GPU architectures have roughly sim-
ilar performance levels for this class of applications
(both binary and floating-point models), even if cor-
responding peak performances differ by one order
of magnitude. We believe that this is due mainly
to memory-bandwidth problem and synchronization
overheads.

• Widely different multi-core architectures produce
performances that hardly differ for more than a factor
4. Performance for the Cell/BE is strongly dependent
on lattice size, as the schedule of data transfers to the
local store has a strong impact; this effect is less se-
vere for the Nehalem CPU (performance of the latter
CPU however drops, in the binary case, as soon as
the L3 cache is not large enough for the simulation
data-base).

• New architectures reduce by one order of magnitude
the gap between special-purpose and commercial sys-
tems. However the former machines still have an edge
of at least two order of magnitudes.

References
[1] D. P. Landau and K. Binder, A Guide to Monte Carlo Sim-

ulations in Statistical Physics, Cambridge University Press
(2005)

[2] M. Guidetti, A. Maiorano, F. Mantovani, S. F. Schifano,
and R. Tripiccione, Spin Glass Monte Carlo Simulations
on the Cell Broadband Engine. Proceedings of PPAM09
conference, to appear on LNCS Vol. 6067 and 6068

[3] F. Belletti et al. JANUS: an FPGA-based System for High
Performance Scientific Computing. Computing in Science
and Engineering, 11 (2009), 48-58.

[4] IBM Cell Broadband Engine Architecture,
http://www-128.ibm.com/developerworks/power/
\cell/documents.html

[5] Inside Nehalem: Intel’s Future Processor and System,
http://www.realworldtech.com/page.cfm?
\ArticleID=RWT040208182719

[6] NVIDIA’s GT200: Inside a Parallel Processor,
http://www.realworldtech.com/page.cfm?
\ArticleID=RWT090808195242

[7] Inside Fermi: Nvidia’s HPC Push,
http://www.realworldtech.com/page.cfm?
\ArticleID=RWT093009110932

http://www-128.ibm.com/developerworks/power/\cell/documents.html
http://www-128.ibm.com/developerworks/power/\cell/documents.html
http://www.realworldtech.com/page.cfm?\ArticleID=RWT040208182719
http://www.realworldtech.com/page.cfm?\ArticleID=RWT040208182719
http://www.realworldtech.com/page.cfm?\ArticleID=RWT090808195242
http://www.realworldtech.com/page.cfm?\ArticleID=RWT090808195242
http://www.realworldtech.com/page.cfm?\ArticleID=RWT093009110932
http://www.realworldtech.com/page.cfm?\ArticleID=RWT093009110932

