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a b s t r a c t

Coherent diffraction imaging of single biomolecules is expected to open unique opportunities for

studies of non-crystalline samples. There are, however, still many technical and physical issues that

need to be resolved in a more quantitative manner, especially if one aims for structural information at

high resolution. Signal recorded from an object after a single shot is low. As primarily proposed in

Spence and Doak (2004) and Huldt et al. (2003) [1,2], averaging over the diffraction patterns from many

different shots is necessary, in order to achieve a signal-to-noise ratio sufficient for image reconstruc-

tion. The images of the randomly oriented molecules have to be sorted out in order to identify those

corresponding to the similar spatial orientations of the objects. This procedure is called the classifica-

tion of diffraction images. Here we approach the classification in the framework of pattern-to-pattern

correlations, and analyse theoretically the correlations between diffraction images of differently

oriented objects.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

X-ray free-electron lasers (FELs) are expected to open new
horizons for structural studies of biological systems, especially for
studies of non-crystalline samples, such as viruses or living cells.
In general, radiation damage limits the accuracy of the structure
determination of biological particles in standard diffraction
experiments. However, computer simulations of damage forma-
tion have strongly suggested [3–7] that radiation tolerance may
be extended to very high doses with ultrafast exposures, as will
be possible with the presently operating and developing X-ray
FELs, such as LCLS, SCSS, and the European XFEL. This is due to
their photon pulses being of a shorter duration than the time
atoms require to move a distance comparable to the required
resolution. This improved radiation tolerance indicates the pos-
sibility of recording images of single biological particles at high
resolution without the need to amplify scattered radiation
through Bragg reflections. This application of FELs could have a
tremendous impact on structural studies at both the molecular
and cellular level, with profound implications for biology and
medicine. Recent experiments performed at FLASH [8,9] have
demonstrated the proof of this imaging principle.
ll rights reserved.

hysics, Radzikowskiego 152,
There are, however, still many technical and physical issues
that need to be resolved in a more quantitative manner, especially
if one aims for structural information at high resolution. Signal
recorded from an object after a single shot is low. As primarily
proposed in Refs. [1,2], averaging over the diffraction patterns
from many different shots is necessary, in order to achieve a
signal-to-noise ratio sufficient for image reconstruction. The
alternative way is to diffract light from many identical objects
during one shot. In both cases it is crucial that the imaged objects
have the same spatial orientation towards the laser beam.

If the molecules cannot be aligned, the images of randomly
oriented molecules have to be sorted out in order to identify those
corresponding to the similar spatial orientations of the objects.
This procedure is called the classification of diffraction images.
Various techniques of classification have been proposed so far
[2,10–12]. Here we will restrict to the framework of simple
pattern-to-pattern correlations. Correlations between diffraction
images give an estimate of an ‘orientational distance’ between
differently oriented objects. In what follows we address the
theoretical question about the origin of the correlations between
different patterns. In particular, we predict the Gaussian profile of
the average correlation function which is a consequence of
underlying Wilson statistics [13], and show that this profile is
maintained in simulation of diffraction images obtained from a
realistic biological sample (a small virus). Moreover, we demon-
strate that the width of the Gaussian profile that corresponds to
the angular (orientational) resolution is determined only by the
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virus structure. It is unaffected by a random water layer sur-
rounding the virus or a Poissonian noise. This indicates that the
classification of diffraction images within the pattern-to-pattern
scheme is not significantly perturbed by these effects, and there-
fore still possible.
2. Analysis of correlations between diffraction patterns

We consider angular correlations of two diffraction patterns
from objects in different spatial orientations. Our aim is to show
that a simple model based on random atom positions is sufficient
to account for essential features of these angular correlations.

The intensity diffracted from an object can be calculated with
the following formula:

IðqÞ ¼ r2
eFinOpix

XN

i ¼ 1

fiðqÞe
iq�ri

�����
�����
2

, ð1Þ

where q is the wave-transfer vector; fi are the atomic form factors
for each element species; re is the classical radius of the electron;
Fin is the photon fluence, and Opix is the solid angle for one pixel.

In order to quantify the possible loss of orientational and
structural information, the q-dependence of the correlation of 2D
diffraction patterns for different relative angular object orientations,
a, is calculated by analogy to a similar analysis in Ref. [12], as

Gða,qÞ �
~Iða,qÞ � ~Ið0,qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/~Iða,qÞ2S
q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/~Ið0,qÞ2S

q , ð2Þ

with ~Iða,qÞ ¼ Iða,qÞ�/Iða,qÞS. The average is defined as

/Iða,qÞS¼ ð2pÞ�1 R 2p
0 dfqIða,qÞ. The angle a denotes the rotation

angle around an arbitrary axis defined by a unit vector, n. The angle,

fq is the azimuthal angle of vector q in the q plane. Fig. 1 shows the

geometry. Let us assume that the object consists of N atoms, located

at positions ri, where i¼ 1, . . . ,N. For simplicity we consider a

monoatomic object, where scattering factors: fiðqÞ � f ðqÞ for

i¼ 1, . . . ,N. The intensity of diffracted signal then reads:

IðqÞ ¼ jf ðqÞj2r2
eFinOpix

XN

i ¼ 1

eiq�ri
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�����
2

, ð3Þ

and can be further rewritten:

IðqÞ ¼ jf ðqÞj2r2
eFinOpix

XN

i,j ¼ 1

eiq�rij , ð4Þ
q
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Fig. 1. Geometry of diffraction imaging. Beam axis corresponds to z-axis. Wave-

transfer vector q lies in the XY-plane (small angle approximation).
where rij¼rj�ri, and the scalar product of q and rij:

q � rij ¼ q � rij sinyij cosðfq�fijÞ, is evaluated, using the spherical

coordinates of the vector rij.
Below we estimate the average correlation between the

diffraction pattern of an object and the diffraction pattern of an
object rotated around the beam axis (z-axis) by an angle a. A
similar derivation can be performed for the rotation by an angle
around an arbitrary axis with more complicated formula resulting
(not shown here). The average correlation, /Gða,qÞS, can be
approximated by the ratio of averages:

/Gða,qÞS¼
/~Iða,qÞ � ~Ið0,qÞSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/~Iða,qÞ2S
q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/~Ið0,qÞ2S

q : ð5Þ

This is further evaluated with the help of relations:

/Ið0,qÞS¼/Iða,qÞS¼ jf ðqÞj2r2
eFinOpix

XN

i,j ¼ 1

J0ðqrij sinyijÞ, ð6Þ

and

/Ið0,qÞIða,qÞS¼ ðjf ðqÞj2r2
eFinOpixÞ
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Below we evaluate numerically the average correlation, Eq. (5), for
the object consisting of 100 atoms randomly located (i) on a sphere
(hollow sphere) of a fixed radius and (ii) within a ball (solid sphere)
of a fixed radius. The results are shown in Fig. 2. As the average
distance between these randomly distributed 100 atoms is large,
reliable fits can be obtained only for small values of q (qo0:5).

Fig. 2 shows that the Gaussian-like dependence of the average
correlation function can be parametrized as

/Gða,qÞS¼ aðqÞe�a
2=2bðqÞ2þcðqÞ, ð8Þ

with q-dependent fitting parameters a, b and c. This exponential
behaviour can be understood within the framework of our simple
theoretical model, and is directly related to the underlying Wilson
statistics [13]. If the number of atoms within an object is large, their
positions can be treated as ‘random’, and the central limit theorem
can be applied to a global distribution of random variables depend-
ing on the object positions [13].

Assuming the large number of atoms, and their random locations
within the object, one can introduce a continuous probability
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distribution for describing the atomic positions, and estimate the
average value of pattern-to-pattern correlation to follow Eq. (8) (for
details see Appendix). In this limit the estimated parameter b(q)
then corresponds accurately to the half of the Shannon angle, aS,
aS ¼ ð2R0q=2pÞ�1, where R0 is the molecule radius. The Shannon
angle denotes the q-dependent angular span of a Shannon speckle
on the detector. The minimum rotation distance required to
distinguish two speckles corresponds to half of the Shannon angle.
The Shannon angle is therefore the natural unit of angular resolution
(similarly to the definition of resolution in optical microscopy).

Fig. 3 shows the plots of the q-dependence of the fitting
parameter b(q) for 100 atom-object. In this case statistical fluc-
tuations are large, and the value of b(q) only approaches half of
the Shannon angle.

In the next section we simulate diffraction images from a
biological sample in order to show that also the diffraction images
obtained with a realistic large molecule are correlated, following
Eq. (8). The obtained angular resolution is determined with a very
good accuracy by half of the Shannon angle.
STNV at different orientations; (2) STNV particle with water layers of 1.5 nm

average thickness each from a different MD simulation; correlation between

noise-free patterns for different orientations; (3) correlation as in (1), but patterns

include Poisson noise at level of photon flux 1015 photons/mm2 per pulse; (4) WL +

PN contributions are included. Error bars show estimated variance obtained for

different absolute orientations and due to Poisson noise. The fitting function

presented in Eq. (8) fits well the averaged correlation curves.
3. Correlations between diffraction images of a rotated virus

So far we have tried to understand the origin of correlations,
considering the simplest case of a monoatomic sample. For this
specific case we used Eqs. (6) and (7). For more complicated
systems direct simulations of diffraction patterns are necessary.
Below we study the correlations between diffraction images of a
realistic biosample, as considered in [14].

The test object for the simulations was the Satellite Tobacco
Necrosis virus (STNV), whose capsid structure has been solved by
X-ray crystallography [15] (Protein Data Bank ID: 2BUK): object size
� 17 nm, � 0:18 M atoms, icosahedral symmetry. Figs. 4 and 5
show that for a pure virus the average correlation between different
patterns is Gaussian, and it follows Eq. (8). The obtained Gaussian
width, i.e. the angular resolution, is determined with a very good
accuracy by the half of the Shannon angle.

In a realistic case the information contained in the diffraction
images is additionally perturbed by the Poissonian noise. Also, as
discussed in [14], the bioparticles injected into an FEL beam by
spraying techniques are covered by an evaporating water layer
[16]. A thick layer of water around the imaged object is con-
sidered to be a method of slowing down the radiation damage, i.e.
slowing the movement of ions due to repulsive Coulomb forces
within the irradiated sample [17]. In order to test the possible loss
of structural information due to the presence of a water layer
(WL) surrounding the imaged object, this virus was covered with
water layers of different thickness. The loss of orientational and
structural information due to the presence of a water layer and its
varying molecular structure was quantified theoretically, using
molecular dynamics (MD) and coherent diffraction imaging
simulations. The effect of Poissonian noise (PN) for scattered
photons was also taken into account. In this scheme we kept the
positions of the equilibrated virus atoms fixed, and only allow the
surrounding water molecules to move during the simulations, as
we considered the effects of ‘‘random’’ water layers on diffraction
images. The related effects of slightly different protein conforma-
tions within the virus shell as well as effects due to the radiation
damage processes were not considered in this work. We expect
that they would further lower the correlations between the
patterns. Finally, in our diffraction simulations, we simulated
only the empty capsid without filling it with RNA genome. The
RNA structure inside a virus capsid appears to be disordered as
determined from single particle EM analyses. Similar to these
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methods, it is expected that its contribution will average out for
the large number of exposures considered here.

In Fig. 4, the diffraction pattern correlations between the STNV
particles with/without WLs or PN are shown as function of
relative rotation angle at a fixed small q range. The radiation
wavelength was 1.5 Å. In a purely mathematical treatment of the
calculated diffraction patterns, for an ideal virus capsid, the
correlation is trivially one for the same orientation, and it
decreases with the increasing angular difference in orientation
(Fig. 4). In a more realistic model, after introducing Poisson noise
and water layers of different thickness, the correlation of the
diffraction images is significantly reduced. This increases the
difficulty of identifying the orientation of the particles.

However, the averaged correlation curves can be parameter-
ized by a Gaussian fit, Eq. (8), with q-dependent fitting para-
meters a, b and c. We fitted the three parameters, using the
correlation curves obtained from our simulations with fitting
errors less than 2%. The parameters a(q) and c(q) that determine
the magnitude of the correlation, strongly depend on the imaged
structure (not shown). They show the highest values for pure
virus structure, and decrease significantly as soon as WL or PN is
included. The rotation-independent background c(q) always
decreases strongly for high values of q. When ‘‘random’’ water
layers are included, the parameters a(q) and c(q) are significantly
suppressed at the range of the liquid water peak. In the water
layer case with average 2.5 nm thickness, the parameter a(q) is
decreasing to less than 0.1, which is comparable to the correlation
variance. After including WL+PN, the fitted a(q) and c(q) are
smaller than in the cases with a WL or with PN only, implying a
much reduced correlation.

Fig. 5 shows the parameter b(q) for different cases. As it can be
seen, this parameter is determined only by the size of virus. The
value of b(q) corresponds to half of the Shannon angle aS,
aS ¼ ð2R0q=2pÞ�1, where R0 is the average virus radius. The
randomness introduced by WL or PN does not affect the angular
resolution. This implies that the limiting angular resolution given
by b(q) is determined only by the virus structure.

In summary, we studied pattern-to-pattern correlations between
diffraction images obtained from objects differently oriented in
space. Assuming large number of atoms in an object and their
random positions, we predicted the Gaussian profile of the average
correlation function, and showed that this profile is maintained in
simulations of diffraction images obtained from a realistic biological
sample (a small virus). Further, we demonstrated that the obtained
angular (orientational) resolution is determined only by the virus
structure. It is unaffected by a random water layer surrounding the
virus or a Poissonian noise. This indicates that the classification of
diffraction images within the pattern-to-pattern scheme is not
perturbed much by these effects, and therefore still possible.
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Appendix

Assuming a large number of atoms, and their random locations
within the object, one can introduce a continuous probability
distribution for describing the atomic positions, and estimate the
average value of pattern-to-pattern correlation to follow Eq. (8). In
this limit the estimated parameter b(q) then corresponds accurately
to the half of the Shannon angle, aS, aS ¼ ð2R0q=2pÞ�1, where R0 is
the molecule radius. In order to prove this, we recall again Eq. (7):

/Ið0,qÞIða,qÞS¼ ½jf ðqÞj2r2
efinOpix�

2

�
XN

i,j,s,t ¼ 1

J0 q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ij sin2yijþr2
stsin2ystþ2rijrstsinyijsinystcosðfij�fst�aÞ

q� �
:

In what follows we restrict only to the dominant a dependent terms
in Eq. (7). We have proved (not shown) that the dominant a
dependent contribution to correlation function comes from the
terms, where i¼t, j¼s. If we neglect all other terms, Eq. (7) then
becomes:

/Ið0,qÞIða,qÞS� ½jf ðqÞj2r2
efinOpix�

2
X
fijg

J0 2qrij sinyij sin
a
2

� �
: ð9Þ

We assume that the atoms are randomly located within a ball so a
pair of atoms gives a random value of yij between 0 and p, while it
takes a random valued rij between 0 and 2R0. Every rij value is not
equally likely, but follows a probability distribution P(rij). We can
replace the sum over atom-pairs with an integral over r� rij and
y� yij:

/Ið0,qÞIða,qÞS� ½jf ðqÞj2r2
efinOpix�

2

Z p

0

Z 2R0

0
J0 2qr siny sin

a
2

� �

�PðrÞr2 siny dr dy: ð10Þ

The probability distribution has the radial dependence of the
autocorrelation function of a ball and is given by:

PðrÞ �
pr3

24
þ

4pR3
0

3
�prR2

0: ð11Þ

If we make the small angle approximation, the expression (10)
simplifies to

/Ið0,qÞIða,qÞS� ½jf ðqÞj2r2
efinOpix�

2

Z p

0

Z 2R0

0
J0 qr sinyað ÞPðrÞr2 siny dr dy:

ð12Þ

It can be shown by comparing terms in the Taylor series expansion
to 4th order that,
Z p

0

Z 2R0

0
J0ðqr sinyaÞPðrÞr2 siny dr dy� e�q2R2

0
a2=5: ð13Þ

Using the parameterisation from Eq. (8), we predict:

bðqÞ ¼

ffiffiffiffiffiffiffi
2:5
p

qR0
�

1:58

qR0
: ð14Þ
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Comparing this to half of Shannon angle:

bðqÞ ¼
2p

4qR0
�

1:57

qR0
, ð15Þ

we find that these two values are in a very good agreement.
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