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Structural evolution of Cu–Zr metallic glasses under tension
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Abstract

The structural behaviour of Cu50Zr50 and Cu65Zr35 metallic glasses under uniaxial tensile stress was investigated in situ by high-energy
X-ray synchrotron diffraction. The components of the elastic strain tensor were determined from both the change of positions of first
maximum of the structure factor in reciprocal space as well as from the maxima of the atomic pair correlation function in real space.
The atomic scale strain agrees with the macroscopic strain values. The topological and chemical short-range order of the Cu–Zr glasses
changes upon loading. The number density of Cu–Zr and Zr–Zr nearest neighbour atomic pair becomes oriented along the loading direc-
tion whereas the partial nearest neighbour distances are only weakly influenced.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Poulsen et al. have demonstrated that the strain tensor
of bulk metallic glasses (BMGs) can be quantitatively esti-
mated by using high-energy X-ray synchrotron diffraction
[1]. Similar to the well-established method for strain analy-
sis of crystalline materials, the direction-dependent relative
shift of the diffraction peaks in reciprocal space can be used
to determine the components of the strain tensor and elas-
tic moduli, or analogously in real space the change of the
maxima positions of the atomic pair distribution function
(PDF), respectively. Hufnagel et al. reported that the strain
values in a metallic glass measured by X-ray diffraction
(XRD) is in good agreement with macroscopic observa-
tions of their elastic behaviours [2]. Deviations in the elastic
moduli between different methods are about 5–10%. Fur-
thermore, in situ diffraction measurements have been car-
ried out for Cu–Zr–Al and Zr–Cu–Ni–Al–Ti BMGs in
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compression [3] or tension [4,5]. In all this work, the PDFs
were calculated using the sine-Fourier transformation of
the structure factor. Dmowski et al. [6] pointed out that
in the presence of structural anisotropy, it is necessary to
expand the PDF into spherical harmonics as introduced
in Refs. [7,8], otherwise systematic errors may occur espe-
cially in the first neighbourhood.

In this work, we report on the structural evolution of
Cu50Zr50 and Cu65Zr35 metallic glasses under tension.
The experimental results will show changes in the short-
range order under applied stress within the elastic regime
well below the yield stress.
2. Experimental

Cu50Zr50 and Cu65Zr35 glassy ribbons of 7 mm in width
were prepared by rapid quenching from the melt by planar
casting on a rotating copper wheel. Dog-bone-shaped sam-
ples were prepared with to 4 mm in width. The areas of the
cross-section of the ribbons (A = 0.216 mm2 for the
Cu50Zr50 glass, and A = 0.176 mm2 for the Cu65Zr35 glass)
rights reserved.
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Fig. 2. Structure factor S(q, v = 0�) of Cu50Zr50 metallic glass as a
function of load.
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were determined by optical microscopy equipped with an
image analyser QTM550. The specimens were loaded
under tension by using a straining system with a maximum
load of 5 kN (Kammrath and Weiss GmbH). High-energy
X-ray diffraction at Hasylab BW5 beamline was applied to
analyze the structural evolution under load. Additional,
macroscopic elongation was measured by a laser extensom-
eter attached to an Instron machine. The layout of the dif-
fraction experiments is schematically shown in Fig. 1. The
stressed samples were exposed for 10 s at a particular load
to the well collimated incident beam having a spot size of
1 � 1 mm2. XRD patterns were collected in symmetric
transmission geometry using a MAR 345 two-dimensional
(2D) image plate detector (2300 � 2300 pixels, 150 �
150 lm2 pixel size), which was carefully mounted perpen-
dicular to the incident X-ray beam. The wavelength
k = 0.01265 nm facilitates to acquire intensities up to large
values (�160 nm�1) of the scattering vector q(q = 4p sin h/
k). The load was increased in steps until the sample was
fractured. In order to get better statistics of the results,
each measurement was repeated several times. The highest
load before fracture was measured to be L = 160 N for
Cu50Zr50 glass which corresponds to an applied stress of
r = 741 MPa well below the yield strength of 1.6 GPa
reported for Cu–Zr BMGs [9] (L = 140 N was the highest
load for the Cu65Zr35 glass). The two-dimensional diffrac-
tion patterns were recorded at three different positions
along the length of the ribbon. No differences were found
between the 2D diffraction patterns captured at different
positions of the samples. The circular–elliptical diffraction
patterns were characterized with respect to the polar coor-
dinates I(q, v). From the 2D intensity distribution, 36 sec-
tions I(q, v) were extracted with an integration ±5� in v by
Fit2D program [10]. The intensity curves I(q, v) were cor-
rected by considering background, polarization, inelastic
Fig. 1. Experimental setup for in situ X
Compton scattering and then transformed into the struc-
ture factor S(q, v) by normalizing in absolute electron units
[11].

3. Results

3.1. Reciprocal space data

Fig. 2 shows the structure factor S(q, v = 0�) of
Cu50Zr50 glass measured along the loading direction. Small
changes occur in the positions of the maxima upon loading.
The position of the first maximum q1 at about 27 nm�1 is
shifted to lower q-values whereas, along the perpendicular
direction (v = 90�), q1 moves to higher q-values as
expected. It has already been reported [1,2] that the relative
change of the position of the first maximum can be used to
determine the atomic scale strain. However, no relationship
-ray diffraction under applied load.



Fig. 4. Strain vs. applied stress of Cu50Zr50 glass measured by XRD and
mechanical testing.

Table 1
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exists between the maxima in reciprocal and in real space
for amorphous materials due to the absence of translation
symmetry. This method assumes that all inter-atomic dis-
tances of a direction are altered by the same factor upon
stress, and no other structural changes occur. The angular
dependent strain is then given by:

eðr; vÞ ¼ q1ð0; vÞ � q1ðr; vÞ
q1ðr; vÞ

ð1Þ

Fig. 3 shows the calculated strain values of the Cu50Zr50

glass as a function of direction v at different loads. The
angle dependence of e(r, v) reflects the symmetry of the
uniaxial stress state. The values vary from tensile strain
for v = 0� to compressive strain for v = 90�. The strain
curves for the different loads intersect at v = 54.7� in accor-
dance with the strain-free direction (e(r, v = 54.7�) = 0).
From the measured angular variation of the strain the com-
ponent of the strain tensor eij were calculated by a least
square fit of:

eðr; vÞ ¼ e11 cos2 vþ e12 sin v cos vþ e22 sin2 v ð2Þ
The corresponding fit curves are given in Fig. 3 as

marked by dashed lines. Fig. 4 shows the variation of axial
(e11), tangential (e22) and in-plane shear component (e12)
with stress. A linear behaviour of the strain with applied
stress is observed up to the highest value before fracture.
The Young’s modulus E = 63 GPa and the Poisson’ ratio
m = 0.31 can be directly obtained from the slopes of the
axial and tangential components e11 and e22 vs. stress.
The shear modulus G = 24 GPa follows from G = E/
2(1 + m) = 0.382E. The XRD values agree well with the
macroscopic tensile measurement as shown in Fig. 4. In
the case of the Cu65Zr35 glass similar linear dependence
of strain with stress were obtained. The calculated values
of the elastic moduli are summarized in Table 1. The rela-
tive error is estimated to be about 10% mainly due to the
uncertainty of cross-section determination. Considering
that, the data are in good agreement with data reported
for Cu–Zr BMGs in the literature [12–14].
Fig. 3. Direction dependence of the strain e(r, v) of Cu50Zr50 metallic
glass (dashed lines represent fit of Eq. (2)).
Usually the atomic structure of amorphous materials is
isotropic. However in the presence of stress the structure
factor becomes anisotropic. In such a situation, the direc-
tion dependence of the structure factor Sð~qÞ can be
described by the expansion into spherical harmonics as
reported in the literature [6–8]:

Sð~qÞ ¼
X
l;m

SlðqÞY lð~q=qÞ ð3Þ

For the uniaxial cylinder symmetry the spherical har-
monics Y are reduced to the Legendre polynomials:

Y lðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p

r
P lðcos vÞ ð4Þ

Neglecting higher-order terms l > 2 (their contributions
were estimated to be one order of magnitude lower than
those of l = 2), the structure factor of any direction v is
given by:
Young’s modulus E, Poisson ratio m, and shear modulus G of Cu–Zr
glasses.

Young’s modulus E

(GPa)
Poisson
ratio (m)

Shear modulus
G (GPa)

Cu50Zr50 63 0.31 24 This
worka

59 This
workb

83 0.38 30 [9]
82 (78) [13]

Cu65Zr35 97 This
worka

86 0.33 36 This
workb

92 [9]
92 0.35 34 [12]

115 (98) [13]

a XRD.
b Electromechanical device.
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Sðq; vÞ ¼ S0ðqÞ
ffiffiffiffiffiffi
1

4p

r
þ S2ðqÞ �

ffiffiffiffiffiffiffiffi
5

16p

r
3 cos2 v� 1
� �

ð5Þ

The components of the structure factor S0(q) and S2(q)
can be calculated from the two measurements parallel
(v = 0�) and perpendicular (v = 90�) to the tensile
directions:

S0ðqÞ ¼
ffiffiffiffiffiffi
4p
p

3
ðSðq; v ¼ 0�Þ þ 2Sðq; v ¼ 90�ÞÞ ð6Þ

S2ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffi
16p
45
�

r
ðSðq; v ¼ 0�Þ � Sðq; v ¼ 90�ÞÞ ð7Þ

For v = 54.7� the contribution of the anisotropic part
demises and the isotropic structure factor can also be
obtained by S0(q) =

ffiffiffiffiffiffi
4p
p

S(q, v = 54.7�).
Fig. 5 compares the calculated isotropic structure fac-

tors S0(q) of Cu50Zr50 for the highest load (150 N) with
that of without load (0 N). The difference curve
S0(150 N)–S0(0 N) exhibits small changes of about 1% of
the isotropic structure factor S0(q) occurring at the first
maximum. The change of the isotropic part of the structure
factor may originate from atomic rearrangements under
stress as discussed later. The anisotropic part of the struc-
ture factor S2(q) is also given in Fig. 5. The amplitude of
S2(q) increases gradually as function of the applied stress
and reaches values up to 10% at the first maximum.

3.2. Real space data

For isotropic amorphous materials the atomic density
functions q(r) can be calculated by the sine-Fourier trans-
form of the structure factor:

qðrÞ ¼ qmean þ
1

2rp2
�
Z
ðSðqÞ � 1Þ � q � sinðq � rÞ � dq ð8Þ

where qmean is the mean atomic density. For the uniaxial
cylinder symmetry the direction dependent atomic density
Fig. 5. Change of isotropic structure factor S0 vs. load and anisotropic
structure factor S2 of Cu50Zr50 glass.
function qð~rÞ can be expressed by the expansion into spher-
ical harmonics analogously to the structure factor [6–8]:

qð~rÞ ¼
X

l

qlðrÞY lð~r=rÞ ð9Þ

The components of the anisotropic PDF and the corre-
sponding components of anisotropic structure factor are
related by a transformation:

qlðrÞ ¼
il

2p2
�
Z

SlðqÞ � J lðqrÞ � q2dq ð10Þ

where Jl(x) is the lth order of the spherical Bessel function
(x = qr).

For l = 0 the isotropic part of the atomic pair correla-
tions q0 (r) corresponds to Eq. (8) since J 0ðqrÞ ¼ sinðqrÞ

qr .
The anisotropic part of the atomic pair correlations q2(r)
is obtained from the anisotropic part of the structure factor
S2(q) by:

q2ðrÞ ¼ �
1

2p2
�
ffiffiffiffiffiffiffiffi
45

16p

r Z
S2ðqÞ � J 2ðqrÞ � q2dq ð11Þ

with J 2ðqrÞ ¼ 2
ðqrÞ3 �

1
qr

� �
sinðqrÞ � 2

ðqrÞ2 cosðqrÞ

The atomic density of any direction v is then given by:

qðr; vÞ ¼ q0ðrÞ
ffiffiffiffiffiffi
1

4p

r
þ q2ðrÞ �

ffiffiffiffiffiffiffiffi
5

16p

r
ð3 cos v2 � 1Þ ð12Þ

Fig. 6 compares the calculated atomic density functions
q(r, v) of the Cu50Zr50 glass in tensile direction (v = 0�)
with and without stress. The maxima of the pair correlation
function shift to larger inter-atomic distances due to the
applied load of F = 150 N. Besides the shift of the maxima
positions, the shape of the first maximum corresponding to
the nearest neighbourhood is changed. The positions of the
maxima of q(r, v) were determined by a fit to the Gaussian
function. The relative shift of the different maxima ri of the
PDFs is shown in Fig. 7.
Fig. 6. Atomic density q(r, v = 0) of Cu50Zr50 glass in the tensile direction
vs. load.
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The values

eðr; vÞ ¼ riðr; vÞ � rið0; vÞ
riðr; vÞ

define the direction-dependent strain in the atomic scale.
The calculated strain values behave quite similar for the
maxima at r > 0.4 nm. The accuracy of position determina-
tion in real space is reduced due to the broad maxima of
the PDFs which is probably the reason for the enhanced
scatter. The slopes are in reasonable agreement with those
of the in reciprocal space (Fig. 4).

The anisotropic part of the PDF is shown in Fig. 8 for
two different values of the applied load. The amplitude of
q2(r) increases gradually with stress, which is similar to
the anisotropic structure factor S2(q) (Fig. 5). It should be
noted that in the case of pure elastic deformation the aniso-
tropic PDF part should be proportional to the first deviate
of the isotropic PDF as discussed by Suzuki et al. [7]:

q�2ðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffi
16p
45
�

r
r � dq0

dr
e ð13Þ

The corresponding curve of q�2ðrÞ at a strain of e = 0.01
is given in Fig. 8. The differences between q�2ðrÞ and q2(r)
can be identified for the first neighbourhood. However, at
r > 0.4 nm the contributions of the anisotropic atomic den-
sity are rather negligible. The deviation of the experimen-
tally determined q2(r) indicates the structural change in
the short-range order due to the application of load.
Fig. 9a–d compares the direction dependences of first max-
imum of the PDF of the Cu–Zr glasses for v = 0� and
v = 90� as a function of the load. For the Cu–Zr metallic
glasses the q(r) curves represent the weighted sum the three
partial atomic pair correlation functions qCuCu, qCuZr,
qZrZr. The visible two components of the PDF can be
attributed to the partial zirconium–copper ðr1

ZrCu ¼
0:27 nmÞ and zirconium–zirconium ðr1

ZrZr ¼ 0:32 nmÞ pair
correlations. The different heights of the contributions of
Fig. 7. Strain vs. applied load of Cu50Zr50 glass determined from the shift
of maxima positions ri of q(r, v).
Cu50Zr50 and Cu65Zr35 glasses (Fig. 9a and c) are due to
the composition dependence of the weighting factors par-
tial functions. Fig. 9a and c compare the first maximum
of the PDFs of the unloaded Cu–Zr glasses for the two
directions v = 0� and v = 90�, respectively. For an isotropic
structure the curves should be identical. The agreement is a
measure for the relative errors in the determination of
inter-atomic distances and coordination numbers given in
Table 2. Fig. 9b shows the nearest neighbourhood of the
Cu50Zr50 glass under applied stress (L = 150 N) in tensile
(v = 0�) and perpendicular direction (v = 90�). Differences
in position and height of the two components are visible.
The values of the positions ri and the area Ni of the two
components were determined by a fit of two Gaussian func-
tions. The results are summarized in Table 2. The positions
of the two maxima corresponding to the nearest neighbour
distances Cu–Zr and Zr–Zr increase along the tensile direc-
tion and decrease in the perpendicular direction. The rela-
tive shift for both cases is given in Table 2, which is much
lower than that of the maxima at larger inter-atomic
distances resulting in a much lower value if a strain e* is cal-
culated. These experimentally observed deviations between
nearest neighbours and correlations maxima at larger dis-
tances was also reported in the literature for other metallic
glasses [1,2,4,5]. Such a change confirms the anelastic
atomic rearrangements in topologically unstable regions,
as proposed for creep-deformed metallic glasses [7,8].
Beside the change of the nearest neighbour distances, the
intensities of the components are found to be different for
the two directions which reflect the anisotropic part of
the PDF (Fig. 8). From the analysis of the first maximum
it follows that the number of Zr–Zr neighbours increases in
tensile direction, and the number of Cu–Zr pairs decreases,
respectively. The opposite behaviour is found for the per-
pendicular direction. The total number N 1

ZrCu þ N 1
ZrZr

remains constant. The same tendency is observed for
the Cu65Zr35 glass under tension as shown in Fig. 9d
(Table 2).
Fig. 8. Anisotropic PDFs q2(r) and first derivative of q0(r) of Cu50Zr50

glass.



Fig. 9. Direction dependence of nearest neighbourhood of Cu–Zr glasses: (a) Cu50Zr50 glass without stress, (b) Cu50Zr50 glass under tensile stress, (c)
Cu65Zr35 glass without stress and (d) Cu65Zr35 glass under tensile stress.

Table 2
Direction-dependent distances ri, strain e* and coordination numbers Ni of nearest neighbourhood in Cu–Zr glasses under tensile stress.

Cu50Zr50 Cu65Zr35

L = 0 N q0 (r) L = 150 N q(r, v = 0�) L = 150 N q(r, v = 90�) L = 0 N q0(r) L = 140 N q(r, v = 0�) L = 140 N q(r, v = 90�)

r1 (nm) 0.2734 ± 0.0003 0.2745 0.2733 0.2711 0.2726 0.2705
e* – 0.004 �0.0004 – 0.006 �0.002
r2(nm) 0.3189 ± 0.0003 0.3209 0.3183 0.3220 0.3248 0.3215
e* – 0.006 �0.002 – 0.009 �0.002
N1 6.1 ± 0.2 5.9 6.2 9.6 9.5 9.6
N2 8.0 ± 0.2 8.4 7.8 4.2 4.4 4.1
N1 + N2 14.1 ± 02 14.3 14.0 13.8 13.9 13.7
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4. Discussion

In a glassy material a range of local atomic environ-
ments of the atoms exists. As a consequence of the disor-
der, fluctuation of inter-atomic distances, occur which
leads to variations of the atomic-level stress [14]. Molecular
dynamic simulations (MD) under stress showed that
atomic rearrangements take place during loading in a few
topologically unstable regions [15]. Suzuki et al. [7]
explained for creep experiments the induced structural
anisotropy by a bond reorientation model. Argon [16] pro-
posed a flow model for plastic deformation of metallic
glasses by local shear transformation of atomic clusters
of so-called shear transformation zones (STZ). Recent
MD calculations for Cu54Zr46 glass report on the move-
ment and rearrangement of atomic polyhedra under tensile



Fig. 10. Schematic representation of local atomic rearrangements under
applied load.
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strain [17] in the structure model in the elastic as well as in
the plastic regime. Our analysis of the first neighbourhood
confirms the anelastic changes of the short-range order
under tensile stress well below the yield strength. The
response of the nearest neighbourhood upon loading
points to directional changes in the chemical short-range
order. It is reported [13,17,18] that Cu–Zr glasses consist
of densely packed atomic polyhedra arrangements. In the
metastable equilibrium the spatial orientations of the poly-
hedra averages out. Under external stress certain atoms
rearrange in order to accommodate the elastic strain along
the loading axis. One possible mechanism for such trans-
formation could be local diffuse movement or reshuffling
of atoms and bond reorientations [7]. Fig. 10a and b shows
schematically such atomic rearrangements resulting in a
directional altered short-range order. Upon loading the
number Zr–Zr atoms may locally increase in the tensile
direction (Fig. 10b) while the number of Cu–Zr neighbours
increases perpendicular to the tensile direction (Fig. 10a
and b). Another possible explanation of the observed
changes in the short-range order could be local shear events
which can take place even below the yield strength [19]. The
transformations may occur only in certain clusters with
corresponding local structure, stress state, and orientation
to the stress direction. So locally bond reorientations hap-
pen in a limited number of clusters and such events spread
to the overall structure with increasing stress.

5. Conclusions

In situ X-ray synchrotron diffraction enables the atomic
level elastic strain of metallic glasses under uniaxial tensile
stress to be characterized. The elastic moduli can be esti-
mated not only considering the shift of the first maximum
of the scattering curve in reciprocal space but also from the
shift of the larger inter-atomic distances in the PDF in real
space. The analysis of the short-range order of Cu50Zr50

and Cu65Zr35 glasses vs. stress confirms the structural
changes in the elastic regime well below the yield strength.
These anelastic deformations are accompanied by bond
reorientation leading to direction dependent changes in
chemical short-range order. The number of Zr–Zr pairs
increases along the tensile direction whereas Cu–Zr pairs
decreases with applied stress. To evaluate the proposed
deformation mechanism further MD calculations of Cu–
Zr under tensile and compressive stress are necessary with
a combined direction dependent structure analysis of the
model. Experimentally, the determination of partial PDFs
under applied stress should give more insight into the
structural response of metallic glasses during elastic
deformation.
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