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Abstract Synchrotron-radiation-based X-ray fluores-

cence was applied to the elemental microimaging of neo-

plastic tissues in cases of various types of brain tumors.

The following cases were studied: glioblastoma multi-

forme, gemistocytic astrocytoma, oligodendroglioma,

anaplastic oligodendroglioma, ganglioglioma, fibrillary

astrocytoma, and atypical transitional meningioma. Apart

from neoplastic tissue, the analysis included areas of tissue

apparently without malignant infiltration. The masses per

unit area of P, S, Cl, K, Ca, Fe, Cu, Zn, Br, and Rb were

used to construct a diagnostic classifier for brain tumors

using multiple discriminant analysis. It was found that S,

Cl, Cu, Fe, K, Br, and Zn are the most significant elements

in the general discrimination of tumor type. The highest

similarity in elemental composition was between atypical

transitional meningioma and fibrillary astrocytoma. The

smallest differentiation was between glioblastoma multi-

forme and oligodendroglioma. The mean percentage of

correct classifications, estimated according to the a poste-

riori probabilities procedure, was 99.9%, whereas the mean

prediction ability of 87.6% was achieved for ten new cases

excluded previously from the model construction. The

results showed that multiple discriminant analysis based on

elemental composition of tissue may be a potentially

valuable method assisting differentiation and/or classifica-

tion of brain tumors.

Keywords Synchrotron radiation � X-ray fluorescence �
Brain tumors � Discriminant analysis � Trace elements

Introduction

The literature published in recent years indicates an

essential role played by minor and trace elements in a

number of pathological processes [1–3]. They may activate

or inhibit enzymatic reactions, participate in binding with

other elements or metalloproteins, influence the perme-

ability of cell membranes, etc. [4, 5]. Therefore, one may

assume that selected elements may contribute, directly or

indirectly, to the carcinogenic process [5]. Nowadays, there

is a growing awareness of, and interest in, studies involving

the determination of the elemental composition of normal

and malignant tissues [6, 7]. Elemental abnormalities,

including those related to Zn, Cu, Fe, K, Rb, Mn, Se, and

Ca, in various forms of cancer have been reported over the

past decade [8–11]. However, the exact role of these and

many other elements in carcinogenesis remains unknown.

The process of cancerogenesis may influence normal

biochemical reactions leading, among other things, to

alterations in the elemental composition of the tissue.

Therefore, the levels of chemical elements in neoplastic

tissues may differ from those in normal specimens. This

feature could be applied in the process of diagnosing

cancerous disease, supported by the methods of elemental

analysis. Moreover, with respect to the present studies,

it was especially interesting if the unique elemental
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composition differentiates not only normal tissue from

neoplastic tissue, but also especially among various types

of brain tumors. For this purpose two requirements were

crucial. Firstly, a multielement analytical technique

appropriate for the determination of low concentrations of

elements that are typical of brain tissues was required.

Moreover, taking into account the inhomogeneous struc-

ture of neoplastic tissue (apart from the ‘‘intrinsic’’ heter-

ogeneity of the neoplasm, one has to remember the

complex nature of the tumor, which frequently shows

admixture of necrotic areas, more or less preserved com-

ponents of the host tissue, reactive gliosis, and secondary

constituents such as macrophages, lymphocytes, mono-

cytes, neutrophils, blood vessels, and calcifications), an

analytical method of high spatial resolution, i.e., below

20 lm, was essential as well. Secondly, a statistical tool

that allows differentiation between normal and neoplastic

tissues and especially between different types of tumors is

of great importance.

Presently, oncology is in need of spatially resolved

probes with a chemical sensitivity capable of monitoring

biochemical processes and interactions within neoplastic

tissues. The recent development of microprobe beamlines

of third-generation synchrotron sources enables spatially

resolved X-ray fluorescence (XRF) at cellular and subcel-

lular levels. The principle of XRF is based upon the

detection of X-rays emitted from sample atoms irradiated

with X-rays of higher energy [12]. The energy of the

emitted X-rays is characteristic of the excited element, thus

enabling the identification of the content of the elements

present in the sample. Synchrotron-radiation-based XRF

(SR-XRF) microprobe analysis is a multielemental ana-

lytical technique which enables the simultaneous microi-

maging of chemical elements at trace concentrations. For

this reason, XRF seems to be a promising tool for the

investigation of cancerogenesis. SR-XRF has been used in

a number of applications in biology and medicine [13, 14].

A comprehensive overview of recent applications of XRF

microscopy in biology and medicine was presented by

Paunesku et al. [15]. The field of applications of SR-XRF

includes research on cancer chemotherapy of inorganic

compounds, physiology of trace elements, and metal

neurotoxicity [16–19]. Since alterations in homeostasis of

trace elements, in particular Cu, Fe, and Zn, may play an

important role in selected neurodegenerative disorders,

including Alzheimer’s disease, amyotrophic lateral scle-

rosis, and Parkinson’s disease, the SR-XRF technique was

used to visualize the metal ion distribution in brain tissue or

nerve cells [20–26]. SR-XRF was also applied with respect

to different tumors [13, 27–30]. The elemental abnormal-

ities in neoplastic tissues have also been investigated.

As mentioned previously, statistical techniques for the

analysis and interpretation of the experimental data are

necessary. Multiple discriminant analysis (MDA), being an

extension of discriminant analysis, is a powerful technique

for examining differences between two or more groups of

objects (in this case neoplastic tissues) with respect to

several variables simultaneously (in this case tissue ele-

ment levels) [31–34]. Generally, the two main goals of

discriminant analysis are (1) to build a statistically signif-

icant model that enables group differentiation based on

predictor variables and (2) to classify the dependent vari-

able using the model calculated. Generally, discriminant

analysis is a well-known technique for dimension reduc-

tion, feature extraction, and case classification. MDA has

been used widely in many applications, including various

aspects of oncogenesis [13, 32–34]. Discriminant analysis

was used for distinguishing different types of brain tumors

on the basis of magnetic resonance spectra [35]. The

potential application of discriminant analysis and infrared

spectroscopic imaging as a diagnostic method in astrocytic

gliomas was reported by Krafft et al. [36]. Small-angle

X-ray scattering patterns of benign and malignant brain

tumor tissue were examined using flexible discriminant

analysis [37]. The features of brain tumors related to their

elemental composition had not been previously studied.

Establishing the pattern of the distribution of elements

characteristic of a particular brain tumor is by itself a

tempting goal, although even if achievable, it could neither

be easily explained nor interpreted in the context of the

metabolism or mechanisms of carcinogenesis. Neverthe-

less, a sort of ‘‘elemental fingerprinting’’ of brain tumors

could provide a very useful tool assisting the process of

diagnosing tumors in difficult or disputable cases. The aim

of this study was to see if the MDA of elements commonly

found in brain tumor tissues can be used to differentiate

neoplastic samples according to their histopathological

classifications.

Materials and methods

Sample preparation

The samples for biochemical microimaging were taken

intraoperatively from brain tumors of different types and

various grades of malignancy. The samples were diagnosed

histopathologically in the Department of Neuropathology

of Jagiellonian University Medical College in Kraków. The

samples from the following tumor types were investigated

using SR-XRF (with the grade of tumor malignancy

according to the latest WHO classification [38] given in

parentheses): glioblastoma multiforme (IV), gemistocytic

astrocytoma (II), oligodendroglioma (II), anaplastic oligo-

dendroglioma (III), ganglioglioma (I), fibrillary astrocy-

toma (II), and atypical transitional meningioma (II). In
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addition to the neoplastic tissues, the analysis also included

an area of tissue apparently without malignant infiltration

(serving as a control group). The control sample was

removed intraoperatively together with the specimen of

anaplastic oligodendroglioma. More detailed information

about the cases investigated is given in Table 1.

For each tumor studied, samples taken for standard

histopathological intraoperational examination were cryo-

sectioned at 5 lm for routine hematoxylin–eosin (HE)

staining and at 20 lm for spectroscopic elemental microi-

maging analysis. The slices destined for elemental analysis

were mounted immediately onto Ultralene foil of 4-lm

thickness suspended in a Plexiglas holder and finally

freeze-dried at -80 �C. Additional samples of tissue,

routinely embedded in paraffin, were used for definite

histopathological diagnosis, i.e., tumor type and grade,

using HE and other staining methods, if necessary includ-

ing also immunohistochemistry (most frequently with

antibodies against glial fibrillary acidic protein, cytokera-

tins, epithelial membrane antigen, vimentin, CD34, and

others, accordingly to the specific requirements of differ-

ential diagnosis in every particular case).

All samples were examined microscopically to select the

appropriate regions for elemental investigation, i.e., to

exclude from the analysis any artifacts, large necrotic

areas, blood vessels, extensive calcifications, etc. In other

words, in every case efforts were undertaken to select the

most representative tumor tissue for elemental analysis.

Moreover, microscopic histological examination of corre-

sponding sections was used to choose the region designed

for elemental analysis. An example of white-light micro-

scope images of an HE-stained tissue section and the cor-

responding unstained slice selected for the elemental

mapping is presented in Fig. 1.

Measurements conditions

The SR-XRF measurements were performed at the bending

magnet beamline L at Hamburger Synchrotrostrahlungla-

bor (HASYLAB; Hamburg, Germany) [39]. The primary

X-ray energy defined with the use of a multilayer Ni/C

monochromator was set to 17 keV. To reduce the beam

size, a polycapillary half-lens for monochromatic applica-

tions which require maximum flux was used. The beam

was focused to a size of 15 lm in diameter. The typical

flux of the incoming radiation, measured before the sample,

was about 8 9 1010 photons/s. The tissue samples were

positioned at an angle of 45� with respect to the incident

Table 1 Specification of the brain tumors used in the analysis

Tumor type WHO grade Number of cases

GM IV 11

AG II 2

O II 4

OA III 2

G I 1

AF II 1

M II 1

C 1

GM glioblastoma multiforme, AG gemistocytic astrocytoma, O oli-

godendroglioma, OA anaplastic oligodendroglioma, G ganglioglioma,

AF fibrillary astrocytoma, M atypical transitional maningioma,

C control

Fig. 1 Glioblastoma multiforme—microscopic view of the sample region selected for elemental analysis: a stained with hematoxylin–eosin;

b unstained tissue section. Scale bars 50 lm

J Biol Inorg Chem (2011) 16:1217–1226 1219

123



beam. The sample areas were scanned with a step size of

15 lm both horizontally and vertically. The size of the area

of scanning depended on the tissue structure but was typ-

ically 300–500 lm in one direction. The acquisition time

was 10 s for each measurement point. The measurements

were conducted in air. The characteristic X-ray lines were

measured by a Vortex silicon drift detector from SII Nano

Technology USA. The sample–detector distance was set at

about 15 mm. To perform elemental mapping of the tissue,

the position of the sample was changed with respect to the

incident beam using a computer-controlled stepper motor

allowing micrometer movements. Spectrometer calibration

was performed on the basis of measurements of standard

reference materials (NIST SRM 1832 and NIST SRM

1833).

Spectral analysis

Evaluation of the XRF spectra was performed using the

AXIL-QXAS software package freely distributed by the

IAEA [40]. It is a routinely used computer program

designed specifically for qualitative and quantitative anal-

ysis of XRF spectra. With use of the AXIL module, a

declared group of X-ray lines (e.g., the K series) of a given

element is treated by the fitting procedure as a single entity.

The net peak area is determined for each group during the

spectrum fitting (separately for each band). Lines within a

group have fixed intensity ratios during the fit. The X-ray

energies and the relative intensities are read from the

appropriate library file. In our study, to avoid any problems

related to the estimation of the peak areas of small or

strongly overlapping peaks, all the lines of one element

were specified in the spectral analysis as one group instead

of entering elemental X-ray lines separately. Moreover,

during the spectrum fitting using the AXIL module,

K-series peaks were approximated by Gaussian functions.

The net peak areas of Ka lines were used in further

quantitative evaluation. The calculated intensities of ele-

mental X-ray lines were normalized to the value of the

incident photon flux.

Statistical analysis

One of the multivariate methods, i.e., MDA, was applied to

the grouping and classification of brain tissue samples

based on their elemental content. In this study the main

goals of the statistical analysis were (1) to accomplish data

reduction and simplification, (2) to determine which ele-

ments contribute most to the discrimination between

groups, and (3) to construct a diagnostic classifier for brain

tumors using elemental composition.

Mathematically, the aim of discriminant analysis was to

find a set of linear combinations of the variables (called

discriminant functions) whose values were as close as

possible within groups (tumor types) and as far apart as

possible between groups [41]. The discriminant functions

were generated from a sample of cases for which group

membership was known. The functions were then applied

to new cases with measurements on the same set of vari-

ables, but unknown group membership. The most common

test for the statistical significance of the discriminant

function is based on the residual discrimination in the

system prior to deriving that function. The most appro-

priate formula in this context is Wilks’s lambda [31],

which was applied in this work. The detailed theoretical

basis of the discriminant analysis technique was presented

elsewhere [41].

The statistical package STATISTICA 7.1 from StatSoft

[42] was used for discriminant analysis calculations.

Results

A typical XRF spectrum from brain tumor tissue excited by

means of synchrotron radiation is shown in Fig. 2. The SR-

XRF technique revealed that elements such as P, S, Cl, K,

Ca, Fe, Cu, Zn, Br, and Rb were present in all the neo-

plastic tissues analyzed. Moreover, in selected cases Se and

Sr were also detected. However, the contents of these

elements in neoplastic tissues are relatively low. Therefore,

under the applied measurement conditions, Se and Sr were

not determined in all the cases studied as part of the

experiment. Consequently, these elements were excluded

from further statistical analysis.

SRM 1832 and SRM 1833 were used as calibration

standards in the calculation of masses per unit area of the

elements in this study. For calibration of sensitivity versus

atomic number, the fitting curve was constructed on the

basis of the certified values of the masses per unit area of

Fig. 2 A typical spectrum of brain glioma tissue excited by

synchrotron radiation (beam energy 17 keV, acquisition time 10 s

per point). X-ray fluorescence Ka lines of the elements are shown)

1220 J Biol Inorg Chem (2011) 16:1217–1226

123



elements in the standard reference materials. The sensi-

tivity for each analyzed element i was calculated using the

following expression:

Si ¼ Ys= FsMsð Þ;

where Ys is the net peak area of the measured element for

the standard sample (SRM 1832 or SRM 1833), Fs is the

incident photon flux in the measurement of the reference

material, and Ms is the mass per unit area of the measured

element in the standard sample.

On the basis of the spectral data from each point of the

scanned areas of the samples, the masses per unit area of

elements were determined according to the following

formula:

M ¼ Yt= FtSið Þ;

where Yt is the net peak area of the measured element in the

tissue sample, Ft is the incident photon flux in the mea-

surement of the tissue sample, and Si is sensitivity for

measured element i.

The calculated values of the masses per unit area of

elements were applied to obtain two-dimensional maps of

elemental distribution. This allowed not only the recogni-

tion of the topography of elements, but also avoidance of

any elemental artifacts that would further falsify the anal-

ysis. For each case the representative area was selected

from the whole scanned region of the sample. The distri-

bution of elements in such a representative area of a

glioblastoma multiforme sample is presented in Fig. 3.

Comparable areas were selected for other samples.

The masses per unit area of elements from the repre-

sentative region of each sample were used for further sta-

tistical analysis. Typically, the data came from 101 points

in each case. Statistical analysis was performed only for

these elements that were detected in all the samples stud-

ied, i.e., for P, S, Cl, K, Ca, Fe, Cu, Zn, Br, and Rb. The

mean values of the masses per unit area of elements in the

analyzed sample areas are shown in Fig. 4.

Prior to statistical analysis, the values of the masses per

unit area of elements were transformed to log base 10. One

reason for this was to make the distribution more sym-

metric and Gaussian-like, which was not fulfilled for raw

data in all cases studied. Moreover, logarithmic transfor-

mation was applied to make the variances of the variables

in the analyzed groups more homogeneous in a nonstan-

dardized multivariate statistical analysis. The transforma-

tion of data to log base 10 before a multivariate statistical

method is a widely used procedure [43].

Discriminant function analysis was divided into two

steps: (1) detecting the variables that allow discrimination

between different tumor types and (2) classifying cases into

groups related to histopathological recognition. As already

mentioned, the main criterion for determining the elements

contributing significantly to a particular grouping of the

analyzed cases was the minimization of Wilks’s lambda.

Discriminant functions for distinguishing between tumor

Fig. 3 Distribution of selected elements in a glioblastoma multiforme tissue section in comparison with the visible image of the scanned area of

the tissue. Data are presented in micrograms per square centimeter
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types, including noncancerous tissue, were calculated by

the forward stepwise procedure.

In the statistical analysis, the samples were discrimi-

nated into groups on the basis of their histopathological

diagnosis (according to the data given in Table 1). All the

elements detected (primary variables) were statistically

significant in the discrimination and were included in the

model built. The parameters describing the significance of

the primary variables for the model, including partial

Wilks’s lambda, the F test of partial Wilks’s lambda, and

its p values, are summarized in Table 2. It was found that

S, Cl, Cu, Fe, K, Br, and Zn are the most significant ele-

ments in the general discrimination of tumor type.

The canonical variables and the discriminant functions

can be expressed as a linear combination of the masses per

unit area of elements included in the particular model. The

statistical analysis, whose goal was to differentiate the

samples on the basis of their diagnosis, allowed the iden-

tification of eight discriminant functions. All of them were

statistically significant. By comparing their eigenvalues,

which reflect the ratio of importance to the group dis-

crimination, we selected two of them with the highest

eigenvalues for further analysis. The equations of the

canonical roots chosen are as follows:

L1 ¼ 0:754� Pþ 2:33� S� 2:12� Cl� 3:37

� Kþ 0:82� Ca� 0:930� Feþ 0:442� Cu

� 0:601� Zn þ 0:681� Br� 0:074� Rb;

L2 ¼ 1:85� P� 1:96� Sþ 0:506� Clþ 0:632� K

� 0:115� Caþ 0:544� Fe� 0:879� Cu� 0:991

� Zn� 0:075� Brþ 0:020� Rb:

The chemical symbols of elements represent discrimi-

nating variables, i.e., masses per unit area of elements. As

can be seen, K, S, and Cl are the most significant elements in

the first discrimination function, whereas in the second one

they are S and P.

An examination of the group discrimination was per-

formed on the basis of a simple scatter plot between two

discrimination variables. The distribution of the samples in

the plane of the two calculated discriminant functions is

illustrated in Fig. 5. The scatter plot shows that discrimi-

nant function 1 discriminates mostly between fibrillary

astrocytoma and other analyzed cases (the highest distance

in the horizontal direction). In the vertical direction

Fig. 4 Mean values of masses per unit area of elements (lg/cm2)

detected in brain tumors and control samples. Error bars represent

standard deviations of mean values at the 95% confidence interval.

GM glioblastoma multiforme, AG gemistocytic astrocytoma, C con-

trol, OA anaplastic oligodendroglioma, O oligodendroglioma, G gan-

glioglioma, M atypical transitional maningioma, AF fibrillary

astrocytoma

Table 2 Parameters describing the significance of the primary vari-

ables (elements) for the model

Element Partial Wilks’s K Fisher’s F statistics p

S 0.076 2,110 �0.05

Cl 0.14 1,120 �0.05

Cu 0.19 750 �0.05

Fe 0.19 750 �0.05

K 0.20 690 �0.05

Br 0.25 530 �0.05

Zn 0.29 430 �0.05

P 0.49 190 �0.05

Ca 0.56 140 �0.05

Rb 0.98 4 �0.05
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(discriminant function 2), one slight trend appears: ana-

plastic oligodendroglioma points are above the clusters for

other tumors. These findings are in accordance with the

calculated means for canonical variables (see Table 3).

To measure differentiation between examined groups in

the space of discriminant variables, the squared Mahalan-

obis distances were calculated. The results are presented in

Table 4. All the calculated Mahalanobis distances were

statistically significant (p � 0.05), which confirms the

significance of the differences between the analyzed

groups. It was found that the largest Mahalonobis distance,

which reflects the largest difference in elemental compo-

sition, was between the centroids of atypical transitional

meningioma and fibrillary astrocytoma. The smallest dif-

ferentiation, taking into account the elemental composition

of neoplastic tissues, was between glioblastoma multiforme

and oligodendroglioma.

The utility of the calculated canonical roots was exam-

ined via their ability to correctly classify each data point to

their a priori groups. Classification functions were derived

to achieve this purpose. The classification matrix obtained

is presented in Table 5. The results are shown for the cases

used in the construction of the model as well as for new

cases. The degree of success of the classification of each

group was summarized by the number of cases correctly

classified and misclassified. For each group, two results of

the classification of the samples are shown: the diagnosis

given by a histopathologist and judgment formed by taking

into account the calculated model. The mean percentage of

correct predictions estimated according to the a posteriori

probabilities procedure was 99.93%. In all cases almost

100% agreement with histopathological diagnosis was

achieved.

Additionally, the leave-one-out method was used as a

cross-validation procedure to evaluate the classification

efficiency of the model constructed previously. For this

purpose ten new cases were used. The following brain

gliomas were used: oligodendroglioma (two cases), ana-

plastic oligodendroglioma (one case), gemistocytic astro-

cytoma (one case), glioblastoma multiforme (six cases). As

previously, for each sample the elemental mass fractions

from 101 points of a representative area were taken for the

validation. The mean percentage of correct predictions

obtained for the new cases of brain gliomas that were not

used in the construction of the model was 87.6%. The

lowest prediction ability (85.8%) was achieved for glio-

blastoma multiforme. In this case, 520 observations of 606

points analyzed were classified according to the histopa-

thological diagnosis. The highest score (99% of correct

Fig. 5 The scatter plot of observations in the space of discriminant

variables for different types of brain tumors and the control group

Table 3 The mean values of the calculated canonical functions

across groups

Tumor type Discriminant function

1 2

GM -0.48 1.2

AG -0.54 -2.5

C -5.8 -0.22

OA 3.2 8.8

O -3.8 3.0

G 2.3 -1.7

M -12 -2.8

AF 31 -3.7

Table 4 Squared Mahalanobis

distances between group

centroids

The numbers in bold are the

smallest and largest distances

GM AG C OA O G M AF

GM – 110 50 140 20 50 180 1,010

AG 110 – 190 160 150 110 220 1,070

C 50 190 – 260 45 140 110 1,370

OA 140 160 260 – 170 190 470 990

O 20 150 45 170 – 85 120 1,250

G 50 110 140 190 85 – 280 820

M 180 220 110 470 120 280 – 1,850

AF 1,010 1,070 1,370 990 1,250 820 1,850 –
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classifications) was achieved for anaplastic oligodendro-

glioma. For this kind of tumor only one observation was

classified as oligodendroglioma.

Discussion

As shown in Fig. 2, the SR-XRF technique enabled the

determination of a wide range of elements between P and

Rb. Generally, the simultaneous trace element sensitivity

and micrometer spatial resolution makes the technique

indispensable with respect to the quantitative mapping of

trace element distributions in tissue samples at single-cell

level. In our studies, the technique allowed the identifica-

tion of a two-dimensional distribution of elements on a

microscale. As illustrated in Fig. 3, the representative areas

selected for each sample were characterized by quite a

homogeneous distribution of elements. The comparison of

the microscopic image of the scanned area of tissues with

the XRF maps showed that the distribution of elements

reflects apparently uniform morphology of the tissue.

However, as one can see, the distribution of Fe is unlike

that of any other element. The XRF map of Fe clearly

shows a concentration gradient over the entire area.

Therefore, it may raise concerns that the Fe mass per unit

area in such a selected part of the section is not really

representative. It is worth pointing out that this particular

distribution of Fe in the case presented was not typical of

other samples. However, in such questionable cases the use

of data from a larger sample area is recommended. The

results shown in Fig. 3 relate to the case of glioblastoma

multiforme. Since in our study four additional samples

representing this tumor type were included, in further sta-

tistical analysis we decided not to extend the data set.

Moreover, the abnormal distribution was found only for

one element. That is why the selected area was finally

regarded as representative. In spite of the morphological

homogeneity of the tissue seen under the microscope and a

homogenous distribution of most of the analyzed elements,

some topographic and quantitative anomalies for a single

element may occur.

MDA allowed for the discovery that S, Cl, Cu, Fe, K,

Br, and Zn are the elements of the highest significance in

the general discrimination of tumor type. This suggests that

the contents of these elements and particularly their relative

ratios in tissues may constitute a source of the unique

elemental fingerprint of different types of brain tumors. It

should be emphasized that the possible role of these ele-

ments in oncogenetic processes has been previously

reported [8–11].

Moreover, the results obtained showed that the ele-

mental composition of a relatively small fragment of

homogeneous tissue represents satisfactorily the biochem-

ical ‘‘signature’’ of cancer. On the basis of the element

levels determined in such a small sample by means of the

SR-XRF technique and MDA it was possible to differen-

tiate various types of brain tumors (see Fig. 5). The scatter

plot of two discrimination variables showed eight clearly

separated classes corresponding to the histopathological

diagnosis of brain tumors and the control sample. As can be

seen, some tumor types are represented by only one case,

which could be questionable from a statistical point of

Table 5 Classification results

for brain tumor tissue

discrimination

Recognition Correctly classified (%) Predicted group membership

GM AG C OA O G M AF

Classification of the cases used to the model construction

GM 99.8 504 0 0 0 0 1 0 0

AG 100 0 101 0 0 0 0 0 0

C 100 0 0 101 0 0 0 0 0

OA 100 0 0 0 101 0 0 0 0

O 100 0 0 0 0 202 0 0 0

G 100 0 0 0 0 0 101 0 0

M 100 0 0 0 0 0 0 101 0

AF 100 0 0 0 0 0 0 0 101

Total 99.93 504 101 101 101 202 102 101 101

Classification of the new cases

GM 85.8 520 0 23 0 0 58 3 2

AG 88.1 0 89 0 0 0 0 12 0

OA 99.0 0 0 0 100 1 0 0 0

O 87.1 22 0 0 0 176 2 2 0

Total 87.6 542 89 23 100 177 60 17 2
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view. However, as shown in Fig. 5, all the data repre-

senting five cases of glioblastoma multiforme are located in

one centroid separated from the groups of other tumor

types. It is worth emphasizing that the model of discrimi-

nant functions obtained in this work did not differentiate

the samples representing five various cases of glioblastoma

multiforme. The same result was observed for two samples

of oligodendroglioma. Moreover, to validate the proposed

method and verify its usefulness in predictive assumptions,

the new cases were included in the classification procedure.

SR-XRF analysis coupled with MDA allowed the clas-

sification of different types of brain tumors into separate

groups and also even the use of statistical calculation to

classify the unknown cases. It is worth emphasizing that in

this study very high predictive accuracies of MDA were

achieved. As mentioned earlier, the mean percentage of

correct predictions estimated according to the a posteriori

probability procedure was 99.93%. It should be empha-

sized that the prediction ability of about 88% was achieved

in the classification of new cases of brain tumors which had

been previously excluded from the construction of the

model. This suggests that the elemental fingerprinting

created may be a very useful tool in assisting the process of

histopathological diagnosis of tumors, especially in diffi-

cult or disputable cases.

One has to remember that conceptually the process of

histopathological diagnosis of tumors is a complex one,

and is based on the verbatim interpretation of the pictures

(the microscopic ones) of tissue samples. In diagnosing,

histopathologists (or neuropathologists) use their expertise,

and knowledge gained from literature, and, especially in

difficult cases or when the tissue material is limited (e.g.,

stereotactic biopsy), also other sources of data, i.e., a

clinical, radiological (neuroimaging) picture in a given

case [44].

In other words, nothing is directly given in a micro-

scopic picture of the tumor sample. This may sometimes

result in discrepancies in diagnosis between neuropathol-

ogists, even seemingly the best ones, and probably oligo-

dendroglial tumors are among the most susceptible with

regard to the differences in neuropathological interpreta-

tion (‘‘misinterpretation’’ in this context is rather improper)

[45]. What is more, the very basic issue of differentiation

between reactive, i.e. non-neoplastic glial reaction (so

called gliosis or astrogliosis) and low grade astrocytoma

has not been definitely solved. Astrogliosis is unspecific

glial reaction that accompanies many pathological lesions

like abscesses, other inflammatory conditions, prion dis-

eases, demyelination, and also tumors themselves. In some

instances reactive gliosis may be even misinterpreted as

low grade astrocytoma [46]. In difficult cases the ‘‘ele-

mental profile,’’ if accessible, could serve as a helpful

accessory diagnostic tool.

We are aware that the interpretation of the distribution

of elements within tumor tissue in the context of, say,

metabolism or molecular content, let alone in the context of

the attempt to couple it somehow with the concepts of

pathogenesis, may be extremely difficult. Moreover, the

application of the synchrotron-radiation-based technique as

a diagnostic tool is highly impractical. This is mainly due

to the very limited measurement time in the synchrotron

facilities, which are usually not readily available for rou-

tine use. In this study, this excellent X-ray source was

applied. However, as already mentioned, an X-ray beam of

about 20-lm diameter is appropriate for the studies pre-

sented here. Therefore, less precise laboratory microbeam

XRF spectrometers equipped with a high-power fine-focus

X-ray tube (e.g., with a rotating anode) and X-ray optics

(polycapillaries or Kirkpatrick–Baez mirrors) that maintain

a high flux of incoming radiation at micrometrer spatial

resolution could be applied for such analysis.

An important issue relating to the application of an

XRF microprobe as a diagnostic tool is optimal spatial

resolution for such analysis. A complex and inhomoge-

neous morphology of neoplastic tissues imposes limita-

tions on the incident beam size. The use of a relatively

large X-ray beam size, i.e., about 50–100 lm, may fal-

sify the analysis because the measured spot may include

both the representative neoplastic tissue and various

unwanted inclusions which often occur in neoplastic

tissues. On the other hand, the high spatial resolution,

i.e., below 5 lm, which allows the determination of the

elemental composition of the specimen at a subcellular

level, seems to be useless in this study. In fact, analysis

based exclusively on cancer cells gives information only

about the main tumor components. However, the precise

location of a single cell, when using in the experiment

the unstained tissue section, is extremely difficult in

practice. Therefore, the XRF mapping of specimens at a

spatial resolution comparable to cancer cell dimensions,

i.e., about 10–20 lm, seems to be reasonable. Therefore,

laboratory X-ray sources of high intensity could be

potentially used in place of a synchrotron.

A well-established ‘‘elemental signature’’ of a tumor, if

(hopefully) achievable, could turn out to be truly practical

and available for clinical use. Certainly nobody could

imagine replacing routine histopathological diagnostic

methods by elemental fingerprinting as is done with mag-

netic resonance spectroscopy, which is broadly used but

only as an auxiliary method in diagnosing central nervous

system tumors. It is not easy to speculate on the meaning of

our findings from the biochemical perspective, however.

The MDA based on the elemental composition of tissue

may be a potentially valuable method in assisting the dif-

ferentiation and/or classification (diagnosis) of brain

tumors.
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