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The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method is discussed and
a fully general implementation for any number of layers based on the recursive ML-MCTDH algo-
rithm given by Manthe [J. Chem. Phys. 128, 164116 (2008)] is presented. The method is applied first
to a generalized Henon–Heiles (HH) Hamiltonian. For 6D HH the overhead of ML-MCTDH makes
the method slower than MCTDH, but for 18D HH ML-MCTDH starts to be competitive. We report
as well 1458D simulations of the HH Hamiltonian using a seven-layer scheme. The photoabsorp-
tion spectrum of pyrazine computed with the 24D Hamiltonian of Raab et al. [J. Chem. Phys. 110,
936 (1999)] provides a realistic molecular test case for the method. Quick and small ML-MCTDH
calculations needing a fraction of the time and resources of reference MCTDH calculations provide
already spectra with all the correct features. Accepting slightly larger deviations, the calculation can
be accelerated to take only 7 min. When pushing the method toward convergence, results of sim-
ilar quality than the best available MCTDH benchmark, which is based on a wavepacket with 4.6
× 107time-dependent coefficients, are obtained with a much more compact wavefunction consisting
of only 4.5 × 105 coefficients and requiring a shorter computation time. © 2011 American Institute
of Physics. [doi:10.1063/1.3535541]

I. INTRODUCTION

The multiconfiguration time-dependent Hartree
(MCTDH) method1–5 has become over the last decade the
tool of choice to accurately describe the dynamics of complex
multidimensional quantum mechanical systems, providing in
many cases reference results that are used to benchmark other
approaches or determine the behavior of approximate meth-
ods. MCTDH was initially formulated with molecular quan-
tum dynamics in mind, where the degrees of freedom (DOFs)
are distinguishable and the potential operator correlates in
principle all vibrational degrees of freedom of the system.
Many successful applications over the years deal with the
spectroscopy of molecules,6–10 isomerization and intramolec-
ular vibrational energy redistribution (IVR),11, 12 inelastic and
reactive scattering calculations,13–17 scattering of atoms or
molecules at surfaces,18–20 etc. More recently, the potential of
the MCTDH method for the treatment of systems of indistin-
guishable particles, either fermions or bosons, has been real-
ized as well, and many applications can be counted nowadays
in such new directions.21–27 Although the equations of motion
(EOM) remain the same in such cases, the symmetry proper-
ties of the wavefunction and the often two-body nature of the
interactions have led to the appearance of dedicated programs
that specifically and efficiently deal with such cases.28–30

In general, the solution of the time-dependent
Schrödinger equation in a direct-product basis of 1D
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functions (primitive functions) scales exponentially as N f ,
where N is the number of primitive basis functions per degree
of freedom and f is the number of degrees of freedom. In the
MCTDH ansatz one introduces an optimal time-dependent
(TD) basis (called SPF for single particle function) for
each degree of freedom, which can be kept smaller than the
underlying primitive basis, leading to a better scaling of the
number of configurations n f . In this way, MCTDH can deal
with larger systems than the standard method, although the
exponential scaling with f remains, but to a lower base. The
base can be further reduced by grouping degrees of freedom
together in what are called combined modes or logical
coordinates. One obtains in this way a smaller number of
effective degrees of freedom p, leading to a smaller number
of configurations, but the TD basis functions that have to be
now propagated are multidimensional. For a given problem,
it is possible to find mode-combination schemes that provide
an optimum balance between the effort of propagating the
expansion coefficients of each configuration (the A-vector
in usual MCTDH terminology) and the effort of propagating
the multidimensional SPFs . With increasing dimensionality,
however, the multidimensional SPFs, the A-vector, or both
become harder and harder to propagate. As a rule of thumb
and very generally, the number of degrees of freedom that
can be treated for a correlated vibrational problem nowadays
is about 20, but for systems well suited for MCTDH more
than 60 DOFs have been accounted for.31, 32

Multilayer (ML) MCTDH represents a powerful ex-
tension of the usual MCTDH approach, in which a
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multiconfigurational ansatz is used for the multidimensional
SPFs themselves. This results in an extra layer of TD co-
efficients that have to be propagated and hence the name.
One way to think of the ML wavefunction ansatz (given be-
low) is to see the standard propagation method and MCTDH
as particular cases of a ML wavefunction. In the stan-
dard propagation method a single layer of expansion co-
efficients with respect to some time-independent basis is
present. MCTDH contains a first layer of expansion coeffi-
cients with respect to the SPF basis, and a second layer of
TD expansion coefficients that parameterize the time evo-
lution of the SPFs. Expanding multidimensional SPFs us-
ing a MCTDH-like ansatz one obtains a three-layer scheme.
Schemes with more than three layers are of course possi-
ble. In passing we note that the ML-MCTDH ansatz can be
connected to tensor contraction techniques in the mathemat-
ical literature33 and to density matrix renormalization group
(DMRG) theory.34

ML-MCTDH was first formulated by Wang and Thoss,
who also provided an implementation of the method for three
layers (in the present paper MCTDH is regarded as a two-
layer scheme) and showed its applicability on the spin-boson
model and on an electron-transfer model.35 A formally iden-
tical formulation, but without an implementation, was given
independently at the same time by Meyer and Worth,4 who
termed it cascading MCTDH. Over the last years Wang and
Thoss have further developed ML-MCTDH, expanding the
number of layers that their code can handle and treating con-
densed phase model Hamiltonians of large dimensionality be-
tween 100 and a few thousand DOFs.36–39 The same authors
also described how ML-MCTDH can be used to deal with
identical particles, which is accomplished defining the prob-
lem in Fock space and directly working in the occupation-
number representation.40 (Note that ML-MCTDH cannot be
applied to identical particles in the usual first-quantized for-
mulation because the grouping of DOFs into combined modes
destroys the necessary exchange symmetry properties of the
wavefunction.) Recently, Manthe provided a recursive formu-
lation of the ML-MCTDH equations of motion for any num-
ber of layers and described the recursive algorithm that has to
be used to compute all quantities entering the EOM.41, 42

In this contribution, we present the implementation of
the EOM and recursive algorithm proposed by Manthe, and
discuss its applicability and performance on a Henon–Heiles
(HH) model system and on a realistic nonadiabatic molecu-
lar case, full dimensional 24D pyrazine. The resulting imple-
mentation is fully general and it can handle standard method
(one layer), normal MCTDH (two layers), and any desired
multilayering scheme. In this paper, we report on simulations
with three layers and up to a seven-layer case for the 1458D
HH Hamiltonian. We also simulate pyrazine using five- and
six-layer schemes. The ML-MCTDH concept, EOM, and
recursive algorithm are discussed first, emphasizing some as-
pects of our implementation such as the treatment of the sep-
arable parts of the Hamiltonian. We have tried to keep such
discussion self-contained and to reflect the way our code
operates, but for an in-depth discussion Ref. 41 should be
read. The performance and correctness of the recursive im-
plementation are tested on the HH Hamiltonian. For this sys-

tem, 6D calculations with varying coupling strength are car-
ried on first, which are directly compared to MCTDH re-
sults. For such a low dimensionality, the algorithmic com-
plexity of ML-MCTDH does not yet pay off, and MCTDH
is more efficient than ML-MCTDH. For 18D HH we find that
ML-MCTDH starts to be competitive. For this case we an-
alyze the convergence properties of the method with respect
to the number of basis functions at each layer. Simulations
of 1458D HH are also reported, showing the power of this
approach. The ML-MCTDH implementation is then applied
to the photoabsorption spectrum of pyrazine using the 24D
vibronic-coupling Hamiltonian of Raab and coworkers.6 This
is a realistic molecular Hamiltonian involving the presence of
a conical intersection between the electronic state S2 initially
populated by photoabsorption and the S1 electronic state to
which the system decays within some ten fs. The Hamilto-
nian of Ref. 6 has been used to test several quantum dynami-
cal approaches. In the case of ML-MCTDH, we find that the
method performs very efficiently and provides already well
converged spectra in about a fifth of the CPU time used by
the smallest of the MCTDH reference results using extremely
few computational resources. Tolerating a larger error one can
reduce the computation time to 7 min and still get a spec-
trum with all basic features in place. This is amazingly fast,
considering that one is dealing with a fully correlated 24-
dimensional quantum dynamics calculation. No other quan-
tum dynamical method applied up to date to the pyrazine
Hamiltonian offers the extreme quality/cost relation provided
by ML-MCTDH. When pushing ML-MCTDH toward con-
vergence with the pyrazine Hamiltonian, we find that it still
offers results of at least the same quality (if not better) than the
best benchmark results available from MCTDH calculations
with about 4 × 107 configurations, at a lower computational
cost.

The paper is organized as follows: Section II discusses
the ML-MCTDH equations and implementation. Section
III A discusses the results on the HH Hamiltonian and Sec.
III B discusses the application of ML-MCTDH to the pho-
toabsorption spectrum of pyrazine. Section IV summarizes
the results and provides some future perspectives for the
method.

II. MULTILAYER MCTDH

A. Ansatz and general concept

The wavefunction of a system of distinguishable degrees
of freedom, e.g., representing molecular vibrations, can be
conveniently represented as an expansion in terms of direct
products of orthonormal basis functions, one for each degree
of freedom

�(q1, . . . , q f , t)

=
N1∑
j1

· · ·
N f∑
j f

A1
j1,..., j f

(t) · χ
(1)
j1

(q1) · . . . · χ
( f )
j f

(q f ). (1)

Following the notation introduced by Manthe,41 the A1
j1,..., j f

denote the TD coefficients of the first (and by now the only)
layer of TD expansion terms.
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In the MCTDH approach, the wavefunction is expanded
in terms of direct products of orthonormal time-dependent
SPFs

�(q1, . . . , q f , t)

=
n1∑
j1

· · ·
n f∑
j f

A1
j1,..., j f

(t) · ϕ
(1;1)
j1

(q1, t) · . . . · ϕ
(1; f )
j f

(q f , t),

(2)

which are themselves expanded in terms of the underlying
primitive basis

ϕ(1;κ)
m (qκ , t) =

Nκ∑
j

A2;κ
m; j (t) · χ

(κ)
j (qκ ). (3)

Therefore, MCTDH can be seen as a two-layer scheme with
TD coefficients A1

j1,..., j f
(t) at the top layer, and sets of second

layer TD coefficients A2;κ
m; j (t) for each degree of freedom. We

usually refer to the one-layer scheme as the standard method,
to the two-layer scheme simply as MCTDH, and to deeper
layering schemes as ML-MCTDH. Note the important detail
that all SPFs of a certain degree of freedom are expanded in
terms of the same underlying basis, i.e., the χ

(κ)
j (qκ ) functions

in Eq. (3) have no m index.
The computational gain of MCTDH with respect to the

standard method arises from the expansion orders nκ being in
general smaller than the size of the underlying primitive basis
Nκ , which leads to a smaller number of TD coefficients to be
propagated. However, the total number of TD coefficients is
still given by

∏ f
κ=1 nκ , and therefore the computational effort

raises exponentially with the number of degrees of freedom.
Hence, MCTDH does not eliminate the exponential scaling
but reduces the base to which the scaling occurs (for a de-
tailed analysis of the computational scaling of MCTDH see,
for example, Ref. 3). The base can be further reduced by com-
bining the physical coordinates q1, . . . , q f into logical coor-
dinates (also referred to as combined modes) Q1

1, . . . , Q1
p,

such that each logical coordinate comprises one or several of
the physical coordinates, as Q1

κ = {q1κ
, . . . , qdκ

}. Here a more
general notation to designate a combined coordinate has been
introduced that will be useful when discussing deeper layer-
ing schemes. Mode combination has been extensively used
in many applications of the MCTDH method. Similarly as in
Eq. (2), the MCTDH wavefunction now reads

�(Q1
1, . . . , Q1

p, t)

=
n1∑
j1

· · ·
n p∑
jp

A1
1; j1,..., jp

(t) · ϕ
(1;1)
j1

(Q1
1, t) · . . . · ϕ

(1;p)
jp

(Q1
p, t),

(4)

and the TD basis functions ϕ
(1;κ)
jκ

(Q1
κ , t) are now multidimen-

sional. Introducing mode combination, the computational ef-
fort is switched from the propagation of a large vector of
A1

j1,..., jp
(t) coefficients and one-dimensional SPFs, to a shorter

vector of coefficients but multidimensional, harder to prop-
agate SPFs. It is often the case that some experience and
knowledge of the system under consideration is necessary to

find an efficient mode-combination scheme for a given prob-
lem. The mode-combined SPFs are given by

ϕ1;κ
m (Q1

κ , t)

=
N1κ∑
j1κ

· · ·
Ndκ∑
jdκ

A2;κ
m; j1κ ,..., jdκ

(t) · χ
(κ,1)
j1κ

(q2;κ
1κ

) · . . . · χ
(κ,dκ )
jdκ

(q2;κ
dκ

),

(5)

where the last equation resembles the ansatz in Eq. (1) in
that multidimensional SPFs are represented as a multiconfig-
urational expansion in terms of underlying time-independent
basis functions. In the same way a TD basis was introduced
above in going from the standard ansatz to MCTDH, effec-
tively adding a second layer of TD expansion coefficients, a
MCTDH expansion can be used to represent the ϕ(1;κ)

m (Q1
κ , t)

SPFs, effectively adding a third layer of expansion coeffi-
cients. This results in a three-layer ML-MCTDH ansatz.

The ML-MCTDH layering scheme can be very flexible.
In a high dimensional system one combines groups of de-
grees of freedom into high dimensional SPFs until the size
of the vector of coefficients in Eq. (4) becomes manageable.
However, the combined SPFs are too large to be efficiently
propagated. Then, one breaks the combined modes into even
smaller groups of logical coordinates introducing a new layer
of coefficients, whose size is manageable. This procedure can
be repeated over and over until the (possibly combined) prim-
itive degrees of freedom are reached.

Owing to the flexibility of the layering scheme, and the
fact that ML-MCTDH wavefunctions can be many layers
deep, it is convenient to introduce a diagrammatic notation
to represent these objects.41 In this notation, wavefunctions
are represented by trees, i.e., connected graphs without loops.
Each node in the tree represents a set of vectors of coefficients
Al;κ1,...,κl−1

m; j1,..., jpκl
, where l denotes the layer depth, κ1, . . . , κl−1 de-

note the indices of the logical degrees of freedom starting
from the top node and down to a particular node (path from
the top down to a given node), m indicates the different vec-
tors within this node, and finally j1, . . . , jpκl

are the ten-
sor indices of each particular array of coefficients within the
node.

Some ML diagrams are presented later when discussing
the various applications (see Figs. 1, 4, and 9). The lines con-
necting one node with its descendant nodes in such diagrams
represent the tensor indices j1, . . . , jpκ1 ,...,κl

, one line per in-
dex, and the numbers at the side of each line refer to the max-
imum possible value of the corresponding index. Each node is
uniquely described by the values of its label (l; κ1, . . . , κl−1).

B. ML-MCTDH equations of motion and recursive
implementation

The ML-MCTDH EOM have been derived and discussed
by Wang and Thoss35 and Manthe.41 In Ref. 41 a fully gen-
eral derivation of the ML-MCTDH EOM for arbitrary layer-
ing schemes is provided, together with an algorithm for the
recursive evaluation of all intermediate quantities entering the
EOM. We reproduce here the EOM and hint the key elements
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(a)

(b)

FIG. 1. Tree structures for the MCTDH and ML-MCTDH wavefunctions of
the 6D Henon–Heiles simulations. (a) MCTDH wavefunction tree, in which
the coordinates are combined in groups of two. N2 refers in this particu-
lar case to the number of primitive basis functions or grid points. (b) ML-
MCTDH wavefunction tree. This tree is similar to the MCTDH tree, but the
three combined modes have been separated by adding an extra layer. For the
ML-MCTDH wavefunction N3 corresponds now the number of primitive ba-
sis functions and for N2 ≡ N3 (and same N1) the ML-MCTDH case becomes
numerically identical to the MCTDH one.

of the recursive algorithm for the sake of completeness. Later
we discuss some specific aspects of our implementation.

The ML-MCTDH EOM have a very similar structure to
the usual MCTDH equations, and for the top layer coefficients
they are identical to the MCTDH ones

i
∂ A1

I

∂t
=

∑
J

〈�1
I |Ĥ |�1

J 〉A1
J , (6)

where the top layer configurations �1
J = ϕ

(1;1)
j1

(Q1
1, t) · . . .

· ϕ
(1;p)
jp

(Q1
p, t) are defined as direct products of SPFs and the

multi-index J = j1, . . . , jp has been implicitly introduced.
The EOM for the propagation of the SPFs are formally the
same for all layers

i
∂ϕz,κl

n

∂t
= (1 − P̂ z

κl
)
∑
j,m

(ρz,κl )−1
nj · 〈Ĥ〉z,κl

jm ϕz,κl
m , (7)

where P̂ z
κl

= ∑
j |ϕz,κl

j 〉〈ϕz,κl
j | is the projector onto the space

spanned by the ϕ
z,κl
j SPFs, ρz,κl is a density matrix and 〈Ĥ〉z,κl

is a matrix of mean-field operators acting on the ϕ
z,κl
j func-

tions. The symbol z is a shorthand for the indices specifying a
node, z = l; κ1, . . . , κl−1, and for further reference we intro-
duce z−1 = l − 1; κ1, . . . , κl−2, and similar for z+1. In its
form above, the EOM for the SPFs look identical to the usual
EOM for the SPFs in the usual MCTDH.3 Only the compu-
tation of the density matrices and mean-fields entering the
EOM is now more involved than in a single-layer MCTDH
scheme.

Before describing how in practice the recursive calcula-
tion of mean-fields and density matrices is performed, we first
restrict ourselves to the case in which the Hamiltonian is given
by sums of products of operators acting on the primitive (but

possibly combined) degrees of freedom Qprim
κ

Ĥ =
s∑

r=1

cr Ĥr =
s∑

r=1

cr

f∏
κ=1

ĥ(prim;κ)
r . (8)

This form of the operator is necessary to avoid the computa-
tion of high dimensional integrals, and has been thoughtfully
discussed in the MCTDH literature. Terms which usually do
not follow the product form are, e.g., general potential energy
surfaces. There exist however algorithms to bring general po-
tentials to product form.43–46 Furthermore, MCTDH and ML-
MCTDH formulations based on time-dependent grids that by-
pass this restriction (so-called CDVR approach) have also
been provided,41, 47 but here we always will assume Hamil-
tonians in product form, Eq. (8).

In order to discuss the practical computation of the mean-
field elements 〈Ĥ〉l;κ1,...,κl

jm appearing in Eq. (7), we center our
attention on a particular node z = (l; κ1, . . . , κl−1). This node
relates to the logical coordinate Ql−1;κ1,...,κl−2

κl−1 , which can be
further decomposed into a combination of logical coordinates

Qz−1
κl−1

= {
Qz

1, . . . , Qz
pκl

}
, (9)

and holds vectors of coefficients denoted by Az
m; j1,..., jpκl

.

These coefficients are expansion coefficients of SPFs in layer
l−1expanded in terms of SPFs in layer l. This is better seen
by extending Eqs. (3) and (5) to the fully general multilayer
case

ϕz−1,κl−1
m

(
Qz−1

κl−1

) =
n1∑
j1

· · ·
nκl∑
jpκl

Az
m; j1,..., jpκl

pκl∏
κl=1

ϕ
z,κl
jκl

(Qz
κl

) (10a)

=
∑

J

Az
m;J · �z

J

(
Qz−1

κl−1

)
, (10b)

where the configurations �z
J are the multilayer generalization

of the configurations introduced in Eq. (6). The operator sum-
mands in Eq. (8) can be written as

Ĥr = Ĥl;κ1,...,κl
r · ĥl;κ1,...,κl

r (11a)

= Ĥl;κ1,...,κl
r ·

pκl+1∏
κl+1=1

ĥl+1;κ1,...,κl+1
r , (11b)

where ĥl;κ1,...,κl
r acts on the logical coordinate Ql;κ1,...,κl−1

κl ,
while Ĥl;κ1,...,κl

r acts on the corresponding remaining space.
As seen from Eq. (11b), ĥl;κ1,...,κl

r can as well be written as a
direct product of operators ĥl+1;κ1,...,κl+1

r , which act on logical
coordinates Ql+1;κ1,...,κl

κl+1
. In fact, both operators Ĥl;κ1,...,κl

r and

ĥl;κ1,...,κl
r can be broken down to a simple product of operators

which act on one primitive (but possibly combined) coordi-
nate only [see Eq. (8)]. The matrix elements of the mean-field
operators at the right-hand side of Eq. (7) for one particular
summand Ĥr are given by

〈Ĥr 〉z,κl
jm,I J = 〈

�z+1
I |〈Ĥr 〉z,κl

jm |�z+1
J

〉
, (12)

which is readily seen if the SPFs in Eq. (7) are written in their
explicit form given in Eq. (10b). These are the most cumber-
some quantities to compute within the ML-MCTDH scheme.
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By substituting Eqs. (11a) and (11b) into Eq. (12) one arrives
at〈
Ĥr

〉l;κ1,...,κl

jm,I J
= 〈

Ĥl;κ1,...,κl
r

〉l;κ1,...,κl

jm
· [

ĥl;κ1,...,κl
r

]
I J

(13a)

= 〈
Ĥl;κ1,...,κl

r

〉l;κ1,...,κl

jm ·
pκl+1∏

κl+1=1

[
ĥl+1;κ1,...,κl+1

r

]
iκl+1, jκl+1

(13b)

with [
ĥz,κl

r

]
I J = 〈

�z+1
I |ĥz,κl

r |�z+1
J

〉
, (14a)

[
ĥz+1,κl+1

r

]
iκl+1, jκl+1

= 〈
ϕ

z+1,κl+1
iκl+1

|ĥz+1,κl+1
r |ϕz+1,κl+1

jκl+1

〉
. (14b)

[The mean-field tensor 〈Ĥz,κl
r 〉z,κl

jm will be discussed below,
Eq. (18).] It remains therefore to be seen how the quantities
appearing in the right-hand side of Eq. (13b) can be recur-
sively computed.

The expression for the h-matrices is found by starting
from Eq. (14b) and explicitly writing the SPFs in layer l + 1
in terms of those in layer l + 2[

ĥz+1,κl+1
r

]
aκl+1 ,bκl+1

= 〈
ϕz+1,κl+1

aκl+1
|ĥz+1,κl+1

r |ϕz+1,κl+1
bκl+1

〉

=
〈
ϕz+1,κl+1

aκl+1
|

pκl+2∏
κl+2=1

ĥz+2,κl+2
r |ϕz+1,κl+1

bκl+1

〉

=
pκl+2∏

κl+2=1

∑
J κl+2

∑
i, j

A∗ z+2
akl+1 ;J

κl+2
i

[
ĥz+2,κl+2

r

]
i, j Az+2

bkl+1 ;J
κl+2
j

. (15)

Here multi-indices J κ and J κ
m have been introduced to make

the notation more compact. The former contains all indices
except for the κth one, while the latter has index κ set to
m. Equation (15) tells us that the computation of the matrix
elements of ĥz+1,κl+1

r requires the previous knowledge of the
matrix elements of ĥz+2,κl+2

r . Therefore, one starts at the low-
est layer with the matrix elements of Ĥwith respect to the
underlying time-independent basis[

ĥ
lmax;κ1,...,κlmax
r

]
iκ , jκ

= [
ĥprim;κ

r

]
iκ , jκ

= 〈
χ

(κ)
iκ

|ĥprim;κ
r |χ (κ)

jκ

〉
, (16)

where lmax denotes the maximal layer, i.e., lmax = 2 for nor-
mal MCTDH, and proceeds bottom up through the tree struc-
ture building the matrix representations of the ĥl+1;κ1,...,κl+1

r op-
erators, which will subsequently be used to build the matrix
elements of ĥl;κ1,...,κl

r operators, and so on.
The mean-field matrix elements are computed in practice

in a similar way to Eq. (15). For the top layer, the mean-field
elements are given as

〈
Ĥ1;κ1

r

〉1;κ1

m,n
=

p∏
ν �=κ1

∑
J κ1 ,ν

∑
i, j

A∗ 1
1;J

κ1 ,ν

m,i

[
ĥ0;ν

r

]
i, j

A1
1;J

κ1,ν
n, j

, (17)

where the composite indices J κ,ν and J κ,ν
m,n are defined simi-

larly as J κ and J κ
m . Equation (17) corresponds to the normal

way of calculating the mean-fields in standard MCTDH, and
is an alternate way of writing, e.g., Eq. (67) in Ref. 3. For a
given deeper layer, the calculation involves the mean-fields of
the above layer and is given by41

〈
Ĥz,κl

r

〉z,κl

m,n =
∑
a,b

〈
Ĥz−1,κl−1

r

〉z−1,κl−1

a,b

×
pκl∏

ν �=κl

∑
J κl ,ν

∑
i, j

A∗ z
a;J

κ1 ,ν

m,i

[
ĥz−1,ν

r

]
i, j

Az
b;J

κ1 ,ν

n, j
, (18)

where a and b run over the (l − 1)th layer SPFs, which are
contained in the lth layer SPF m and n, respectively. There-
fore, the mean-fields can be computed if the mean-fields of
the layers above, as well as the matrix elements of the ĥ oper-
ators, are known. The density matrices are computed in a very
similar way to Eq. (18), but application of the ĥ matrices to A
vectors on the right-hand side of Eq. (18) disappears. Equa-
tions (17) and (18) are obtained after introducing the so-called
single-hole functions, which are defined as the variation of the
total wavefunction with respect to a particular SPF. We leave
this more specialized step out of this discussion and refer the
interested reader, e.g., to Refs. 3 or 41.

The recursive algorithm proceeds then as follows:
(1) Starting from the bottom of the tree and proceeding up,
the h-matrix elements are evaluated after Eq. (15). (2) Start-
ing from the top of the tree and proceeding down the mean-
fields and density matrices are computed as in Eq. (18). (3)
The right-hand side of the EOMs, Eqs. (6) and (7), is evalu-
ated.

C. Separable part of the Hamiltonian across layers

The efficiency of the ML-MCTDH calculations is in-
creased if one takes advantage of the terms ĥ(prim;κ)

r in Eq. (8)
that are unit operators. The kinetic energy part of the Hamilto-
nian contains usually many unit terms. Also common models
such as Henon–Heiles, vibronic coupling, system-bath, etc.
have as well many unit terms in the potential energy part of
the operator.

The obvious way to obtain computational savings is to
flag all unit terms as such, so that they do not have to be stored
as unit matrices and they do not have to be explicitly multi-
plied. This is done from the bottom of the tree and proceeding
recursively upward. If all ĥz+1,κl+1

r ≡ 1̂, then ĥz,κl
r is flagged as

1̂. Our implementation keeps track of all unit h-terms at all
layers, which saves resources in the recursive construction of
the h-matrices in Eq. (15), in the mean-fields construction in
Eq. (18), and in the equations of motion.

Once the unit operators at all layers have been flagged
as such, it is possible to identify noncorrelated terms for a
particular node, i.e., terms that decompose as

Ĥr = 1z,κl · ĥz,κl
r , (19)

such that the nonunit parts of Hr operate only on the com-
bined coordinate Qz

κl
. The step of identifying separable terms

is conveniently done from the top of the tree and proceeding
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downward. To illustrate this let us refer to a simple 4D exam-
ple and the operator summand

Ĥr = ĥprim;1
r · 1̂prim;2

r · ĥprim;3
r · ĥprim;4

r . (20)

The considered tree structure has four primitive nodes
(3; 1, 1), (3; 1, 2), (3; 2, 1), and (3; 2, 2)with h-terms ĥ3;1,1

r ,
1̂3;1,2

r , ĥ3;2,1
r , and ĥ3;2,2

r , which are the matrix representation
of the primitive product terms in Eq. (20). The two nodes at
the intermediate layer, namely, (2; 1) and (2; 2), have there-
fore h-terms ĥ2;1,1

r and 1̂2;1,2
r for node (2; 1) and h-terms ĥ2;2,1

r
and ĥ2;2,2

r for node (2; 2). The top node (1; ) has h-terms ĥ1;1
r

and ĥ1;2
r . Only in the case that both ĥ2;1,1

r and 1̂2;1,2
r would have

been unit operators, had ĥ1;1
r been marked as a unit operator as

well. Now we turn to the identification of noncorrelated terms
starting from the top of the tree. Ĥr is marked as correlated
in node (1; ) because both ĥ1;1

r and ĥ1;2
r are different from the

unit operator. At first sight, the Ĥr term could be flagged as
noncorrelated in node (2; 1) because only one of the h-terms is
different from unity. However, the parent node had this term
marked as correlated, and therefore Ĥr is marked as corre-
lated in node (2; 1). The reason why this happens is that Ĥr

acts also on node (2; 2), which is in another branch of the tree.
It is then clear that a convenient way to spot situations of this
kind is to proceed recursively from the top of the tree, as illus-
trated. Ultimately, the Ĥr term is marked correlated in node
(2; 1) because the mean-field matrix elements 〈Ĥ2;1,1

r 〉2;1,1
m,n and

〈Ĥ2;1,2
r 〉2;1,2

m,n correlate the motion of SPFs ϕ
2;1,1
j and ϕ

2;1,2
j with

the dynamics proceeding in node (2; 2) and below. The cou-
pling to the dynamics in the other branch arises from the re-
lation of the mean-field elements just mentioned to the mean-
fields 〈Ĥ1;1

r 〉1;1
m,n in the top node, as shown in Eq. (18).

Once the noncorrelated terms have been identified for
each node, one can exploit, in the same way as in standard
MCTDH, that for them the mean-field matrix elements be-
come identical to the elements of the density matrix〈

1̂l;κ1,...,κl
〉l;κ1,...,κl

mn
≡ (ρl;κ1,...,κl )mn. (21)

Hence, for a particular node with Ĥr terms 1 to s noncorre-
lated, and terms s + 1 to t correlated, Eq. (7) can be rewritten
as

i
∂ϕz,κl

n

∂t
= (

1 − P̂ z
κl

)⎛
⎝ s∑

q=1

cq · ĥz,κl
q +

∑
j,m

(ρz,κl )−1
nj ·

×
t∑

r=s+1

cr · 〈
Ĥz,κl

r

〉z,κl

jm · ĥz,κl
r

)
ϕz,κl

m , (22)

which is the EOM for the SPFs on which our implementation
is based. The EOM for the coefficients follows directly from
this equation and Eq. (10)

∂ Az
m;J

∂t
=

〈
�z

J |
∂ϕ

z−1,κl−1
n

∂t

〉
. (23)

There is no contribution from ∂�z
J /∂t because, due to the

projector, the SPFs are orthogonal to their time derivatives.
Hence one may write compactly

∂ Az
n;J

∂t
=

∑
K

(
δJ K −

∑
j

Az
j ;J A∗z

j ;K

) ∑
m,L

Mz
n,m;K L Az

m;L , (24)

where a detailed expression for the matrix Mz
nm;J L follows

from Eqs. (10), (22), and (23).
As a final comment, it is worth mentioning that in large

systems with groups of coordinates strongly correlated among
them but weakly correlated to other groups, i.e., with some
sort of locality, the identification of the correlated terms node
by node may become very important. In such cases there will
be many correlated terms in nodes at lower layers, but less of
them as one proceeds up to the top of the tree. Such an exam-
ple is given by the HH model to be introduced below, where
each harmonic oscillator is coupled only to its next neigh-
bors. For similar reasons, when dealing with system-bath
Hamiltonians with ML-MCTDH, it may be advantageous in
most cases to separate system and bath already at the top
layer.

III. RESULTS AND DISCUSSION

The ML-MCTDH algorithm and implementation de-
scribed above are applied to two paradigmatic systems. On the
one hand we simulate the HH model for various dimension-
alities, and on the other hand we test our implementation on
the pyrazine system using the second-order vibronic-coupling
Hamiltonian of Ref. 6.

A. Henon–Heiles

The HH Hamiltonian

Ĥ = ω

2

f∑
κ=1

(
− ∂2

∂q2
κ

+ q2
κ

)
+ λ

f −1∑
κ=1

(
q2

κ qκ+1 − 1

3
q3

κ+1

)
,

(25)

written here in dimensionless units, offers a convenient play-
ground to investigate the convergence properties and perfor-
mance of ML-MCTDH. The HH model was used in Ref. 48
to benchmark the MCTDH method and the same Hamiltonian
with similar parameters is used here for the benchmarking of
ML-MCTDH. For all simulations we set ω = 1. The degree
of anharmonicity and coupling are controlled by the single
parameter λ, for which different values are chosen. The ini-
tial amount of energy in the system is easily controlled by the
position at which the initial wavepacket is centered for each
degree of freedom. The initial wavepacket is always taken as
a Hartree product of Gaussian functions of width correspond-
ing to the ground vibrational state of the harmonic part of the
Hamiltonian. Initially, all momenta are set to zero, 〈pκ〉 = 0,
and similarly all positions, except for a few coordinates which
are displaced by two length units with respect to qκ = 0. The
HH Hamiltonian in Eq. (25) has dissociative channels due to
the cubic terms, which are accessible in the energy range of
the reported simulations. To avoid reflections from the grid
edges, the Hamiltonian is augmented with a complex absorb-
ing potential (CAP) as H = T + V − iW . Further details on
the CAP used are found in Ref. 48. A sine-DVR (for discrete
variable representation) primitive basis with points between
−9 and 7 length units and N = 24 grid points is used for
all coordinates throughout the HH simulations. All propaga-
tions on HH models are carried on up to 30 time units, which
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roughly corresponds to five oscillation periods T = 2π/ω in
the harmonic limit.

1. 6D simulations

We first concentrate on a 6D HH model. Calculations
with λ = λ0 and λ = 2λ0 are performed, for λ0 = 0.111 803.
A value of λ0 = 0.111 803 allows to compare with other
works that use the same Hamiltonian.48 For the reported 6D
calculations, the initial wavepacket is centered at qκ = 2 for
coordinates q2, q4, and q6. Standard MCTDH (two-layer)
and ML-MCTDH calculations using a three-layer scheme are
compared, and the trees representing the MCTDH and ML-
MCTDH wavefunctions are displayed in Figs. 1(a) and 1(b),
respectively. In the MCTDH case every two primitive DOFs
are combined, and N2 equals the number of DVR grid points
(primitive basis functions) for each DOF. In the ML-MCTDH
wavefunction an extra layer of TD coefficients is introduced,
effectively representing the 2D SPFs of the combined modes
in the original MCTDH wavefunction by a new multiconfigu-
rational expansion. It is worth noting that in the case of having
N2 = N3 for the ML-MCTDH wavefunction, the lowest layer
is treated exactly and both MCTDH with mode combination
and ML-MCTDH provide numerically identical results (for
the same number of SPFs N1 at the top layer).

The different propagations are compared by in-
specting the autocorrelation function obtained as a(t)
= 〈�∗(t/2)|�(t/2)〉. (This trick3 yields an autocorrelation
function which is twice as long as the propagation.) The au-
tocorrelation at long times is difficult to converge, since the
(ML-)MCTDH wavefunction accumulates error as time in-
creases, providing an adequate quantity to compare the dif-
ferent propagations. Conversely, the spectra corresponding to
the autocorrelation functions have the error averaged over the
whole energy range, and therefore are not such a good quan-
tity to look at for a stringent comparison.

Results for the low (λ = λ0) and high (λ = 2λ0) coupling
regimes are shown in Figs. 2 and 3, respectively, where the
absolute value of a(t) is displayed. In both Figs. 2 and 3, the
numbers in parentheses correspond to (N1, N2) in the trees
in Fig. 1. For MCTDH N2 equals the number of grid points
and is given only for completeness. In the case of low cou-
pling (Fig. 2), all calculations yield almost indistinguishable
autocorrelation functions. Figure 2(b) displays the difference
between autocorrelation functions of the ML-MCTDH calcu-
lations and the best converged (50,24) MCTDH calculation.
The (50,20) ML-MCTDH calculation is very close to the ref-
erence MCTDH result. The calculations that diverge earlier
with respect to the reference result are the (30,10) and (50,10)
ones due a poorer convergence of the lower layer, while the
ML-MCTDH (30,20) calculation starts to deviate from the
reference result after the system has completed five to six os-
cillation cycles.

After doubling the strength of the coupling parameter, the
situation becomes more complex. In Fig. 3(a) one sees that
after two oscillation periods the autocorrelation functions of
the different propagations start to diverge on an appreciable
scale. Only the best MCTDH calculation (50,24) and the best
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FIG. 2. (a) Absolute value of the autocorrelation function for various
MCTDH and ML-MCTDH 6D Henon–Heiles simulations with a coupling
parameter λ = λ0. The numbers in parentheses correspond to (N1, N2) in
Fig. 1. In the key, plain numbers indicate MCTDH calculations and the sym-
bol ML designates ML-MCTDH calculations. (b) Difference between the
autocorrelations of the ML-MCTDH simulations and the (50,24) MCTDH
calculation.
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FIG. 3. (a) Absolute value of the autocorrelation function for various
MCTDH and ML-MCTDH 6D Henon–Heiles simulations with a coupling
parameter λ = 2λ0. The numbers in parentheses correspond to (N1, N2) in
Fig. 1. (b) Difference between the autocorrelations of the ML-MCTDH sim-
ulations and the (50,24) MCTDH calculation. In the key, ML is for ML-
MCTDH.
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ML-MCTDH (50,20) result in very close autocorrelations up
to 60 time units. Figure 3(b) shows the difference between
the ML-MCTDH results and the (50,24) MCTDH calculation.
The two worst calculations are clearly the ones with N2 = 10.
In this case, the correlation at the lowest layer, i.e., between
DOF (q1, q2), (q3, q4), and (q4, q5) is not well represented. It
is important to note that the (50,10) calculation does not offer
an improvement over the (30,10) one. The missing correlation
within the logical coordinates in the lowest layer cannot be re-
gained by having more SPFs in higher layers. Similarly as in
standard MCTDH calculations, the eigenvalues of the density
matrices at each layer, the natural populations (NP), provide
an indication of the degree of convergence of a calculation.
As a rule of thumb, the smallest NP should be of the order
of 10−5 to provide good results in many cases, although this
can vary depending on what quantity one is trying to com-
pute. For the (50,10) and (50,20) ML-MCTDH calculations
at t = 60, the smallest NP of the three logical coordinates at
the top layer are (1.4 × 10−5 / 1.3 × 10−4 / 9.3 × 10−5) and
(3.4 × 10−5 / 1.8 × 10−4 / 1.3 × 10−4), respectively. There-
fore, the convergence at the top layer is slightly worse for
the (50,20) case than for the (50,10) case, even though
by comparison to the standard MCTDH calculation it is
clear that the (50,20) calculation provides better converged
results than the (50,10). Hence, by allowing more SPFs
at the second layer, the evolution of the top layer SPFs
becomes more complex since they have more variational
freedom.

As a remark to the 6D simulations, in this case standard
MCTDH calculations are more efficient than ML-MCTDH
ones. Only in the case of having a larger number of DVR
points per degree of freedom resulting in very large 2D com-
bined coordinates, would the introduction of a further layer
[compare Figs. 1(a) and 1(b)] constitute an advantage. Effi-
ciency issues are discussed later in relation to the larger HH
simulations and to pyrazine.

FIG. 4. Tree structures for the MCTDH and ML-MCTDH wavefunctions of
the 18D Henon–Heiles simulations. The MCTDH wavefunction (a) consists
of six combined modes, each of them grouping three primitive coordinates.
The ML-MCTDH wavefunction (b) starts dividing the system in three logical
coordinates, and each of them is further divided in three combined modes.
The resulting tree has three layers of TD coefficients.

2. 18D simulations

Next we discuss simulations on an 18D HH model with
λ = λ0. The initial wavepacket is centered at qκ = 2 for co-
ordinates q4, q8, q12, and q16, resulting in an initial energy of
15.807. As in the 6D case, wavepackets are propagated up to
30 time units. For this model we run standard MCTDH calcu-
lations in which the 18 physical coordinates are grouped into
six combined modes (logical coordinates) with three prim-
itive DOFs each. The tree representation of the MCTDH
wavefunction is given in Fig. 4(a). There, N1 is the number
of SPFs per combined mode and N2 = 24 is the number of
DVR functions per DOF. Two standard MCTDH calculations
were performed, using N1 = 10 and N1 = 14 SPFs per com-
bined mode, resulting in 106 and 7.5 × 106 configurations,
respectively. ML-MCTDH calculations based on the tree
structure in Fig. 4(b) and using the same Hamiltonian and
initial conditions were performed as well. In the ML calcu-
lations various basis sizes were employed, always keeping
N1 equal to N2. The autocorrelation functions resulting from
the MCTDH and ML-MCTDH calculations are presented in
Fig. 5, where the numbers in the legend correspond to N1 for
MCTDH, and to N1 and N2 for ML-MCTDH. At the scale
shown in Fig. 5(a) all simulations yield very similar results.
Figure 5(b) shows the last revival of |a(t)| in more detail.
The worst result appears to be the standard MCTDH calcu-
lation with N1 = 10. The various ML-MCTDH calculations
approach the (N1, N2) = 20 result as the size of the basis
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FIG. 5. (a) Absolute value of the autocorrelation function for various
MCTDH and ML-MCTDH 18D Henon–Heiles simulations with a coupling
parameter λ = λ0. For the MCTDH cases the number in parentheses refers to
N1 in Fig. 4(a). For the ML-MCTDH cases the number in parentheses refers
to N1 and N2 in Fig. 4(b), which are set equal in the reported simulations. (b)
Detailed view of the last recurrence structure between 55 and 60 time units.
In the key, ML is for ML-MCTDH.
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FIG. 6. (a) Absolute value of the autocorrelation function for various
MCTDH and ML-MCTDH 18D Henon–Heiles simulations with a coupling
parameter λ = 2λ0. For the MCTDH cases the number in parentheses refers
to N1 in Fig. 4(a). For the ML-MCTDH cases the number in parentheses
refers to N1 and N2 in Fig. 4(b), which are equal in the reported simulations.
(b) Detailed view of the recurrence structures between 10 and 30 time units.
In the key, ML is for ML-MCTDH.

increases, while the standard MCTDH with N1 = 14 seems
not to be yet be fully converged with respect to the trend of
the ML-MCTDH simulations.

The set of simulations described above were repeated
doubling coupling parameter λ = 2λ0. For this coupling
strength the revivals of the autocorrelation function decay
after a few oscillations. The different simulations yield still
similar autocorrelation functions [Fig. 6(a)], but differences
are now larger than in the small coupling parameter case,
which can be seen by inspecting Fig. 6(b). There, the auto-
correlation function between 10 and 30 time units is shown
in detail, and after this time the autocorrelation has almost
vanished. By looking at the autocorrelation functions of the
various MCTDH and ML-MCTDH simulations one sees that
full convergence with respect to the number of SPFs has not
been completely reached, even at short propagation times.
Full convergence of the 18D HH model with a coupling
parameter of λ = 2λ0 is a very demanding task. The N1

= 14 MCTDH simulation was run on eight processors using
shared-memory parallelization, for which a speed factor of
about 3 can be expected.49 This calculation required 71 h of
wall clock time on the eight processors and would have taken
about 200 h on a single processor. About 5 GB of main mem-
ory were used for the wavepacket propagation. In contrast to
this, the largest ML-MCTDH calculation with (N1, N2) = 20
required 136 h of wall-clock time running on a single proces-
sor and the wavepacket propagation used less than 500 MB of
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FIG. 7. (a) Spectra for various MCTDH and ML-MCTDH 18D Henon–
Heiles simulations with a coupling parameter of λ = 2λ0. The numbers in
parentheses have the same meanings as in Fig. 6. (b) Detailed view of the
three first peaks between 6.2 and 7.9 energy units. In the key, ML is for
ML-MCTDH. The spectra are obtained by a Fourier-transform of the auto-
correlation function using a cos2 filter (Refs. 3 and 5) to minimize spurious
effects known as Gibbs phenomenon.

main memory, while the (N1, N2) = 12 ML-MCTDH calcu-
lation needed only 7 h on a single processor. All calculations
reported in this paper are performed on a quad-core Opteron,
processor type 2384, 2.7 GHz.

If we now look at the spectra of the propagated
wavepackets obtained by Fourier-transform of the corre-
sponding autocorrelation functions we see that they are very
similar. The spectra of two MCTDH calculations with N1 = 6
and N1 = 14 are shown in Fig. 7. The N1 = 10 case (not
shown) yields a spectrum very similar to the larger MCTDH
calculation. The spectra of two ML-MCTDH calculations are
also presented in Fig. 7, namely, the smallest and largest cal-
culations of the ML series. The spectrum of the MCTDH
calculation with N1 = 6 yields somewhat different intensi-
ties in the higher energy range than the other simulations.
When closely inspecting the lower energy range [Fig. 7(b)]
one finds a non-negligible energy shift of the spectrum of the
small MCTDH calculation to higher energies. Interestingly,
the N1 = 6 standard MCTDH propagation required 17 h run-
ning on eight parallel processors in the same conditions as
discussed above. The number of SPFs for this simulation was
chosen such that the cost would be comparable to that of the
smaller (N1, N2) = 12 ML-MCTDH calculation. The smaller
ML-MCTDH calculation required 7 h of wall-clock time on a
single CPU running on the same hardware, and its spectrum is
already very similar to the spectra of the larger MCTDH and
ML-MCTDH calculations.
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FIG. 8. Absolute value of the autocorrelation of the ML-MCTDH 1458D Henon–Heiles simulations for time units 30 to 60. (a) Reference results without
coupling term between the two displaced coordinates for case (1) (red dashed), in which the two initially displaced degrees of freedom belong to different
logical coordinates at all layers, and case (2) (blue line), in which the two initially displaced degrees of freedom belong to the same logical coordinate at all
layers. (b) For case (2), homogeneous wavefunction (red dashed) and nonhomogeneous wavefunction with more SPFs at low layers (blue line). (c) For case (1),
homogeneous wavefunction (red dashed) and nonhomogeneous wavefunction (blue line). The pairs of autocorrelation functions presented in plots (b) and (c) are
almost identical until about 15 time units, but the autocorrelation functions of case (1) and (2) start to differ already after 5 time units. These differences increase
with time and can be inspected for the time interval 30 to 60 by comparing (b) with (c). (d) Spectra of the calculations with the nonhomogeneous wavefunctions
for cases (1) and (2). The spectra are obtained by a Fourier-transform of the autocorrelation function using a cos2 filter (Refs. 3 and 5) to minimize spurious
effects known as Gibbs phenomenon.

The size of the 18D HH model is such that standard
MCTDH calculations can still be conducted to a good accu-
racy. Contrary to the 6D case however, for this dimensionality
it already pays off to introduce a further layer in the calcu-
lation, and three-layer ML calculations offer results of simi-
lar quality than the standard MCTDH ones with a noticeably
smaller cost.

3. 1458D simulations

Finally, we report ML-MCTDH simulations on a HH
model with 1458 DOFs and coupling constant λ = λ0. The
system is described in this case by a seven-layer wavefunc-
tion. At the top level the coordinates are divided in three
groups of 486 coordinates, which are subsequently divided
again in three groups, and so on. This is repeated until groups
of two primitive DOFs are reached in the seventh layer, which
are then kept combined. For this deeply layered wavefunc-
tion two limiting cases are numerically investigated. In ex-
ample (1), DOFs q486 and q487 are displaced for t = 0 such
that 〈qκ〉 = 2. Since the two degrees of freedom are adjacent,
there is a coupling term in the Hamiltonian between them.
However, q486 and q487 belong to different logical coordinates
at all layers of the tree. They belong to logical coordinates
Q1

1 and Q1
2 at the top layer and to coordinates Q6;1,3,3,3,3

3 and

Q6;2,1,1,1,1
1 at the bottom layer, respectively. In example (2),

DOFs q729 and q730 are initially set at 〈qκ〉 = 2. Again, these
two DOFs are coupled in the Hamiltonian, but in this case
they belong to the same logical coordinate at all levels, start-
ing from logical coordinate Q1

2 at the top layer and down
to the same combined mode Q6;2,2,2,2,2

2 at the bottom layer.
In both cases, decoupled reference calculations are also con-
ducted in which the coupling term between DOFs q486 and
q487 for case (1) and between DOFs q729 and q730 for case
(2) are eliminated from the Hamiltonian. The simulated sys-
tem corresponds to a long chain of coupled oscillators. In
both cases (1) and (2), the initially displaced degrees of free-
dom are far from the ends of the chain. Therefore the system
dynamics in both cases should be very similar, since the ex-
tremes of the chain will play a role only at much longer times
than simulated.

Figure 8(a) shows the autocorrelation function of the two
decoupled reference calculations. In both cases the wavefunc-
tion consists of five SPFs for each logical coordinate at all
layers, which results in 2 326 520 TD coefficients. Since there
is no coupling term in the Hamiltonian between the two ini-
tially displaced DOFs, their distance along the tree structure
should be irrelevant, and in fact both simulations yield nearly
identical results. When the interaction is turned on, however,
the distance between two coupled DOFs along the tree does
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matter. In case (2) the tree distance between DOFs q729 and
q730 is the shortest possible. Figure 8(b) shows the autocorre-
lation of two propagations for case (2). One of them is based
on the same wavefunction as the reference results. A second
propagation is based on a wavefunction with 20 SPFs for the
combined mode containing q729 and q730, Q6;2,2,2,2,2

2 , and 15
SPFs for the two neighboring combined modes Q6;2,2,2,2,2

1 and
Q6;2,2,2,2,2

3 . One layer above the wavefunction has 10 SPFs for
logical coordinates Q5;2,2,2,2

2 and its two neighbors Q5;2,2,2,2
1

and Q5;2,2,2,2
3 . Further up in the tree, logical coordinates con-

taining q729 and q730 and its two neighbor coordinates have
seven SPFs each. All other logical coordinates at all layers are
represented by four SPFs. This scheme results in 1 853 310
TD coefficients. As seen in Fig. 8(b), both wavefunctions
yield very similar autocorrelations until the end of the simula-
tion. By inspecting the natural populations at the final time for
both case (2) simulations one notices however that the con-
vergence at the lowest layer is rather poor for the homoge-
neous wavefunction with five SPFs overall, with a population
of the order of 10−2 for the last natural orbital of coordinate
Q6;2,2,2,2,2

2 . When inspecting the populations of the propaga-
tion with more SPFs for logical coordinates close to the dis-
placed mode Q6;2,2,2,2,2

2 , substantially improved values of at
least 10−4 are obtained for all logical coordinates containing
Q6;2,2,2,2,2

2 at all levels.
Example (1), in which the distance between both initially

displaced DOFs q486 and q487 is the largest possible within
the tree, has a different convergence behavior. Figure 8(c)
compares two autocorrelations for case (1). A first propaga-
tion is based in the same homogeneous wavefunction already
discussed for case (2). A second simulation is based on a
wavefunction with 15 SPFs for logical coordinates Q6;1,3,3,3,3

3

and Q6;2,1,1,1,1
1 , which, respectively, contain DOFs q486 and

q487, and with seven SPFs for logical coordinates contain-
ing also q486 and q487 at all layers. All other logical coordi-
nates have four SPFs and total number of TD coefficients is
now 1 810 940. Now, both autocorrelations start to diverge af-
ter about 30 time units, and they also start to diverge from
the autocorrelations of case (2) after about the same propa-
gation time. Interestingly however, the least populated natu-
ral orbitals for logical coordinates Q6;1,3,3,3,3

3 and Q6;2,1,1,1,1
1

have populations of the order of 10−3 to 10−4, and this is sub-
stantially improved to 10−4 to 10−5 for the nonhomogeneous
wavefunction. All other natural populations in the whole tree
structure, for both wavefunctions, remain in the order of 10−4

or below. The spectra of cases (1) and (2) for the nonhomo-
geneous wavefunctions [Fig. 8(d)] agree to each other rather
well. The differences in the autocorrelations are however re-
flected in an appearance of a few spurious lines with low in-
tensity in the low energy part of the spectrum for case (1).

The analysis of case (2) indicates that when correlated
DOFs are close to each other in the tree structure, i.e., they
are connected in the deeper layers of the tree, it is easy to
achieve convergence by increasing the number of SPFs close
to such DOFs in the tree structure. Even most importantly,
one can expect an early convergence to the correct trend, since
even with not very good natural populations at low layers the
results are already correct. Case (1), on the contrary, is an ex-

ample of the wrong choice of tree structure. Even with natural
populations smaller than case (2) for the homogeneous wave-
function, and populations of the order of 10−4 in most layers,
the results are different from case (2) and also differ between
the two different wavefunctions tried for case (1). In case (1)
a general and substantial increase of SPFs for the whole tree
structure would probably be needed to obtain better converged
results. The early convergence of the method with the num-
ber of SPFs appears to be damaged in case (1) in light of the
difference in results of for the two different wavefunctions
tried.

B. Pyrazine

We now turn our attention to the photophysics of pyrazine
using the 24D second-order vibronic-coupling Hamiltonian
of Raab et al..6 In pyrazine, the spectrum obtained from ex-
citation to the second excited electronic state S2 presents a
broad feature due to the fast decay of the system into the S1

electronic state through a conical intersection. Such a decay
occurs during a few ten fs after photoexcitation. Although
obtaining the right position and approximate shape of the
broad band is relatively straightforward and several differ-
ent approaches can claim to have achieved it, reproducing the
fine details of the absorption spectrum is quite hard, since a
good quality propagation up to relatively long times is needed.
Therefore, the 24D model of pyrazine in Ref. 6 has often been
used to benchmark different quantum dynamical approaches
including semiclassical methods,50 the multiple-spawning
method,51 the coupled coherent state method,52, 53 the
matching-pursuit/split-operator Fourier-transform method,54

and the Gaussian-MCTDH method.55

In the 24D simulations reported here, we use the same
DVR and grid points as in the MCTDH simulations of
Refs. 6 and 55. These MCTDH calculations were based on
a mode-combination scheme in which the 24 primitive co-
ordinates were grouped into the eight combined modes Q1

= [ν10a, ν6a], Q2 = [ν1, ν9a, ν8a], Q3 = [ν2, ν6b, ν8b], Q4

= [ν4, ν5, ν3], Q5 = [ν16a, ν12, ν13], Q6 = [ν19b, ν18b], Q7

= [ν18a, ν14, ν19a, ν17a], and Q8 = [ν20b, ν16b, ν11, ν7b]. A de-
scription of these vibrational modes is found in Ref. 6
and it is beyond the purpose of this paper to reproduce
their discussion here. All but one of the reported ML-
MCTDH simulations are based on this set of combined
modes, which are then grouped in the ML tree as depicted in
Fig. 9. This makes the ML-MCTDH calculations numeri-
cally easier to compare to previous MCTDH calculations, for
example, when computing wavefunction overlaps, since the
ML-MCTDH wavefunction can be easily expanded into the
corresponding MCTDH form (if the expanded form is still of
a manageable size) in a similar way as a MCTDH wavefunc-
tion can be expanded to a standard wavefunction on the prim-
itive grid, Eq. (1). In the simulation named ML-MCTDH-1,
however, we further divide modes Q7 and Q8, which con-
tain coordinates with large primitive grids, in order to better
exploit the capabilities of ML-MCTDH. We used Q1 · · · Q5

as above but: Q6 = [ν19b], Q7 = [ν18b], Q8 = [ν18a, ν14], Q9

= [ν19a, ν17a], Q10 = [ν16b], and Q11 = [ν20b, ν11, ν7b]. This
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FIG. 9. Tree structure used in most of the ML-MCTDH simulations of 24D
pyrazine. The maximum depth of the tree is five layers, and the first one
separates the 24 vibrational coordinates and the discrete electronic degree of
freedom. The number of SPFs denoted N4 need not be necessarily the same,
and in fact in some of the ML-MCTDH simulations they are chosen to be
different. The same is true for the three N5’s, which can be different. For the
fast ML-1 calculation a sixth layer was added, see text.

division is accomplished by adding a further (a sixth) layer to
the tree depicted in Fig. 9.

For nonadiabatic systems with more than one electronic
state MCTDH is often used in its multiset formulation,3–5 in
which different sets of SPFs are used for each electronic DOF.
All pyrazine MCTDH calculations discussed here were done
using the multiset formalism. In the multiset formalism the
SPFs of each state are optimal for that state, so that a smaller
number of SPFs per state are needed than in a single-set cal-
culation. The computational cost grows exponentially with
the product of SPFs in each state, but linearly with the num-
ber of SPFs in different electronic states, which makes multi-
set calculations often advantageous with respect to single-set
ones for the same system. In ML-MCTDH, a multiset formu-
lation would be extremely cumbersome because one would
end up with several tree structures to be specified, one for
each electronic state, and a much more complex algorithm.
On the other hand, the favorable scaling of ML-MCTDH with
the number of DOF makes it unnecessary to use a multiset
ML formulation. In simulations of nonadiabatic systems with
ML-MCTDH the electronic DOF is hence just another coor-
dinate that indexes the electronic states, as in usual single-
set MCTDH calculations, and the ML-MCTDH algorithm re-
mains unchanged. Consequently, in constructing the ML tree,
one is free to group the electronic DOF in any convenient
way with other coordinates and set it in any level of the tree
where it may seem appropriate. For example, if only a subset
of coordinates couple the different electronic states and the
rest act as a bath, it may make sense to group the electronic
DOF with the coordinates that control the nonadiabatic cou-
pling, and then the system-bath separation can be placed one
level above. In our simulations, the top layer contains coor-
dinates Qvib, qel, where Qvib groups the 24 vibrational modes
of the system and qel denotes the electronic DOF. Qvib is fur-
ther divided into two groups of coordinates, one containing
modes ν10a, ν6a, ν1, ν9a, ν8a and the other one containing the
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FIG. 10. Absolute value of the autocorrelation function for the 24D pyrazine
calculations. The numeration of the calculations is consistent with Table I.
(a) Best MCTDH result and two best ML-MCTDH results from 0 to 300 fs.
(b) Detailed view of the recurrences between 20 and 70 fs for all reported
MCTDH simulations and the best ML-MCTDH simulation, and (c) for the
two worst and two best converged ML-MCTDH runs. In the key, ML is for
ML-MCTDH.

rest of modes. Modes ν10a, ν6a, ν1, ν9a define the “system”
in 4D models of pyrazine,6 while the rest have been usually
termed “bath” modes. Therefore, the first branching of the tree
after separating electronic and vibrational coordinates can be
understood as a system-bath separation. The resulting system
and bath coordinates are further divided until modes of a man-
ageable size are reached, as seen in Fig. 9.

Table I presents some results for a set of ML-MCTDH
simulations and three different MCTDH reference calcula-
tions. The calculation named here MCTDH-1 was reported
in Ref. 6. The MCTDH-2 result was a MCTDH reference cal-
culation in Ref. 55, while the MCTDH-3 calculation is a new
reference result for this system and corresponds to the largest
MCTDH calculation reported for pyrazine to date. All simu-
lations were run up to a propagation time of 150 fs.
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TABLE I. Simulation parameters of the various MCTDH and ML-MCTDH 24D pyrazine calculations. The second column contains the wall-clock time of
each simulation. ML-MCTDH calculations were run on a single CPU, so that the wall-clock time equals the CPU time. The MCTDH calculations were run on
eight CPUs using shared-memory parallelization (Refs. 56 and 57). The speed-up factor of the eight-processor parallel pyrazine calculations is 2.9, 3.3, and
3.7 for the MCTDH-1, -2, and -3 cases, respectively. The wall-clock times given for the MCTDH reference results are already scaled up by the corresponding
speed-up factor and therefore reflect the time that such simulation would have taken on a single processor. Therefore they can be readily compared to the ML-
MCTDH values. All simulations were run on the same machine and CPU type, namely, Quad-Core AMD Opterons, processor type 2384 running at 2.7 GHz.
The third column shows the total number of time-dependent coefficients propagated in each case. The fourth column contains, for ML-MCTDH simulations,
the number of SPFs for each node of the tree according to the representation in Fig. 9. The parentheses indicate that different N5 values were taken for each of
the branches. The asterisk for the ML-1 case indicates that there is a further layer below the branches corresponding to N5 (see text and Fig. 9 for details). For
the MCTDH calculations, the fourth column contains in each parenthesis the number of SPFs for combined modes Q1 to Q8 for electronic states S1 and S2,
respectively. All reported simulations, except for ML-1, were run with a rather high integrator precision of 10−7 (see text). ML-1 was run with 10−5. Reducing
the high integrator precision will speed up the calculations by factors between 1.5 and 2 without introducing visible changes into the spectra.

Simulation CPU time [h:m] Tot. coef [N1,N2,N3,N4,N5]
ML-1 0:07 22 444 [4, 4, 3, 2, (3, 2, 2)∗]
ML-2 33:48 206 660 [12, 13, 10, 8, 8]
ML-3 57:12 238 054 [14, 14, 11, 8, (12, 8, 8)]
ML-4 113:54 294 820 [16, 16, 13, 10, (13, 10, 10)]
ML-5 135:31 288 324 [25, 25, 11, 8, (12, 8, 8)]
ML-6 252:31 337 408 [25, 25, 13, 10, (13, 10, 10)]
ML-7 725:29 456 584 [30, 30, 18, 12, (15, 12, 13)]
ML-8 1123:38 512 560 [32, 32, 21, 12, (17, 12, 14)]

[(nS1
1 , nS2

1 ), . . . , (nS1
8 , nS2

8 )]

MCTDH-1 155:58 3 029 424 [(14, 11), (8, 7), (6, 5), (6, 4), (4, 5), (7, 7), (5, 5), (3, 4)]
MCTDH-2 629:58 11 282 152 [(19, 12), (10, 7), (5, 4), (7, 4), (5, 3), (11, 9), (7, 5), (4, 4)]
MCTDH-3 3721:40 46 351 392 [(21, 15), (12, 8), (7, 6), (8, 5), (7, 5), (12, 10), (7, 5), (5, 5)]

Figure 10 presents the absolute value of the autocorrela-
tion function for the ML-MCTDH and MCTDH calculations
in Table I. As in the HH cases above, the autocorrelation is
computed using the relation for real initial states and sym-
metric Hamiltonians a(t) = 〈�∗(t/2)|�(t/2)〉. In Fig. 10(b)
one sees that the ML-MCTDH-1 simulation presents severe
deficiencies in |a(t)|, only following the general shape of the
initial decay and the small revivals between 25 and 45 fs. This
simulation is however extremely fast, needing only 7 min to
run and consuming an incredibly small amount of resources.
Regarding peak positions and intensities, the general features
of the spectrum in Fig. 11(a), although not too accurate, are
there. The details of the peaks below 2.1 eV are not repro-
duced and the high energy tail, above 2.5 eV, shows an ar-
tificial oscillatory behavior. But beside this, the main peak
is amazingly well reproduced, considering the inexpensive-
ness of the calculation. The larger ML-MCTDH-2 simulation,
needing 33 h (five times faster than the MCTDH-1 reference
result), already presents the correct trends in the autocorrela-
tion function up to 70 fs, resulting in a much improved spec-
trum [Figs. 12(a) and 12(c)]. The autocorrelations of the two
most accurate ML-MCTDH simulations present features that
resemble closely those of the most accurate MCTDH result.
In fact, when comparing the various structures of |a(t)| in Fig.
10(c), the tendency of the MCTDH-1, -2, and -3 simulations
is toward the ML-MCTDH-8 simulation, which seems to in-
dicate that the best ML-MCTDH results are better converged
than the best MCTDH run. This can be seen in the height of
the structure between 30 and 40 fs, and also in the position of
the three peak structures between 55 and 70 fs. When turning
to the spectra in Fig. 12, similar conclusions can be drawn,
for example, examining closely the peaks at 2.2 and 2.35 eV
in Fig. 12(b). It is remarkable that simulation ML-MCTDH-

7, which seems to be already better converged than the best
MCTDH result reported, required about 25% of runtime and
1% of memory (in terms of wavefunction size) than the latter.

In terms of efficiency, the second column in Table I
contains the wall-clock time of each calculation. All ML-
MCTDH calculations were run on a single-processor, so CPU
time equals in this case wall-clock time, and used the vari-
able mean-field3 propagation scheme. The MCTDH calcula-
tions were run using the shared-memory parallelized MCTDH
code56, 57 and eight processors in parallel, using the constant
mean-field (CMF) propagation scheme.3, 58, 59 The speed-up
factor of the MCTDH parallel computations is 2.9, 3.3, and
3.7 for MCTDH-1, -2, and -3, respectively, and this factor
has been already multiplied to the MCTDH wall-clock times,
yielding the CPU time that would have been taken on a sin-
gle CPU so that they can be readily compared to the ML-
MCTDH values. These speed-up are reasonable but not par-
ticularly good, which is due to the relatively small Hamilto-
nian operator of the pyrazine model and better scalings have
been obtained, e.g., for the Zundel cation H5O+

2 .56, 57, 60 All
calculations were run on the same machine and CPU type
(see caption of Table I). All reported simulations, including
the HH ones but except for ML-1, were run with a rather
high integrator precision of 10−7. This was done to exclude
any numerical artifacts and to ensure that all discussed ef-
fects originate from various sizes of sets of SPFs. The fast
but low-accuracy calculation ML-1 was run with an integra-
tor precision of 10−5. Reducing the high integrator precision
will speed-up the calculations by factors between 1.5 and 2
without introducing visible changes into the spectra.

The third column in Table I contains the total number
of time-dependent coefficients in the wavefunction represen-
tation. Two aspects are remarkable here. First, ML-MCTDH
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FIG. 11. (a) Spectra of the fastest ML-MCTDH 24D pyrazine calculation
(2.2 × 104 TD coeff., 7 min. of CPU) and the best reference MCTDH result
(4.6 × 107 TD coeff., 2901 h of CPU). (b) Detailed view of the energy do-
main between 2.1 and 2.6 eV. The spectra are obtained by a Fourier-transform
of the autocorrelation function using a cos2 filter3, 5 to minimize spurious ef-
fects known as Gibbs phenomenon. The numeration of the calculations is
consistent with Table I. In the key, ML is for ML-MCTDH.

wavefunctions are much more compact than MCTDH ones.
Second, the CPU time divided by the number of coefficients is
about 1 order of magnitude larger in ML-MCTDH, this factor
remaining quite stable along the series of calculations. There-
fore, integrating each coefficient in ML-MCTDH is harder
than in MCTDH due to the natural overhead of the ML-
MCTDH algorithm. However, this is compensated by the
much smaller number of coefficients in the wavefunction.
Such scaling effects become more and more pronounced with
the size of the system, as was seen for the HH case, and ML-
MCTDH propagations seem to become more efficient than
MCTDH ones in terms of CPU time for systems larger than
about 20 DOFs. Simulations ML-MCTDH-2 to -8 could be
made even more efficient further dividing the largest com-
bined modes at the lowest layer in a similar way as it was done
for ML-MCTDH-1. Running on eight processors, MCTDH-3
needed about 1000 h to complete (unscaled wall-clock time),
keeping up with the wall-clock time of the best ML-MCTDH
calculations through parallelization. The MCTDH-3 calcula-
tion could in principle be made faster than ML-MCTDH using
more hardware. However, for a molecular system doubling
the size of pyrazine, a normal MCTDH calculation would be
probably not doable, or at least not with a reasonable SPF
basis size. On the contrary, that case would require an ad-
ditional layer in a ML-MCTDH calculation, and the CPU
cost would scale approximately linearly, rendering the sim-
ulation still doable. Regarding the different approaches tried
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FIG. 12. (a) Spectra of the three reference MCTDH simulations and three
of the ML-MCTDH simulations, among them the two best results, for 24D
pyrazine. The spectra are obtained by a Fourier-transform of the autocorrela-
tion function using a cos2 filter (Refs. 3 and 5) to minimize spurious effects
known as Gibbs phenomenon. The numeration of the calculations is consis-
tent with Table I. For the energy domain between 2.1 and 2.6 eV: (b) The three
reference MCTDH calculations compared to the best ML-MCTDH result and
(c) ML-MCTDH simulations 2, 7, and 8. In the key, ML is for ML-MCTDH.

on the pyrazine Hamiltonian over the years, ML-MCTDH of-
fers by far the best quality/cost relation. The ML-MCTDH-
2 simulation, which is already of a reasonable quality, takes
about one day on a single CPU using little resources. The
various ML-MCTDH simulations on the cheaper end yield
spectra of a quality that other approaches hardly reach51, 52

or reach only by using a much larger amount of CPU and
memory resources.54, 55 And again, accepting slightly larger
deviations in the spectrum, an ML-MCTDH calculation on
pyrazine takes only 7 min.

IV. SUMMARY AND CONCLUSION

We presented the implementation of the ML-MCTDH
approach into the Heidelberg MCTDH package, which is
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based on the recursive algorithm proposed by Manthe. A dis-
cussion of the concept of multilayer was given, and the work-
ing equations were provided making emphasis on the key
points of the approach. For a comprehensive derivation of the
working scheme one should see Ref.41 The use of the sepa-
rable terms in the Hamiltonian in the recursive construction
of the h-matrices and mean-fields at the different layers were
discussed here with some detail.

The implementation, numerical performance, and gen-
eral features of the ML-MCTDH approach have been tested
by running simulations on the Henon–Heiles model and on
pyrazine. For Henon–Heiles, simulations for the 6D, 18D,
and a large 1458D case have been reported. In the 6D and
18D cases, normal MCTDH calculations are performed for
identical parameter sets for comparison, and for the 6D case
MCTDH is more efficient than ML-MCTDH. The situa-
tion already changes for the 18D simulations, in which ML-
MCTDH outperforms MCTDH. With respect to the natural
populations, which are often used as a convergence criterion
in MCTDH calculations, it is observed that when increasing
the number of SPFs at lower layers for a given number of
SPFs at higher layers, the convergence of the higher layer
becomes worse although the overall quality may improve.
This is due to the fact that the dynamics at the higher layers
becomes more complex after increasing the size of the ba-
sis below. Hence, with respect to convergence, all layers have
to be monitored when changing the basis size in some other
layer.

For pyrazine, we test ML-MCTDH on the second-order
vibronic-coupling Hamiltonian of Raab et al, which has been
used in testing several quantum dynamical methods. By prop-
erly choosing the tree scheme, we report a ML-MCTDH sim-
ulation that takes only 7 min of CPU time in one processor
and very few memory, and that recovers the main spectral
features reasonably well. On the other hand, we report ML-
MCTDH simulations which are converged to at least the same
degree as the best reference MCTDH results available, taking
only 25% of the CPU time and 1% of wavefunction storage
space with respect to such reference results. As seen in the
pyrazine case, ML-MCTDH allows for a consistent separa-
tion of the degrees of freedom considered as system and the
ones considered as bath, providing the variationally optimal
system-bath evolution for the particular selection of the ba-
sis size and the layering scheme. By using ML-MCTDH for
system-bath problems, schemes that simplify the system-bath
ansatz61 or schemes that reduce a larger bath to a subset of
effective modes62 become unnecessary.

ML-MCTDH is an efficient tool for model systems,
which had already been demonstrated by works of Wang and
Thoss. ML-MCTDH has been shown here to be a very power-
ful tool to treat more realistic molecular Hamiltonians as well.
The fact that a tree structure needs to be chosen, often based
on intuition or experience, and that convergence has to be
monitored at the different layers, makes its use less straight-
forward than MCTDH. Therefore, some work in the direc-
tion of automating certain decisions regarding the tree struc-
ture will have to be carried on. Regarding efficiency, it will
be interesting to develop good dedicated CMF propagation
schemes3, 58, 59 for the ML case. And, of course, parallelizing

the ML-code will be an important step, as ML-MCTDH is for
treating large systems. Beyond applications of ML-MCTDH
to problems involving nuclear dynamics, for which it has cer-
tainly a large potential, new directions will have to be ex-
plored in the future. We believe that methods based on or
taking advantage of the ML-MCTDH concept can be useful
in a wide range of situations. For example, we envisage that
in simulations of mixtures of different kinds of particles (dif-
ferent kinds of fermions and bosons, electrons and nuclei in
molecules, etc.), the different types of particles can be sepa-
rated and correlated to each other at the top layer, while the
internal dynamics of each group takes place in the layers be-
low. ML-MCTDH constitutes a consistent and powerful tool
for the quantum-dynamical description of high dimensional
molecular systems. This and other kinds of challenging appli-
cations remain the subject of future investigations.
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