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Abstract. In recent years the investigation of hadron structure using lattice tech-
niques has attracted growing attention. The computation of several important
quantities has become feasible. Furthermore, theoretical developments as well as
progress in algorithms and an increase in computing resources have contributed
to a significantly improved control of systematic errors. In this article we give an
overview on the work that has been carried out in the framework of the Hadron
Physics I3 (I3HP) network “Computational (lattice) hadron physics”. Here we
will not restrict ourselves to spin physics but focus on results for nucleon spec-
trum and structure from the QCDSF collaboration. For a broader overview of
developments in this field see, e.g., [1].

1 Introduction

The main goal of lattice hadron phenomenology is the computation of generalized parton distri-
butions (GPDs) of mesons and nucleons from first principles. GPDs have become a theoretical
framework which enables us to study many fundamental aspects of the intrinsic hadron struc-
ture. It allows us to confront experimental results and lattice calculations since it includes
as limiting cases hadron form factors as well as polarized and unpolarized parton densities,
i.e. quantities which are investigated by various experiments at CERN (COMPASS), DESY
(H1, Zeus, Hermes) and JLab. Combining information from both experiment and lattice offers
new opportunities to explore hadrons as extended objects.
On the lattice we are restricted to the calculation of moments of GPDs. As an example we

consider the unpolarized GPDs Hq
(
x, ξ,Q2

)
and Eq

(
x, ξ,Q2

)
. Their moments are related to

the generalized form factors (GFFs) Aqn,k
(
Q2
)
, Bqn,k

(
Q2
)
and Cqn

(
Q2
)
:

∫ +1
−1
dxxn−1

[
Hq
(
x, ξ,Q2

)
Eq
(
x, ξ,Q2

)
]
=

[n−12 ]∑
i=0

[
Aqn,2i

(
Q2
)

Bqn,2i
(
Q2
)
]
(−2ξ)2i±Mod(n+1, 2)Cqn

(
Q2
)
(−2ξ)n .

(1)
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The GFFs can be calculated from a parametrization of (nucleon) matrix elements. As an illus-
trative example one may consider the GFFs Aq1,0 and B

q
1,0:

〈p′, s′| ūγµu |p, s〉 = u(p′, s′)
{
γµA

(u)
1,0

(
Q2
)
+ iσµν

qν

2mN
B
(u)
1,0

(
Q2
)}
u(p, s), (2)

where p(s) and p′(s′) denote initial and final momenta (spins), q = p′ − p the momentum
transfer (with Q2 = −q2). Instead of calculating the matrix elements (i.e., the l.h.s. of Eq. (2))
in Minkowski space-time, we calculate these within a discretized Euclidean space-time by using
appropriate combinations of two- and three-point correlation functions. A typical combination
is the following ratio:

R(t, τ, p′, p) =
C3(t, τ, p

′, p)
C2(t, p′)

×
[
C2(τ, p

′)C2(t, p′)C2(t− τ, p)
C2(τ, p)C2(t, p)C2(t− τ, p′)

]1/2
, (3)

where C2(t, p) is the unpolarized two-point function with a source at time 0 and sink at time
t, while the three-point function C3(t, τ, p

′, p) has an (local) operator O insertion at time τ .
The ratio R(t, τ, p′, p) is expected to become constant when keeping sufficiently far away from
source and sink, i.e. for 0� τ � t � 1

2LT. For further details see, e.g., [2].

1.1 Lattice obstacles

All lattice calculations are faced with the problem of keeping their systematic errors under
control. The main sources for such systematic errors are the following:

– In almost all cases lattice results have to be extrapolated to the
– infinite volume limit: V →∞.
– continuum limit: a→ 0 where a is the lattice spacing.
– region of light quark masses: mps → mπ.

– Renormalization and mixing of operators.
– Conversion of the lattice results into physical units.

The results which we present in this article have been obtained from simulations with Nf = 2
flavours of dynamical O(a)-improved Wilson fermions (so-called Clover fermions). Improvement
of both the action and the operators is expected to bring discretization errors down to O

(
a2
)
.

Our simulations have been performed with lattice spacings in the range of 0.11 down to 0.07 fm.
For most of our results we find discretization effects to be small and often negligible compared
to, e.g., statistical errors.
For some of the observables considered here, finite volume effects turned out to be large. In

our simulations the lattices have a spatial extension in the range Ls = 1.4, . . . , 2.6 fm. Results
from chiral effective field theories may be used to estimate or even correct for finite size effects.
Typically, the largest uncertainty originates from the extrapolation of the results down to

the region of physical light quark masses. Results presented here have been obtained for pseudo-
scalar meson masses in the range of 300MeV up to 1GeV. Due to a combination of significantly
improved algorithms (see [3] for a recent review on algorithms for simulations with dynamical
fermions) and the availability of increased computer power it has become possible to start
exploring a quark mass region where one may hope results from chiral perturbation theory to
be applicable.
Another source of systematic errors stems from renormalization. Perturbative renormaliza-

tion techniques suffer from their complexity when going beyond 1-loop and, more importantly,
from their poor convergence. It turned out to be crucial to employ non-perturbative renormaliza-
tion techniques. As an illustrative example we compare in Fig. 1 (left panel) the vector-current
renormalization constant ZV obtained from 1-loop perturbation theory and a non-perturbative
determination, where we imposed as renormalization condition the equivalence of the local and
the conserved vector current (see [4] for a detailed description of this method).



Symmetries and Spin 65

1 1.1 1.2

g
2

0.7

0.8

Z
V

0 0.1 0.2

(a m
PS

)
2

4

5

6

7

r 0 / 
a

Fig. 1. The left plot shows a comparison of ZV obtained from 1-loop perturbation theory (dashed
line) and a non-perturbative determination (solid line). The right plot shows the values for r0(β,mps)
(β = 5.20, 5.25, 5.29, 5.40) together with an extrapolation to the chiral limit.

Let us finally consider the problem of converting lattice results into physical units. It has
become popular to use the Sommer parameter r0, which is defined by the expression r

2
0 F (r0) =

1.65. The force F (r) can be determined with rather high statistical accuracy from the static
quark potential. This strategy however suffers from the problem that the phenomenological
value is not very well known. Typically, r0 � 0.5 fm is used. Lattice results, e.g., for the nucleon
mass (see [5]), suggest a significantly smaller value. Here we will use r0 = 0.467 fm [6,7]. Fig. 1
(right panel) shows our results for r0.

2 Masses

As a first example for using chiral effective field theories in order to guide extrapolation to
physical quark masses we consider the mass of the nucleon, mN. Calculations using relativistic
baryon chiral perturbation theory (BχPT) suggest a rather non-trivial quark mass dependence.
The p-expansion at O

(
p4
)
in an infinite volume gives the following quark mass dependence [8]:

mN(mps) =M0 − 4c1m2ps −
3gA,0

2

32πF 20
m3ps

+

[
er1(λ)−

3

64π2F0
2

(
gA,0

2

M0
− c2
2

)
− 3

32π2F0
2

(
gA,0

2

M0
− 8c1 + c2 + 4c3

)
ln
mps

λ

]
m4ps

+
3gA,0

2

256πF0
2M0

2m
5
ps +O

(
m6ps
)
. (4)

Even using all our lattice measurements at quark masses in the the range 0 < mps � 650MeV
it is not possible to sufficiently constrain all parameters in Eq. (4). We therefore reduce the
number of free fit parameters to the nucleon mass in the chiral limitM0, the not very well known
low-energy constant (LEC) c1 and the counter-term e

r
1(λ) (we use λ = 1GeV). For all other

parameters, i.e. the LECs c2 and c3, the pion decay constant F0 and the nucleon axial coupling
gA,0, we use phenomenological estimates. Both lattice data and the resulting fit are shown in
Fig. 2 (left panel). The lattice data seems to fall on a universal curve indicating discretisation
effects to be small, which we thus ignored. We observe that mN(mps = mπ) is consistent with

experiment. Furthermore, we find c1 = −1.02(7)GeV−1, a value which is consistent with other
estimates [9].
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Fig. 2. The left plot shows lattice results for mN together with a fit to Eq. (4). The star indicates
the physical point. In the right plot we compare the relative finite size effect δ(L) = (mN (L) −
mN (∞))/mN (∞) as measured on the lattice and predicted by BχPT. The diamonds show results
from lattices with V = 123 × 32, 163 × 32, 243 × 48 (left to right).

BχPT has also been used to calculate the finite size effects [6]:

mN (Ls)−mN (∞) = ∆a(Ls) +∆b(Ls) +O
(
p5
)
, (5)

where ∆a represents the O
(
p3
)
result for the volume dependence and ∆b additional contri-

butions at O
(
p4
)
. All coefficients in ∆a(Ls) and ∆b(Ls) are also present in Eq. (4). It is

thus possible to estimate the finite volume effects obtained from Eq. (5) using the coefficients
obtained from a fit to Eq. (4). These estimates can then be used for a comparison with values
of the nucleon mass computed on lattices that have a smaller (physical) volume. Fig. 2 (right
panel) shows such a comparison at fixed mps � 590MeV.

3 Nucleon axial coupling

Next, we consider the axial coupling constant gA = GA(0), where GA
(
Q2
)
is the axial form

factor of the nucleon. It is determined from the renormalized axial vector current ARµ = ZA (1+
bA amq)Aµ, where amq is the bare quark mass. Here we only look into the iso-vector case where
contributions of so-called disconnected terms cancel. These are contributions of diagrams which
only interact with the hadron via the exchange of gluons and which are hard to compute on
the lattice. While ZA is known non-perturbatively [10], bA is only known perturbatively and is
computed using tadpole improved one-loop perturbation theory.
Like for the nucleon mass the quark mass dependence of the iso-vector nucleon axial cou-

pling has been calculated using chiral effective field theory [10,11]. The calculations using the
small scale expansion (SSE) have been performed in the infinite volume limit as well as for
a finite spatial cubic box of length Ls. We define gA(mps, Ls) = gA(mps) + ∆gA(mps, Ls),
where ∆gA(mps, Ls) denotes the finite size effects. Given the large number of parameters in the
resulting expressions we again have to fix some of them using phenomenological input like the
pion decay constant, the N∆ mass splitting and the axial N∆ coupling.
We find the finite size effects to be significantly larger compared to the nucleon mass. These

effects can not be ignored and we have to resort to a fit which includes both quark mass
dependence and finite size effects. In Fig. 3 we show results for the quark mass dependence in
the infinite volume limit and finite size effects.
For results for GA

(
Q2
)
at non-zero Q2 and for the pseudo-scalar form factor GP

(
Q2
)
see

[12]. For an independent calculation of gA see [13].
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Fig. 3. The left plot shows gA(mps) in the infinite volume limit and the right plot the data points
before correcting the finite size effects.

4 Electro-magnetic form factors

JLab polarisation experiments [14,15] have in recent years led to a revived interest in the
nucleon electro-magnetic form factors. Measurements of the ratio of the proton electric to

magnetic form factors, µ(p)G
(p)
e

(
Q2
)
/G
(p)
m

(
Q2
)
, showed an unexpected decrease. This means

that the proton’s electric form factor falls off faster than the magnetic form factor.
The form factors are obtained from the standard decomposition of the nucleon electromag-

netic matrix elements

〈p′, s′|Jµ|p, s〉 = u(p′, s′)
[
γµF

(u)
1

(
Q2
)
+ iσµν

qν

2mN
F
(u)
2

(
Q2
)]
u(p, s) . (6)

By calculating the matrix elements on the l.h.s. and the nucleon mass we obtain the Dirac form
factor F1

(
Q2
)
and the Pauli form factor F2

(
Q2
)
.

Particularly interesting are the Q2 scaling and flavour dependence of the form factors. We
find that the lattice data can be well parametrized using a pole ansatz

Fi
(
Q2
)
=

Ai

(1 +Q2/M2i )
p . (7)

(For a different ansatz see [12].) Naively, one would expect p = 2 for F1 and p = 3 for F2.

Our lattice data, however, has a flavour dependence which favours p = 2 for F
(u)
1 and p = 3

otherwise. In Fig. 4 (left panel) we plot the ratio F
(d)
1 /F

(u)
1 which one naively would expect to

be constant. This result should be taken with some care since disconnected contributions have
not been calculated. These contributions only cancel in the iso-vector case. Our observation is
however consistent with the flavour dependence observed in fits to experimental data [16].
For a more quantitative comparison with experimental data we have to extrapolate our

results to physical quark masses. We again do this on the basis of results from chiral effective
field theories using the SSE [17,18]. These calculations predict a strong quark mass dependence
for the iso-vector form factor radii and the iso-vector anomalous magnetic moment in the small
quark mass region. In Fig. 4 (right panel) we compare our results for the iso-vector Dirac

radius r
(u−d)
2 and a fit to the SSE expression. The lattice results are significantly smaller than
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Fig. 4. The left plot shows the ratio F
(d)
1 /F

(u)
1 as a function of Q2 for different β values but similar

mps � 400MeV. The right plot shows the extrapolation of our results for the Dirac form factor radius
r
(u−d)
2 . The solid line shows a fit with the SSE expression, the dashed line a fit to an ansatz linear in
the quark mass.

the experimental value. However, the SSE results indicate a strong quark mass dependence for
mps � 250MeV, a region which is currently difficult to access in lattice simulations.

5 Moments of unpolarized structure functions

As another quantity which can be calculated on the lattice we consider the lowest moment of
the unpolarized nucleon structure function, 〈x〉 = Aq2,0(0), where Aq2,0 is the first moment of
Hq
(
x, ξ,Q2

)
at ξ = 0.

This moment is determined from the matrix element

〈p, s|
[
O{µ1µ2} − Tr

]
|p, s〉 = 2Aq2,0 [pµ1pµ2 − Tr] , (8)

where O{µ1µ2} = u γµ1i↔Dµ2u. The renormalisation of this matrix element has been performed
non-perturbatively by means of the RI’-MOM method [19]. In the perturbative conversion to

MS at a scale of 2GeV we have used ΛMS = 261(17)(26)MeV [20].
In the range of quark masses which is currently accessible the results in the iso-vector channel

〈x〉(u−d) are significantly larger than the experimental value. However, it has been suggested that
this quantity may become significantly smaller at very light quark masses [21]. This has been
confirmed by recent calculations in the framework of baryon chiral perturbation theory (BχPT)
[22]. These recent calculations have been used to fit our results using the pion decay constant,
the nucleon mass and the nucleon axial coupling in the chiral limit as phenomenological input.
This leaves two free fit parameters, which allows us to fit the data for different values of β
separately restricting the fit range to 0 < mps � 650MeV. In Fig. 5 we plot the fit to the
β = 5.29 data showing little evidence for 〈x〉(u−d)(mps) becoming smaller for mps → mπ. In our
results we find no indication for large discretisation effects (see right panel of Fig. 5). However,
for the results at light quark masses finite size effects cannot be excluded.
In Fig. 6 (left) the Q2 dependence of the generalized form factor Aq2,0 is shown together with

the other unpolarized GFFs Bq2,0 and C
q
2 . The lattice results for A

q
2,0 can be well described by a

dipol expression Aq2,0
(
Q2
)
= Aq2,0(0)/(1+Q

2/M2D)
2. The quark mass dependence of the dipole

mass is also shown in Fig. 6 (right plot). For further details see [23].
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Fig. 6. The left plot shows the generalised form factors Aq2,0, B
q
2,0 and C

q
2 in the iso-vector channel at

κ = 0.13632 and β = 5.29 with mps � 350MeV. In the right plot the dipole masses of Aq2,0 are shown
as a function of the pseudo-scalar meson mass. The star represents the experimental value of the tensor
meson mass f2.

6 Other results

Several other results have been published in recent years, which we will summarize here only
very briefly:

– A calculation of the lowest two moments of transverse spin densities of quarks in the nucleon
has revealed strongly distorted densities of transversely polarized quarks in the nucleon [24].

– The electro-magnetic form factor Fπ of the pion calculated on the lattice has been found
to be in good agreement with experimental results [25]. The charge radius squared was
obtained as 〈r2〉 = 0.441(19) fm2.

– Lattice calculations of the first two moments of the quark tensor GPD EπT indicate – like in
the case of the nucleon – a strongly distorted spatial distribution of the quarks if they are
transversely polarized [26].
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7 Conclusions and outlook

In this talk we have presented a small selection of results to demonstrate where lattice calcula-
tions can contribute to the investigation of hadron structure. While these results may improve
our qualitative understanding, for quantitatively precise results further efforts are needed and
keeping systematic errors under control remains a major challenge. In particular, the necessary
extrapolations to the infinite volume, vanishing lattice spacing and to the physical quark masses
remain a major source of uncertainties. While results from chiral effective field theories help
to guide these extrapolations, eventually simulations using large lattices and very light quark
masses are needed. We conclude with the good news that such simulations are now becoming
feasible.

The numerical calculations have been performed on the Hitachi SR8000 at LRZ (Munich), the Cray
T3E at EPCC (Edinburgh) the APE1000 and apeNEXT at NIC/DESY (Zeuthen), the BlueGene/L at
NIC/FZJ (Jülich) and EPCC (Edinburgh). Some of the configurations at the small pion mass have been
generated on the BlueGene/L at KEK by the Kanazawa group as part of the DIK research programme.
This work was supported in part by the DFG, by the EU Integrated Infrastructure Initiative Hadron
Physics (I3HP) under contract number RII3-CT-2004-506078, and by the National Science Council of
Taiwan under the grant numbers NSC96-2112-M002-020-MY3 and NSC96-2811-M002-026.
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