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Accurate shapes of the accessible reciprocal-space region for non-coplanar

Bragg and Laue geometries are given. Vector formulae for finding these regions

and for experimental geometry calculations for obtaining diffraction from any

accessible (using a given wavelength) reciprocal node are presented. A method

for converting these formulae to scalar equations is proposed. Solutions are

given and illustrated as three-dimensional figures in reciprocal space.

1. Introduction

Modern semiconductor electronics use increasingly compli-

cated structures, such as multilayers with quantum wires and

quantum dots. An investigation of the geometrical and

structural parameters of such structures by X-rays requires a

non-coplanar experimental geometry (Schmidbauer, 2004;

Pietsch et al., 2004) where the incident beam, the diffracted

beam and the surface normal are not in the same plane. For

this reason, the task of finding a suitable geometry for the

diffraction experiment is vital. Of course, only reciprocal

nodes that can be accessed under the current experimental

conditions should be considered. Therefore, the correct shape

of the accessible reciprocal-space region needs to be deter-

mined.

This shape in the case of coplanar Bragg geometry (Fig. 1) is

well known (Bowen & Tanner, 1998). But for the non-

coplanar case, it is often plotted incorrectly (Fig. 2) [see, for

example, Schmidbauer (2004) or Stangl et al. (2004)]. Here,

the correct three-dimensional accessible region is constructed

for both the Bragg and the Laue geometry on the basis of

appropriate vector equations. The proposed equations can

also be used for finding a suitable experimental geometry for

measuring diffraction from a given reciprocal node.

2. Basic principles

Basic geometrical considerations are as follows.K0 is the beam

incident on the crystal (red in the figures) and Kh is the

diffracted beam (green); the crystal surface is defined by its

outer normal vector N, and the plane of incidence (the plane

where N and K0 lie) is given by its normal vector P [see

equation (4)]. The end of vector K0 points to the origin of the

coordinate system. The diffracted beam is connected to the

incident beam by equation (3), where Q is a reciprocal-space

vector drawn from the origin of the coordinate system to the

reciprocal point under investigation. In the case of elastic

scattering and at a given wavelength �, the conditions of

equations (1) and (2) must be fulfilled, where K = 1=�. The
incident beam K0 must fall on the crystal surface from a

vacuum [its projection on N is negative; equation (5)]. If the

diffracted beam Kh exits from the same side of the crystal as

K0 enters [the projection of Kh on N is positive; equation (6)],

this is called Bragg geometry; in the opposite case, this is

referred to as Laue geometry [equation (7)].

For a given direction of K0, the possible ends of vector Kh

(and vector Q) lie on the Ewald sphere with radius K (Fig. 3),

so if K0 takes all possible positions in the plane of incidence

Figure 1
Accessible region in reciprocal space for the coplanar Bragg case.

Figure 2
Incorrect accessible region for the non-coplanar Bragg geometry as
plotted in some books.
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and equation (5) is fulfilled, the possible ends of vector Kh and

Q lie inside the volume shown in Fig. 4 (for positive Qz this is

half of a torus, while for negativeQz it is two hemispheres with

radius K), and not in a sphere with radius 2K, as is usually

considered (red in Fig. 2). This means that for a given plane of

incidence and wavelength, all reciprocal nodes that lie outside

the volume in Fig. 4 cannot be accessed. Certainly, if the plane

of incidence is not considered, the accessible region for Bragg

geometry is a hemisphere with radius 2K, but in this case no

small hemispheres could be drawn (green in Fig. 2), because

the centres of these small hemispheres always belong to the

plane of incidence. For Laue geometry there is no such

hemisphere with radius 2K, as will be shown later in this

article.

3. Main equations

The main equations for building the accessible reciprocal-

space region are:

jK0j ¼ K; ð1Þ

jKhj ¼ K; ð2Þ

Kh ¼ K0 þQ; ð3Þ

ðK0 � PÞ ¼ 0; ð4Þ

ðK0 � NÞ � 0: ð5Þ
For Bragg geometry:

ðKh � NÞ> 0: ð6Þ
For Laue geometry:

ðKh � NÞ< 0: ð7Þ
In the case when ðKh � NÞ = 0, both Bragg and Laue geometries

must give the same result.

The problem of solving these equations is simplified greatly

if all vectors are expressed in a Cartesian coordinate system,

where axis z is parallel to the crystal surface normal and axis x

belongs to the plane of incidence. Then vectors N, P and K0

are: N = ð0; 0;NzÞ; P = ð0;Py; 0Þ; K0 = ðK0x; 0;K0zÞ. The
translation from any Cartesian coordinate system to that

described here can be made with the help of up to two rota-

tions (Casanova, 1976). For greater simplicity, vectors N and P

could be set as unit vectors: |N| = Nz = 1 and |P| = Py = 1.

4. Results and discussion

When considering equations (1)–(7) in scalar form, some

quadratic or biquadratic equations for the unknown variable

Qz, for example, can be found (see AppendixA). In Figs. 5 and

6, the final view of the allowed reciprocal-space region for the

Bragg and the Laue case, respectively, are shown. Considering

the structure factor Fh for each reciprocal node, one quarter of

the figure for the Bragg case and a silicon crystal is shown in

Fig. 7 (the diameter of each point is proportional to Fh). This

could be useful for taking into account only those reciprocal
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Figure 3
For fixed K0 (red), all possible ends of vector Kh (green) form a sphere.

Figure 4
All fundamentally accessible reciprocal points, for a fixed plane of
incidence, lie inside this volume.

Figure 5
The correct accessible reciprocal-space region for Bragg geometry with a
fixed incidence plane.
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nodes that give valuable diffracted intensity. The structure

factor was calculated using the open-source library HiCalc

(Saveleva et al., 2006).

The correct shape of the reciprocal-space region in Bragg

geometry can be explained rather easily. For any K0 (of course

K0z � 0) allowed in the Bragg case, the possible ends of

vector Kh form an empty hemisphere (because Khz � 0) of

radius K with the centre at the beginning of vector K0 (two

such hemispheres for K0z = 0 are shown in Fig. 5 in green).

Then this hemisphere is plotted for all possible positions of K0

in the plane of incidence; the figure between the yellow and

green/purple surfaces in Fig. 5 is obtained. The yellow surface

is, of course, the upper part of a torus, and the purple surface is

determined by the condition Khz = 0.

The equations described above can be used for other useful

purposes. For example, to find the incident and diffracted

beams for any reciprocal point, equation (2) could be modified

using equation (3):

ðK0 �QÞ ¼ �Q2=2: ð8Þ
Then, using equations (1), (4) and (8), vector K0 can be found

easily, and thus by using equation (3), vector Kh is determined

(for the final formulae see Appendix A). Another use of the

proposed equations is in the determination of the direction in

which vector K0 should be set to achieve diffraction from a

reciprocal point with vector Q. For this purpose, vector Q

should be set, and vector P could be found from equations

(1)–(7).
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Figure 6
The correct accessible reciprocal-space region for Laue geometry with a
fixed incidence plane.

Figure 7
A quarter of the accessible region for Bragg geometry with an Si [001]
crystal and � = 1.54 Å. The size of each point (blue) is proportional to the
Si structure factor.

Figure 8
Two possible beam paths to reach the 333 reciprocal node (blue point) for
an Si [001] crystal and incident beam (red) in the (100) plane (yellow).
Diffracted beams: green. (a) Real space. (b) Reciprocal space.
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For any given reciprocal point with vector Q, diffraction

occurs when the origins of vectors K0 and Kh lie on a circle

that is formed by rotation of these vectors around vector Q

(black curve in Fig. 8b). Thus, in most cases, for a given reci-

procal point and plane of incidence, there are two possible

beam paths (solid and dashed lines in Fig. 8). Therefore, some

of the reciprocal points could be reached in both the Bragg

and the Laue geometry (Fig. 8a) and these points belong to

both the Bragg and the Laue accessible regions (Figs. 5 and 6).

As was pointed out at the beginning of this article, all the

regions described are plotted for a fixed plane of incidence,

which means that the azimuthal angle of the incident beam is

fixed. If this angle changes, all reciprocal points inside the

hemisphere with radius 2K (red in Fig. 2) could be accessed in

the Bragg geometry. In this case, all fundamentally accessible

points for the Laue geometry lie inside a horizontal torus. If

the angle of incidence (between the beam and the surface) is

constant, which is usually the case for grazing-incidence

experiments, the fundamentally accessible region in the Bragg

geometry for an arbitrary plane of incidence is the volume

plotted in Fig. 9.

All figures in this article were plotted with the programXViz

(Yefanov, 2007) using the TeeChart7 component (Steema,

2006). For a better understanding of the shapes of these

figures, the reader is referred to http://x-ray.net.ua/xviz.html,

where animated pictures can be found. The correctness of

Figs. 4–7 can be easily checked with the program XViz by

plotting beam paths for any reciprocal node, as shown in Fig. 8.

APPENDIX A
Main formulae in Cartesian coordinates

For a given reciprocal point with vector Q (|Q| = Q � 2K) and

a plane of incidence with normal P, the incident beam vector

K0 can be found by solving the following equations:

½ðQyPz � PyQzÞ2 þ ðQzPx � PzQxÞ2 þ ðQyPx � PyQxÞ2�K2
0x

�Q2½QzPxPz þQyPxPy �QxðP2
y þ P2

zÞ�K0x

þQ4ðP2
y þ P2

zÞ=4� K4ðQyPz � PyQzÞ2 ¼ 0; ð9Þ

K0y ¼
�PzQ

2=2þ ðPxQz � PzHxÞK0x

PzHy � PyHz

; ð10Þ

K0z ¼
�PyQ

2=2þ ðPxQy � PyHxÞK0x

PyHz � PzHy

: ð11Þ

The diffracted beam Kh is then:

Khx ¼ K0x þQx; Khy ¼ K0y þQy; Khz ¼ K0z þQz:

ð12Þ
When considering a simplified coordinate system, where

vectors N = ð0; 0; 1Þ, P = ð0; 1; 0Þ, K0 = ðK0x; 0;K0zÞ, equations
(9)–(11) take the form:

ðQ2
z þQ2

xÞK2
0x þQ2Q2

xK0x þQ4=4þ K4Q2
z ¼ 0; ð13Þ

K0y ¼ 0; K0z ¼ �ðK2 � K2
0xÞ1=2: ð14Þ

In the coordinate system described, the equation for the

fundamentally accessible reciprocal points (half of a torus for

Qz > 0 in Fig. 4, yellow surface in Fig. 5 and green surface for

Qz > 0 in Fig. 6) takes the form (here and later �2K � Qx �
2K and �K � Qy � K are set and Qz is calculated):

Q4
z þ 2ðQ2

x þQ2
y � 2K2ÞQ2

z þ ðQ2
x þQ2

yÞ2 � 4K2Q2
x ¼ 0:

ð15Þ
Only positiveQz should be considered, because the surface for

Qz < 0 is determined by equation K0z = 0, as described below.

The equation for the surface where Kh is parallel to the

crystal surface (Khz = 0) is

Q4
z þ 2ðQ2

x �Q2
yÞQ2

z þ ðQ2
x þQ2

yÞ2 � 4K2Q2
x ¼ 0 : ð16Þ

One solution of this equation is plotted in light purple in Fig. 6

and the other in purple in Fig. 5. Two other roots are negative

and non-accessible due to the presence of the surface,

described below.

The equation for the surface where K0 is parallel to the

crystal surface (K0z = 0) is

Q2
z ¼ �Q2

x �Q2
y þ 2KjQxj : ð17Þ

The roots are shown in green in Fig. 5 (Qz > 0) and in Fig. 6

(Qz < 0).

For a fixed angle of incidence (K0z = constant), the surface is

described by (�2K � Qy � 2K)

Q2
z þ 2K0zQz þQ2

x þQ2
y � 2½ðK2 � K2

0zÞðQ2
x þQ2

yÞ�1=2 ¼ 0:

ð18Þ
The solution for Qz � K0z (Bragg case) is shown in Fig. 9 in

yellow.
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Figure 9
For a fixed incidence angle, all accessible reciprocal points lie inside this
volume.
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