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We report on automating the Catani-Seymour dipole subtraction which is a general procedure to treat infrared

divergences in real emission processes at next-to-leading order in QCD. The automatization rests on three essential

steps: the creation of the dipole terms, the calculation of the color linked squared Born matrix elements, and

the evaluation of different helicity amplitudes. The routines have been tested for a number of complex processes,

such as the real emission process gg → tt̄ggg.

1. INTRODUCTION

QCD as the gauge theory of the strong inter-
action allows to predict cross sections for hard
scattering reactions which, at a hadron collider,
typically involve high multiplicities of colored
partons. In the perturbative approach calcula-
tions based on exact QCD matrix elements at
leading order (LO) provide first estimates for
cross sections and differential distributions. How-
ever, in the complicated environment of a hadron
collider precision calculations to next-to-leading-
order (NLO) in QCD are often needed in order
to reliably predict (and separate) the Standard
Model background from possible new physics sig-
nals. In the era of LHC this has triggered a lot
of activity concerning NLO QCD corrections to
multi-particle reactions, see e.g. Refs. [1,2].

The salient feature of NLO corrections is the
presence of virtual and real emission contribu-
tions. Virtual-loop corrections exhibit both ul-
traviolet (UV) and soft and collinear divergences
which we call IR divergencies in the following.
The real corrections contain only IR divergencies
from soft and collinear emissions. Upon summa-
tion of the two parts all IR divergences cancel (for
so-called IR safe observables) [3–5]. Since virtual
and real corrections have different phase space in-
tegrals, these cancellations are not always triv-
ial. In the Catani-Seymour dipole formalism [6–
8], the IR divergences of virtual and real correc-

tions are treated separately by subtracting suit-
able dipole terms so that each of the contributions
becomes individually finite. The dipole terms are
constructed systematically relying on the univer-
sal nature of soft and collinear limits in QCD.
Thus the method allows for a general treatment
of IR divergences to NLO in QCD.

Current applications in phenomenology con-
sider processes with six or more parton legs [1,2]
which require about one hundred dipole terms.
These calculations are rather tedious and since
the algorithm underlying the Catani-Seymour
dipole subtraction is a combinatorial one automa-
tization is favored. The construction of the com-
plete subtraction terms relies to a large extent
on squaring color correlated Born amplitudes and
dressing them with the corresponding dipoles. To
that end, we can use existing software for the au-
tomatic evaluation of Born amplitudes [9–16] by
means of a suitable interface. Thus, the com-
pletely automatic generation of all subtraction
terms in the dipole formalism becomes feasible.

In related work Ref. [17] recently reported on
details of an automatization, although the code is
unpublished. Ref. [18] made code publicly avail-
able. However, all process dependent informa-
tion, i.e. the (color correlated) Born squared ma-
trix elements, still have to be provided by the
user. Automating this step is precisely what we
are aiming at in the present article.
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2. ALGORITHM

In this section we briefly review the algorithm
of the dipole subtraction with particular emphasis
on the features of the real emission contributions
for a given process.

1. Choose all possible emitter pairs from the
external legs. In the dipole subtraction, the root
of the splitting of the quarks and gluons is called
emitter. For convenience we call the two fields
into which an emitter splits, emitter pair. We use
indices, i, j, and k, for fields in a final state and,
respectively, indices, a and b, for an initial state
field. The quark (anti-quark) and gluon are de-
noted by f (f̄) and g. In case both partons of an
emitter pair are in the final state, possible com-
binations are (i, j) = (1)(f, g), (2)(g, g), (3)(f, f̄).
In case of one parton in the initial and the
other in the final state, we have (a, i) =
(4)(f, g), (5)(g, g), (6)(f, f), (7)(g, f). There are
also the other combinations where the quarks are
replaced by the anti-quarks in the cases, (1), (4),
(6), and (7).

2. Choose all possible spectators for each emit-
ter pair. The spectator is one external field which
is different from both fields of the emitter pair.
For a spectator in the final (initial) state denoted
by k (b), this condition means k 6= i, j (b 6= a).
It emerges from a special feature of the subtrac-
tion formalism namely that the color factors of
the square terms |Mi|

2 are expressed through the
ones of the interference terms MiM

∗
j (i 6= j) due

to color conservation.
3. Construct the dipole terms from the chosen

combinations of emitter and spectator. The pre-
vious steps provide all such combinations as pair-
ings (emitter, spectator)= (ij, k), (ij, b), (ai, k),
and (ai, b). Each case corresponds to one dipole
term, Dij,k, Da

ij , D
ai
k , and Dai,b, respectively, and

explicit expressions are given in [6,8]. For exam-
ple, the dipole term Dij,k in the massless case
reads,

Dij,k =
−1

2pi · pj

〈ij, k|
Tk · Tij

T2

ij

Vij,k|ij, k〉 . (1)

The quantity, 〈ij, k |Tk ·Tij | ij, k〉, is called color
linked Born squared matrix element (CLBS). It
is given by the Born amplitude squared with two

additional color operator insertions at the emit-
ter and spectator legs. The color operator T
denotes either a fundamental taij or an adjoint

fabc generator, depending on the parton type
(i.e. quark, anti-quark or gluon). The quantity
Vij,k is the so-called dipole splitting function. In
case of the emitter being a quark, for example,
(ij, k) = (fg, k) the splitting function is diagonal
in the spin space of the quark:

〈s|Vfg,k|s
′〉 =

8πCF αs

[
2

1 − zi(1 − yij,k)
− (1 + zi)

]
δss′ ,(2)

where zi and yij,k are functions of the external
momenta as,

zi =
pi · pk

pj · pk + pi · pk

, (3)

yij,k =
pi · pj

pi · pj + pj · pk + pk · pi

. (4)

In case of the emitter being a gluon, for example,
(ij, k) = (f f̄ , k), it does exhibit a correlation with
the gluon helicity according to

〈µ|Vff̄ ,k|ν〉 = 8πTRαs

[
−gµν

−
2

pipj

(zip
µ
i − zjp

µ
j )(zip

ν
i − zjp

ν
j )

]
, (5)

which has to be treated accordingly (see for ex-
ample Ref. [19]).

In summary, these three steps generate all
dipole terms to subtract all IR divergences of a
real emission process at NLO. The construction
of the integrated dipole terms is less involved and
proceeds in complete analogy [6,8], thus we skip
a detailed discussion here.

3. CODE STRUCTURE

Here we briefly sketch our implementation of
the dipole subtraction formalism. There is a
large freedom how such an implementation can be
done. In Ref. [20] for example the implementa-
tion was done in form of two independent C/C++
libraries providing all the necessary functions to
evaluate the dipole terms. The slight disadvan-
tage of this approach is that the produced code
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is non-local and that there is some redundancy in
the calculation. In the present work we follow a
different approach. The main idea here is to have
code generator which will produce an optimized
flat code which can be further optimized by the
compiler. To do so we haven chosen to interface
a Mathematica program with MadGraph [9,10].

3.1. Mathematica code

We implement the creation of the dipole terms
in Mathematica. With a given (real emission)
parton scattering process as an input, the Math-
ematica code automatically writes down all dipole
terms needed at NLO. It provides all expressions
explicitly except for the CLBS. The code creates
the dipole terms in an order according to the kind
of the emitter pairs, i.e. the seven combinations
of (i, j) or (a, i) listed in Sec. 2.

The first group of dipole terms (dipole 1) are
the ones with the emitter pairs, (1),(2),(4), and
(5). These emitters reduce the NLO real emis-
sion process to a Born amplitude which is the LO
contribution to a process with one less gluon in
the final state. The second kind of dipole terms
(dipole 2) has the emitter pair (3), while the third
and fourth (dipole 3 and 4) have (6) and (7) as
emitter pairs.

In order to demonstrate the code, let us discuss
the example g(a)g(b) → u(1)ū(2)g(3). The code
starts with the creation of the first dipole D13,2

which belongs to the group dipole 1 and the out-
put is written in the form,

Dijkfgk(132) =
−1

2pi · pj

Vijkfgk(132)
B1(132)

T2

13

, (6)

where Vijkfgk is the dipole splitting func-
tion and B1 denotes the CLBS. The in-
dices, ijkfgk(132), of D and V mean that
(emitter, spectator)=(ij, k)=(quark gluon, some-
thing)=(13,2). About the CLBS the code stores
only the necessary information for the direct cal-
culation. It writes each CLBS as B‘i’ correspond-
ing to Dipole ‘i’, where i can be 1,2,3, or 4. For
instance, the output for B1(132) in Eq. (6) is re-
turned in the form,

B1(132) = B1[{{g, pa}, {g, pb}} − − >

{{u, pijtil[1,3]}, {ubar, pktil[2]}}] , (7)

where gg → uū is the reduced Born process. The
function pijtil[1,3] is the reduced momenta for the
emitter and pktil[2] for the spectator. In general,
for a given NLO real emission process with n par-
ton legs, each dipole term has a reduced Born
squared matrix element with (n− 1) parton legs.
The reduced (n − 1) external momenta are func-
tions of the original n external momenta. For
example, the reduced momentum for an emitter
in the dipole term Dij,k reads

p̃µ
ij = pµ

i + pµ
j −

yij,k

1 − yij,k

pµ
k . (8)

The Mathematica code provides explicit expres-
sions for the reduced momenta of each dipole in
the output according to Eq. (7).

At the end of the run, the total number of gen-
erated dipoles is shown. The final output for the
complete subtraction term is given as a C- or For-
tran routine for numerical evaluation. We have
tested the generation of dipoles with our Math-
ematica code for complex processes, obtaining,
e.g. twenty seven dipole terms for the process
gg → uūg, eighty dipoles for gg → uūdd̄g, and
one hundred dipoles for gg → uūggg.

3.2. Interface to MadGraph

As we see, the remaining ingredient at this
stage is the CLBS appearing in all dipole terms.
In case the emitter is a gluon, they also include
the different helicity components of the CLBS for
the emitter. In order to obtain these quantities
in an automatic way, it is advantageous to use a
publicly available software for automated LO cal-
culations. We choose MadGraph for this purpose
and interface our Mathematica program with the
stand-alone version [9,10].

Let us briefly explain our interface to Mad-
Graph to obtain the CLBS. In MadGraph, the
color factors are separated from each diagram.
In the evaluation everything is expressed in terms
of generators of the fundamental representation.
A typical example is that the factor fabc of the
gluon three point vertex is rewritten in terms of
the fundamental generator taij due to the identity,

fabc = −2i
(

Tr[tatbtc] − Tr[tctbta]
)
. (9)

The color factors of each diagram are sorted in an
unique order and they are expressed in a sum of
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some terms. When a specific term of a diagram
is identical to one of the other diagrams, it is
combined as

M =
∑

a

CaJa , (10)

where Ca denotes the independent color factors.
Each Ca has fundamental and adjoint color in-
dices corresponding to the external quarks (anti-
quarks) and the gluons, respectively. Ja is the
joint amplitude, e.g. J1 = +A1 − A3 + · · · where
Ai is the partial amplitude of i-th diagram (with
the color factor stripped off). The invariant ma-
trix element squared is finally expressed in the
form,

|M|2 =
(
~J
)†

CF ~J , (11)

where the color matrix CF is defined as

(CF)ab =
∑

color

C∗
aCb. (12)

For the CLBS we need to evaluate Eq. (11) with
an insertion of two additional color operators to
the emitter and spectator legs. This is precisely
what our interface to MadGraph does.

Let us return to the example of B1(123) from
the previous subsection. The reduced Born pro-
cess g(a)g(b) → u(1)ū(2) has three diagrams and
the color factors are combined into two indepen-
dent ones, (C1, C2) = ((tatb)12, (t

bta)12). The
components of the color matrix are written in
the traces, (CF)11 = (CF)22 = Tr[tbtatatb] and
(CF)12 = (CF)21 = Tr[tbtatbta]. Then the color
matrix is calculated as

CF =

(
16/3 −2/3
−2/3 16/3

)
. (13)

For the CLBS B1(123) we need the fundamental
operator insertions into the legs 1 and 2. The
components of the color matrix CF are modi-
fied to (CF′)11 = Tr[tbtatctatbtc] and (CF′)12 =
Tr[tbtatctbtatc]. Then the modified color matrix
is calculated as

CF′ =

(
1/9 10/9

10/9 1/9

)
. (14)

The subroutines of MadGraph for the color factor
calculations are well structured and the original

routines to add the color factors taij and fabc can
be applied to the additional color insertions for
CLBS. We have realized the two color insertions
in an automatic way and checked that MadGraph
with our interface works for rather involved pro-
cesses. One of the most complex checks con-
sists of the two color insertions into the process
g(a)g(b) → u(1)ū(2)g(3)g(4). In MadGraph the
normal color matrix for the process is a 24 by 24
matrix. Here we show only the first 15 compo-
nents in the first row as

CF =
1

54
(512, 8,−64, 80, 8,−10, (15)

−1,−64,−64, 8,−1,−10,−1, 62,−10, · · ·).

Next, we perform two adjoint operator insertions
into the legs 3 and 4, and the extended routines
calculate the modified color matrix as

CF′ =
1

4
(8, 0, 8, 16, 0,−2, (16)

0, 8,−1,−1, 1, 2,−8,−7, 1, · · ·) .

We have checked that the result in Eq. (16) and
the sum of all components agree with results of
our independent private code.

Next we briefly comment on the different helic-
ity components of the CLBS for the gluon emit-
ter. In MadGraph the gluon polarization vec-
tor is calculated by the subroutine ‘VXXXXX’ of
the HELAS library where the polarization vec-
tor is taken in the circular polarization repre-
sentation [21,22]. Then, it is favorable to cal-
culate the dipole terms with the helicity cor-
relation in the circular polarization basis. For
example, in the previous process g(a)g(b) →
u(1)ū(2)g(3), we take one dipole Da3

1
and cal-

culate it in the circular polarization basis as
Va3

1
(λ, λ′)B1(g(λ, λ′)g → uū) where Va3

1
(λ, λ′) is

constructed from the dipole splitting function in
the basis of the Lorentz indices as in Eq. (5) by
multiplying the circular polarization vectors. The
arguments (λ, λ′) are the ones for the different he-
licities of the original and the complex conjugated
amplitude for the emitter gluon. We have com-
pleted the interface to obtain the CLBS with the
different helicities as Bi(λ, λ′) and checked it in
processes as the above B1(g(λ, λ′)g → uū).
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Figure 1.
The complete structure of the code is shown. The Mathematica generates all subtraction terms in the
dipole formalism and returns output in C or Fortran for numerical evaluation. The calculation of the
CLBS is delegated to MadGraph via an interface.

3.3. Complete structure

Let us finally wrap up by displaying the com-
plete structure of our code shown in the flowchart
in Fig. 1. An user specifies a n-parton real emis-
sion process as an input to the Mathematica
code as well as a set of the external momenta
{pn}. The Mathematica program then gener-
ates all dipole terms in the appropriate order (see
Sec. 3.1) along with the CLBS B1, · · · , B4. The
created dipole terms are written as C- or Fortran
routines to a file ‘dipole.c’ or ‘dipole.f’. In this
file the explicit expressions for the dipole split-
ting function V are contained. Together with each
dipole, the information on its reduced kinematics

as a function of the external momenta is stored
(see Sec. 3.1).

The necessary information to calculate each
CLBS is transferred to MadGraph through the
file ‘proc card dip.data’. This data file is an
imitation of the input file ‘proc card.data’ of
the original MadGraph. Our interface reads
‘proc card dip.data’ and gets MadGraph to write
Fortran routines for the evaluation of each CLBS
in a file ‘matrix dip.f’. As we see in Sec. 3.2, the
color matrix CF is modified to CF′ due to the
additional color insertions.

Finally, the C- and/or Fortran codes in the two
files can be used for the numerical evaluation of all
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dipole terms as functions of the external momenta
{pn}. The sum of the dipole subtractions from
the invariant matrix element squared of the NLO
real emission process reads,

|M(2 → (n − 2)partons)|2 −
∑

i

D(i) . (17)

The invariant matrix element squared can be cal-
culated with the original MadGraph version and i
runs over all dipole terms. Eq. (17) is finite upon
integration over the phase space of the unresolved
parton. Thus, it can finally be integrated over the
phase space by using standard Monte Carlo tech-
niques to obtain its contribution to an IR safe
cross section.

4. OUTLOOK

We have reported on ongoing work to automate
the Catani-Seymour dipole formalism in order to
calculate the subtracted invariant matrix element
squared Eq. (17) in an automatic way.

The automatization essentially requires three
ingredients: the automatic generation of all
dipole terms, the calculation of the CLBS, and
the evaluation of different helicity amplitudes.
The implementation of each of these tasks either
in our Mathematica program or in an interface to
MadGraph has been completed and the respective
routines have undergone sufficient checks. We are
now finalizing the user interface and the output
format to achieve full automatization. At the
same time we are checking our code for various
massless real emission processes, like gg → uūg,
gg → uūgg, and gg → uūggg, as well as for mas-
sive processes, like gg → tt̄g, gg → tt̄gg, and
gg → tt̄ggg to obtain finite results for |M|2−

∑
D

in all soft and collinear limits (and IR safe con-
tributions to cross sections). Once the reliability
of our software has been fully established and the
code has been optimized for speed, it will be made
publicly available.
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