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We propose a simple formula for fitting the electron ionization mean free paths in solids both at high
and at low electron energies. The free-electron-gas approximation used for predicting electron mean
free paths is no longer valid at low impact energies ��E−EF��50 eV�, as the band structure effects
become significant at those energies. Therefore, we include the results of band structure calculations
in our fit. Finally, we apply the fit to nine elements and two compounds. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2161821�
I. INTRODUCTION

Inelastic interactions of electrons with solids1 are of a
great importance for several measurement techniques,2 in-
cluding energy loss spectroscopy, low-energy electron dif-
fraction, photoemission spectroscopy, and time-resolved
two-photon photoemission. At present, electron mean free
paths are well known in two energy regimes relative to the
Fermi energy, EF. At high energies they are predicted either
with Bethe�-like� equations for E−EF�200 eV3,4 or with the
more accurate optical models based on the free-electron-gas
approximation for E−EF�50 eV.5,6 At very low energies
around EF, they are calculated either with experimental data
on electron lifetimes or with first-principles
calculations.2,7–20 In the low-energy region electron mean
free paths have been extensively studied, especially in semi-
conductors, where they are needed to understand the proper-
ties of semiconductor devices under high electric fields �see,
e.g., Ref. 14�.

Accurate calculation of the electron mean free path for
impact ionizations is essential for investigating radiation
damage by energetic photons in solids. With the anticipated
development of free-electron lasers, damage to solid materi-
als caused by intense x-ray irradiation has become of signifi-
cant interest to the research community. Radiation damage is
the limiting factor in the achievable resolution for biological
materials in x-ray diffraction as well as in electron
microscopy.21–23 New x-ray sources, such as free-electron
lasers �XFELs�, will soon provide very short, intense pulses
that may allow existing damage limitations to be
overcome.24 A fundamental understanding of the interaction
of x rays with solid state materials is important to pursue this
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possibility. Damage is also a limiting factor in the design of
x-ray optics25 and detectors for XFELs and for the survival
of samples exposed to an intense x-ray beam. On the positive
side, production of “warm dense matter”26 by XFELs will be
mediated by electron cascades similar to those that underlie
the damage processes. In addition, interpretation of recent
experiments on nonthermal melting in solids27 and some un-
expected behavior of xenon clusters exposed to very short
UV pulses28 depend on an understanding of electron cas-
cades. Soon it will be possible to study the time-dependent
electron cascades experimentally, with the XFELs.

X rays interact with the material mainly via the photo-
electric effect. In light elements, the emission of an energetic
photoelectron is followed predominantly by the emission of
a less energetic Auger electron.24 These electrons propagate
through the sample, and cause further damage by excitations
of secondary electrons. The extent of ionization will depend
on the size of the sample. Photoelectrons released by x rays
of �1 Å wavelength are fast �v�660 Å/fs�, and they can
escape from small samples early in an exposure. In contrast,
Auger electrons are slow �v�95 Å/fs in carbon�, so that
they remain longer in a sample, and it is likely that they will
thermalize there. A detailed description of electron cascades
initiated by an electron impact is needed for a better under-
standing of radiation damage, especially in larger samples, as
secondary ionization caused by propagating photoelectrons
becomes significant there.

The electron transport models constructed to date for
studying interactions of short-pulse x rays with matter �see
e.g. Refs. 29 and 30� have been based on mean free paths for
impact ionization obtained with optical models.5,6 Those
mean free paths were valid at high impact energies only.
Their extension to lower energies was questionable, and it
lead to the underestimation of the total number of secondary
electrons released, as the electrons liberated by carriers of

low impact energies were then neglected in the simulations.
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A need for a unified model that can extend electron mean
free paths down to very low impact energies was expressed
in Ref. 30. An extension of the TPP optical model5 down to
the very low energies �E=5.47 eV� was proposed there.
Simulations applying the extended model were performed in
diamond, and they yielded a reasonable estimate of the late
number of secondary electrons, released by a single impact
electron.

Here we advance previous work by developing a simple
formula for fitting the electron mean free paths for impact
ionization in various solids over a wide energy range. The
accuracy of the fit obtained with this model is sufficient for a
correct calculation of the number of secondary ionizations
induced by an impact electron. In this article, we first give
the theoretical foundations of the model. The model is then
applied to fit electron mean free paths in nine elements and
two compounds. Both metals and semiconductors are consid-
ered. The accuracy of the fit at different energy regimes is
then discussed. Possible applications and extensions of the fit
are proposed. Finally, a simple approximation for the differ-
ential cross sections is suggested, which, together with our fit
to the mean free paths may be used to construct a simple and
computationally efficient model of the electron transport.

Although the electron transport in solids has been exten-
sively studied using different techniques, to our knowledge,
no universal fit of the electron mean free paths working both
at high and at low energies and including results of the first-
principles calculations has been yet published. We hope that
our result will help to fill this void.

II. THEORY

A. Physical picture

Electrons propagating in a solid interact with the atoms
of the solid. These interactions may be either inelastic or
elastic. The average distance traveled by an electron between
two consecutive inelastic or elastic collisions is described by
a mean free path ��in�el��, which is proportional to the inverse
of the inelastic �elastic� cross section.

During an inelastic collision the impact electron loses a
part of its energy, transferring it to another electron�s� or to
the lattice. There are two energy loss channels accessible for
the primary electron: �i� direct production of electron-hole
pairs in core or valence ionizations and �ii� collective exci-
tations of the solid �plasmons, excitons, and phonons�.31–33

The accessibility of the loss channels depends on the energy
of the primary electron �E�, measured with respect to the
bottom of the conduction band. If E is larger than the thresh-
old for the core ionizations �Ecore�, all routes of the energy
loss are available for the primary electron, and the direct
production of electron-hole pairs is the most likely route. If
the energy of the primary electron is lower than Ecore but still
higher than the minimal energy needed to create an electron-
hole pair, ionizations of the valence band can proceed. Pair
production remains a dominating mechanism of the energy
loss.

If the energy of the primary impact lies below the thresh-
old for plasmon excitations �E�EP �EP�Ecore��, the plas-

monic channel of energy loss also closes. At even lower
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energies, the production of electron-hole pairs will be sup-
pressed. For semiconductors this occurs at energies E�EG

where EG is the band-gap width. For metals, the direct pro-
duction of electron-hole pairs in metals will be possible at
any impact energy E�EF, where EF is the Fermi energy.

In semiconductors and insulators, long-living excitations
of bound electron-hole pairs called excitons are also pos-
sible. The thresholds for excitons lie below EG. At energies
below exciton thresholds, only phonon excitations occur
with the energy gains or losses of less than 0.1 eV. Phonons
may be excited also in metals. Due to the small energy trans-
fer required for a phonon exchange, the phononic channel of
energy loss remains open even at very low impact energies
both in metals and in the semiconductors.

As we are interested in calculating the mean free path of
an impact electron between two consecutive impact ioniza-
tion events ��ii�, we restrict our analysis to processes that
contribute significantly to the excitations of secondary elec-
trons. These are the processes of: �i� the direct pair produc-
tion allowed at energies E�EG �for metals, E�EF�, and �ii�
the plasmon excitations allowed at energies E�EP, where
EP�EG �EP�EF for metals�. In case of plasmonic excita-
tions the secondary electrons are produced indirectly, as a
result of the plasmon decay.31 Although, with the free-
electron-gas model of solids,11,31 only volume plasmons of
large wave vectors can decay into single electron-hole pairs,
in real solids, volume plasmons of even very small wave
vectors may decay into electron-hole pairs via interband
transitions.33 Therefore, one may roughly assume that every
plasmon excitation produces a pair of a secondary electron
and a hole.

B. Impact ionization rate �„E… at low energies

Electrons of low energies �EG�EF��E�EP� moving in
solids experience strong electron-electron scattering pro-
cesses. In metals, inelastic lifetimes of these electrons ���
have been studied for many years in the framework of the
free-electron-gas model of solids.31,32 However, recent ex-
periments and calculations2,11 have shown that the band
structure of metals is very important for the electron trans-
port at low electron energies. The calculations have shown
that the lifetimes of the electrons are strongly affected by the
topology of the Fermi surface and the density of states in
bands, even for free-electron-like metals for which the free-
electron-gas model works accurately �e.g., aluminum, see
Refs. 7, 9, and 32�.

Strong dependence of electron scattering on the details
of the band structure was also observed in semiconductors
and insulators. In these solids, the transport of hot electrons
has been intensively studied, both theoretically and experi-
mentally, as its correct modeling is essential in order to de-
scribe the transport of carriers in semiconductor devices.14

The interaction of an impact electron with the electronic
band of the solid, which may lead to an impact ionization,
proceeds via the screened Coulomb potential.2,7,15 Different
first-principles formalisms may be applied in order to de-
scribe this interaction. In metals, the scattering rate of an

impact electron ��=1/�� is usually obtained with many-body
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theory from the imaginary part of the electron
self-energy.2,7,8,10 The rate �n,k is a product of the Fourier
transform of the screened Coulomb interaction and of the
expansion coefficients of the electron wave functions
sampled in the irreducible part of the Brillouin zone.2,7 This
rate depends on the wave vector k and the energy band n.
Therefore, it has to be summed over all k and n available at
the same �impact� energy in the Brillouin zone in order to
obtain the average value ��E� as a function of the impact
energy.

In semiconductors, the impact ionization rate is usually
calculated with scattering theory, using time-dependent per-
turbation expansions.9,13,15–20 Applying the Fermi golden
sum rule, the first-order contribution to the ionization rate
sums the elements of the scattering matrix, M2�1,2 ,3 ,4�,
which describe the screened Coulomb interaction of the pri-
mary electron �index 1� with the valence band, resulting in a
release of a secondary electron �index 3� and a secondary
hole �index 4�.13 Index 2 denotes the final state of the pri-
mary electron. These matrix elements are multiplied by
Dirac �-functions that impose energy and momentum conser-
vation. The set of matrix elements is then summed over all
energy bands and wave vectors available in the first Brillouin
zone,

��E� = c �
n1,n2,n3,n4

� d3k1 . . . d3k4� ��n1
�k1� − E�

�� ��n1
�k1� + �n4�k4� − �n2

�k2� − �n3
�k3��

�� �k1 + k4 − k2 − k3 − K0�M2�1,2,3,4�

”�
n1

� ��n1
�k1� − E� , �1�

where c is a normalization constant and M2�1,2 ,3 ,4�
=M2�k1 ,n1 ;k2 ,n2 ;k3 ,n3 ;k4 ,n4� sums the direct and the ex-
change interaction terms and their interference.13 The shape
of the energy function �n�k� follows from the dispersion re-
lation in the nth band. The vector K0 is a principal lattice
vector, introduced in order to ensure that �k1, k2, k3, k4� are
all in the first Brillouin zone.

The self-energy approach and the approach based on
scattering theory may be applied both for metals and for
semiconductors. We classified them as the “metal” approach
and the “semiconductor” approach as the majority of the pa-
pers treating the electron transport in metals uses the self-
energy formalism for their band calculations, and the scatter-
ing theory approach is commonly used by the semiconductor
community. Alternative treatments, using the self-energy ap-
proach for semiconductors and the scattering theory for met-
als can also be found �see, e.g., Refs. 9, 12, and 13�.

Finally, we note that first-principles calculations are al-
ways complex and difficult. They require detailed informa-
tion on the structure of the solid, especially detailed informa-
tion on its band structure: the density of states, dispersion
relations in bands, effective masses of carriers, etc. There-
fore, the first-principles calculations are dedicated for a par-
ticular material.

At high impact energies, the scattering rate for electron-

hole production in both metals and semiconductors follows
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Bethe asymptotics. We have checked �not shown� that the
rate calculated with Eq. �1� indeed shows the Bethe
asymptotic behavior at high values of the energy E both for
metals and semiconductors:

��E� = �Ã ln�E/E0� + B̃�/�E . �2�

The coefficients Ã and B̃ are material-dependent constants.

The units for Ã and B̃ are �eV/Å�. Coefficient E0=1 eV has
been introduced for dimensional reasons.

At low energies �EG�E�EP �EF�E�EP for metals��,
the scattering rates obtained with the first-principles calcula-
tions are usually well fit with the following formula:15,18,34

��E� = ã�E − Eth�b̃, �3�

where ã and b̃ are material-dependent coefficients, calculated
to give � in �1/fs� units with energy expressed in �eV� units.
For semiconductors, the effective threshold for pair produc-
tion, Eth, may differ from the gap energy, EG. For metals,
Eth=EF, and the free-electron-gas model of solids predicts

b=2.35 The same value of b̃=2 may also be obtained with
the Fermi-liquid theory.35 In the literature on semiconduc-
tors, the quadratic rate is known as the Keldysh scattering
rate.36 It may be obtained analytically from Eq. �1� both for a
metal or a direct-band-gap semiconductor, assuming simple
parabolic bands and using the constant matrix element
approximation.19 However, full band calculations show that

the value of b̃ approaches 2 only in materials whose structure
can be described by the free-electron model �parabolic band

structures�.19 In other solids, b̃ is usually different from 2,
and its value reflects the complexity of the band structure.

C. Impact ionization mean free path �ii at high
energies

An inelastic collision of a high-energy electron �E
	EP� with a solid may induce either a direct electron-hole
production or a plasmon excitation. The energy of the impact
electron is then so high that the interaction is not much af-
fected by the structure of the band in the solid. As the elec-
tron’s de Broglie wavelength becomes smaller with the in-
creasing energy of the electron impact, electrons of energies
high enough will interact only with single atoms. At those
high energies, typically a few hundred electron volts, the
electron-solid interaction may be accurately described by
atomic models.3,37,38 The mean free path can then be de-
scribed by the Bethe formula3

��E� = E/�A ln�E/E0� + B� , �4�

where A and B are material-dependent constants, related to

the coefficients, Ã and B̃, from Eq. �2�. The units of A, B are
�eV/Å�. The dimensional coefficient E0=1 eV.

Among atomic and oscillatory models, we found the
Greis equation,4 based on the orbital interaction model. This
equation gives predictions for electron mean free paths in
many elements at E−EF�200 eV.

As an alternative approach, the free-electron-gas
approximation35 has proved to be very successful in describ-

ing the interaction of energetic electrons with solids both at
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high �E−EF�200 eV� and at intermediate electron energies
�50�E−EF�200 eV�. In this approximation, an inelastic
collision is modeled as an interaction of a free electron with
a gas of noninteracting electrons.31,32 The mean free path of
the impact electron is then inversely proportional to the
imaginary part of the electron self-energy. This self-energy
depends on the Lindhard dielectric function,39 and may be
accurately modeled using experimental data for the optical
dielectric function. This is the basis of the optical models,5,6

which are commonly used for calculating electron mean free
paths at high and intermediate impact energies. Details of the
band structure enter these models only through the shape of
the optical dielectric function for a specific solid. Among the
optical models, the TPP model and the TPP-2 predictive
formulas5,40–46 provide a comprehensive description of the
inelastic electron mean free paths in many elements and
compounds over a wide energy range �50�E−EF

�2000 eV�. Mean free paths obtained with the TPP models
were found to be in a good agreement with the experimental
data.47

We will refer to the results of the TPP model and the
Gries model48 in the forthcoming analysis. A detailed com-
parison of these two approaches was made in Refs. 4 and 42.

D. A universal formula

As at low energies �EG�EF��E�EP�, the electron scat-
tering rate ��E� shows the scaling behavior of the form given
by Eq. �3�, the electron mean free path �ii�E� may then be
estimated as

�ii�E� = �E/�a�E − Eth�b� . �5�

Coefficients a and b are material-dependent constants, re-

lated to ã and b̃ and expressed in the same units as ã and b̃.
Since the group velocity and the scattering rate in solids

depend both on the wave vector and on the energy band, the
correct average of the mean free path is �ii�E�

�n,k	vn,k�E� /�n,k�E�
. For Eq. �5� we approximate the av-
erage by the ratio of averages:

�ii 
 ��
n,k

vn,k�E����
n,k

�n,k�E�� ,

which is a first-order approximation. For simplicity, we also
assume a quadratic dispersion relation of the average veloc-
ity and the energy: v�E�
�E. We note that the right-hand
side �RHS� of Eq. �5� decreases strongly as the energy in-
creases. At large energies, the RHS of Eq. �5� becomes equal
to zero.

At high energies �E	EP�, the mean free path �ii is well
described by the Bethe equation �4�. As the energy decreases,
the RHS of the Bethe equation decreases faster than E. The
RHS of Eq. �4� also has an unphysical pole at
E=E0 exp�−B /A�, which changes the sign of �ii at
E�E0 exp�−B /A�.

At intermediate energies, the behavior of �ii has been
investigated experimentally for several elements.2,11,32,49 The
data show a characteristic dip of the �ii curve, and a further
increase towards higher energies. At intermediate energies

there are no fully reliable theoretical predictions for �ii. The
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exchange and correlation terms in the atomic potential, and
the complex structure of the energy bands strongly influence
the dynamics of the scattered electrons.5,40 These effects are
not included in the optical models; therefore, these models
are beyond their validity at those energies. At present, the
first-principles calculations that account for these effects un-
derestimate the experimental data at intermediate energies
�see, e.g., the calculations for Be in Refs. 2 and 11�. The
authors of Ref. 2, however, expect that this discrepancy may
be removed or diminished after improving some parts of
their calculations.

Here we propose a simple formula for �ii that takes into
account the asymptotics of both at low and at high energies:

�ii�E� = �E/�a�E − Eth�b� + �E − E0 exp�− B/A��/

�A ln�E/E0� + B� . �6�

In Eq. �6�, E0=1 eV. Equation �6� corrects the high-energy
term, E / �A ln�E /E0�+B�, appearing in Eq. �4� by removing
the unphysical pole at E=E0 exp�−B /A�. This does not
change the asymptotic behavior of Eq. �6�, as the
E0 exp�−B /A� is usually of the order of a few tens of elec-
tron volts at most, so that Eq. �6� reduces to Eq. �4� at high
energies. At low energies the high-energy term is small, so
that the behavior of �ii is then governed by the low-energy
term, �E / �a�E−Eth�b�. At intermediate energies both high-
and low-energy terms contribute to �ii.

III. MEAN FREE PATH FITTED

We fitted Eq. �6� to available data for the impact ioniza-
tion mean free path for nine elements and two compounds.
We have chosen those materials for which either experimen-
tal data or phenomenological fits based on the experimental
data were available. These materials may be classified into
the following groups: �i� alkali metals, �ii� polyvalent metals,
�iii� elemental semiconductors, and �iv� composite semicon-
ductors.

The coefficients A and B appearing in the high-energy
term of Eq. �6� were fitted in the following way. As the
power-law term in Eq. �6� does not contribute at large ener-
gies, we fitted the coefficients A and B with the Bethe-like
term of these equations, using electron mean free paths cal-
culated from optical data with the TPP model at energies
E−EF�200 eV. Mean free paths for elements Li, Be, Na, K,
Si, Cu, Ag, and for composite semiconductors GaAs and
ZnS, were taken from the NIST database.48 For these ele-
ments, we compared those mean free paths to the recent
updates from Refs. 44 and 45, and found them in good agree-
ment. Mean free paths in diamond were calculated in Refs.
29 and 30 with the TPP model and found to be in satisfactory
agreement with the recent estimates from Ref. 44. Calcula-
tions of the mean free path in Al from optical data were
taken from Ref. 44.

Afterwards, we determined the coefficients a and b of
the low-energy term. We used either the coefficients found in
the literature that were obtained with the fits to the first-
principles calculations, or we ourselves fitted a and b to the
experimental data or to the results of the first-principles cal-

culations. We used the full form of Eq. �6� for the fits, where
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coefficients A and B were obtained as described in the pre-
vious paragraph. Fitting the experimental data, we used the
data points recorded at energies up to several electron volts
above the plasmon threshold EP. Figures 1–5 show the mean
free path for impact ionization obtained with Eq. �6� com-
pared to the predictions of the TPP model �E−EF�50 eV�
and the Gries model �E−EF�200 eV� and to the experimen-
tal data. The fitting coefficients and their relative standard
errors are listed in Tables I and II.

Mean free paths for three alkali metals �Li, Na, K� are
plotted in Fig. 1. Alkali metals are monovalent metals usu-
ally of the simplest Fermi surfaces.35 These surfaces are
known with great precision for all alkali metals �Na, K, Rb,
Cs�, except for Li. They are nearly spherical, and lie entirely
inside a single Brillouin zone. Therefore, the free-electron-
gas models are usually successful in describing the electron
transport in alkali metals.

The mean free paths obtained with our fit for alkali met-
als follow the free-electron results of b=2 for Na �Z=11�
and K �Z=19�. The values of b for these metals are b=1.8
for Na and b=2.2 for K. Large errors of a and b for K are
due to sparse data at low energies. For Li �Z=3� we obtain
b=3.7. This may indicate that the Fermi surface of lithium is
far from the spherical one.

Mean free paths for Na and Li are well fitted with Eq.
�6�. However, we observe that the results of the TPP model
used for fitting mean free path at high energies underestimate
the experimental data for Na at intermediate energies �50
�E−EF�100 eV�. This effect is even more pronounced in
K �Z=19� and in heavier alkali metals, Rb and Cs �not
shown here, see Ref. 49�. If this discrepancy can be removed,
the accuracy of our fit would improve.

Our next observation is that the mean free path measured

TABLE I. Fitting coefficients for Eq. �6� and their relative standard errors
�%� for metals: Li, Na, K, Be, Al, Cu, and Ag. The units for A and B are
�eV/Å�. Coefficients a and b in Eq. �6� are calculated to give mean free path
�ii in Angstroms with energy in �eV�.

A B ln a b

Li 4.49�0.07%� −5.9�0.4% � 6.7�9%� 3.70�6%�
Na 4.85�0.08%� −8.6�0.3% � 2.1�19%� 1.8�10%�
K 3.35�0.07%� −4.8�0.3% � 1�76%� 2.2�33%�
Be 10.88�0.07%� −25.1�0.2% � 11�15%� 5.0�12%�
Al 10.65�0.5%� −26.9�1.5% � 3.39�2%� 1.70�5%�
Cu 17.18�0.07%� −57.6�0.1% � 4.12�1.4%� 2.10�3.5%�
Ag 19.74�0.1%� −6.6�0.3% � 3.74�1.3%� 1.50�6%�

TABLE II. Fitting coefficients for Eq. �6� and their relative standard errors
�%� for semiconductors: Si, C �diamond�, GaAs, ZnS. The units for A and B
are �eV/Å�. Coefficients a and b and Eth were taken from the literature �see
Refs. 15–18�, and they were calculated to give mean free path �ii in Ang-
stroms with energy expressed in �eV�.

A B a b Eth �eV�

Si 9.26�0.03%� −23.20�0.09% � 10−5 4.6 1.1
C 14.0�2.5%� −38�8% � 4.78�10−6 4.5 5.47
GaAs 8.11�0.5%� −27.3�1% � 8.17�10−5 4.44 1.73
ZnS 9.74�0.04%� −28.91�0.09% � 9.89�10−6 5.07 3.8
Downloaded 21 Mar 2007 to 131.169.95.147. Redistribution subject to
experimentally for the alkali metals of higher atomic num-
bers �K, Rb, Cs� shows a characteristic anomalous dip at low
energies,49 which cannot be reproduced with our fit or with
the free-electron models. The occurrence of the dip was ex-
plained primarily through a possible plasmon excitation fol-
lowed by the scattering of the conduction electrons into the
d-band, which is empty in heavier alkali metals like K, Cs,
and Rb. This hypothesis was put in question by new experi-
mental results on the electron mean free paths in beryllium
�Z=4�,11 which is a divalent metal with no d-bands at all.
The electron mean free paths in beryllium also showed the
anomalous dip at low energies, which cannot then be ex-
plained by a plasmon decay into a d-band. The authors of
Ref. 11 suggested that the dip might result from some exci-
tations of surface plasmons or of the surface states. Those

FIG. 1. Electron mean free path in three alkali metals: �a� lithium, �b�
sodium, and �c� potassium, fitted with Eq. �6� �solid line� and compared to
the predictions of the TPP �dashed line� and the Gries �dash-dotted line�
models and to the experimental data �circles�. Thin dashed lines show sepa-
rate contributions of the low-energy and the high-energy asymptotics of Eq.
�6�.
predictions were based on the free-electron-gas model. A de-
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tailed first-principles analysis of the electron mean free paths
in Be was afterwards performed in Ref. 2. It included the full
band structure of Be. The results obtained were in agreement
with the experimental data recorded at energies E−EF

�30 eV, reproducing the anomalous dip with a good accu-
racy. This proved again that including the band structure is
essential for full understanding of the electron dynamics at
low energies. However, at higher energies those first-
principles predictions underestimated the experimental data
and the results with the free-electron-gas model. The authors
of Ref. 2 expected that this discrepancy may be removed or
diminished after improving some parts of the calculations.

Results of our fit for beryllium are plotted in Fig. 2. The
low-energy data11 are well fitted by Eq. �6�. Our fit agrees
better with those data than that with the Gries model. Again,
there is a distinct discrepancy between our fit and the experi-
mental data at the intermediate energies �E−EF

=30–70 eV�, when the �ii curve rises from the dip. In this
region our fit distinctly underestimates the data.

Mean free paths obtained for other polyvalent metals are
plotted in Fig. 3. Both experimental data and first-principles
calculations at low impact energies are available for these
metals.7,9,10,32 Coefficients a and b appearing in Eq. �6� were
estimated by fitting to the electron mean free paths obtained
with Eq. �5� from the electron lifetimes. Those lifetimes were
predicted with first-principles calculations or taken from ex-
periment at very low electron energies: �i� 0.6�E−EF

�3.2 eV �calculations� for Al,7 �ii� 1.1�E−EF�3.5 eV
�calculations� and 10�E−EF�13 eV �data� for Cu,7,32 and
�iii� 0.4�E−EF�1.3 eV �data� for Ag.10 The values of b
obtained from the fits ��1.5–2.1� were close to the free-
electron value of 2.

The fits to �ii in polyvalent metals follow the experimen-
tal data. The largest discrepancies were again observed at
intermediate energies, where data were sparse. More data
would be necessary in order to test and improve the accuracy
of our fit in this energy regime.

Figures 4 and 5 show the mean free paths in two elemen-
tal semiconductors, Si and C �diamond�, and in two compos-
ite semiconductors: GaAs and ZnS. At high energies the
mean free path was fitted, as previously, to the results of the

FIG. 2. Electron mean free path in beryllium fitted with Eq. �6� �solid line�
and compared to the predictions of the TPP �dashed line� and the Gries
�dash-dotted line� models and to the experimental data �circles� �see Ref.
11�. Thin dashed lines show separate contributions of the low-energy and the
high-energy asymptotics of Eq. �6�.
TPP model. At low energies we used coefficients a, b, and
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Eth from the existing fits to the scattering rates. Those fits
were performed for Si in Refs. 50 and 51, and for C in Refs.
16 and 17. We did the same for the composite semiconduc-
tors, using the fitting coefficients found in Refs. 18 and 20.
The scattering rates in Refs. 16–18, 20, 50, and 51 were
calculated with first-principles methods, and then fitted with
the power-law equation �3�.

The accuracies of the first-principles calculations of the
scattering rates obtained in Refs. 16–18, 20, 50, and 51 were
indirectly verified by comparing the predictions obtained
with the electron transport model employing these rates to
some experimental data. For Si the quantum yield predicted
by this model was in a good agreement with the experimen-
tal predictions.50 In Ref. 51, the analysis of the data obtained
with the soft-x-ray photoemission spectroscopy, the data on
the quantum yield and the ionization coefficients in Si was
coupled to the Monte-Carlo model of electron transport and

FIG. 3. Electron mean free path in polyvalent metals: �a� aluminum, �b�
copper, and �c� silver, fitted with Eq. �6� �solid line� and compared to the
predictions of the TPP �dashed line� and the Gries �dash-dotted line� models,
to the experimental data �circles� and to the results of first-principles calcu-
lations �filled triangles and open triangles�. Thin dashed lines show separate
contributions of the low-energy and the high-energy asymptotics of Eq. �6�.
resulted in an empirical expression for the impact-ionization
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rate in Si as a function of electron energy E, consistent with
the data. However, our predictions for Si �Fig. 4�a�� seem
inconsistent with recent estimates of the electron mean free
paths obtained from the elastic-peak intensity ratios in Figure
3 of Ref. 45, at energies 50�E−EF�100 eV. Future experi-
ments at lower energies should clarify this discrepancy.

As for Si, calculated scattering rates were applied to
Monte-Carlo simulations of electron transport in
diamond.16,17 Those simulations tested the dependence of the
drift velocity, obtained with that scattering rate, on the exter-
nal electric field. The results obtained were in good agree-
ment with the experimental data.

The scattering rates for GaAs and ZnS from Refs. 18 and
20 were also tested in the full-band Monte-Carlo simulations
of electron transport under high electric fields.

As we did not find in the literature any direct experimen-
tal measurements of the electron mean free paths or lifetimes
in C, GaAs, or ZnS, we cannot at present compare our pre-
dictions to data. The availability of new data recorded at
intermediate energies would be of special importance, as this
is the region where discrepancies usually appear for metals.
This especially applies to diamond, wherein the predictions
of different models are inconsistent even at high energies.
Figure 6 shows the predictions of the TPP model, the TPP-2
fit �Eq. �2� in Ref. 40�, the Gries model and the experimental
results on the electron mean free paths in diamond obtained
at energies �E�200 eV� from the NIST database.48 These

FIG. 4. Electron mean free path in two elemental semiconductors: �a� sili-
con, and �b� diamond, fitted with Eq. �6� �solid line� and compared to the
predictions of the TPP �dashed line� and the Gries �dash-dotted line� models
and to the results of first-principles calculations by Kamakura �see Ref. 44�
and Watanabe �see Ref. 17� �dotted line with crosses�. Thin dashed line
shows separate contribution of the high-energy asymptotics of Eq. �6�.
data were obtained from the experimental data on glassy car-
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bon by density scaling: �D=�C�D /�C, where �D was the den-
sity of diamond, 3.51 g/cm3, and �C is the density of glassy
carbon ��C=1.5 g/cm3�.

Figure 6 shows large differences among the � predicted,
which at E -EF=200 eV extend to �4 A and at E
=2000 eV extend to �17 A. Recently, similar discrepancies
have been observed by authors of Ref. 44. They found un-
expectedly large deviations between electron mean free paths
computed from optical data and those estimated with the
TPP-2M equation for diamond. Direct measurements of the
mean free paths in diamond would be essential in order to
reduce this uncertainty. Considering the low-energy part of
our fit, we note that it lies much below the predictions of the

FIG. 5. Electron mean free path in two composite semiconductors: �a� GaAs
and �b� ZnS, fitted with Eq. �6� �solid line� and compared to the predictions
of the TPP �dashed line� and the Gries �dash-dotted line� models and to the
results of first-principles calculations by Jung �see Ref. 34� and Reigrotzki
�see Ref. 18� �dotted line with crosses�. Thin dashed line shows the separate
contribution of the high-energy asymptotics of Eq. �6�.

FIG. 6. Electron mean free path in diamond at high energies �E�200 eV�,
obtained with the TPP model �solid line�, the Gries model �dash-dotted line�,
and the TPP-2 fit �dashed line�. The experimental data shown in the figure
�dotted line� were scaled from the data on glassy carbon ��C=1.5 g/cm3�

obtained by Lesiak �see Ref. 48�.
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TPP-2 model at energies E=10–100 eV. However, in Ref.
30, we used the TPP model extended down to E=9 eV, and
Watanabe’s results16,17 at energies 5.47�E�9 eV for mod-
eling the energy loss by a single impact electron. We then
obtained reasonable values for the total number of cascading
electrons liberated by the electron, and the average energy
needed to create an electron-hole pair: Eeh=12–12.5 eV.
Those predictions slightly underestimated the experimental
values of the average pair-creation energy which have been
found between 12.8 and 13.6 eV,52–54 with 13 eV being the
most recent result.54

In order to check how our fit works, we repeated the
simulation of electron cascades as in Ref. 30, using Eq. �6�
for fitting the electron mean free paths both at high and at
low electron energies. We obtained the mean value of pair
creation energy of 10.5 eV. This value agrees with the theo-
retical predictions on cascades initiated by electrons, which
suggests pair-creation values between 10.3 and 11.6 eV.55,56

However, the value obtained lies somewhat below experi-
mental results.52–54

The observations just presented indicate that the values
of mean free paths in diamond obtained with different mod-
els are inconsistent. They should be critically reviewed both
at high and at the intermediate energies. A new analysis of
the electron transport in diamond, employing the revised pre-
dictions and maybe our fit, should then be performed and
compared to the existing experimental data.

IV. DISCUSSION AND SUMMARY

We have proposed a simple equation for fitting the elec-
tron mean free paths in solids. This equation includes both
low- and high-energy asymptotics. Using this equation, we
fitted electron mean free paths for nine elements and two
compounds, including alkali metals, polyvalent metals, and
elemental and composite semiconductors. The mean free
paths calculated with the fits generally follow the experimen-
tal data or the first-principles calculations, with the exception
of the intermediate energy region. In that region our fits do
not reproduce the anomalous dips observed in the data, an
effect that reflects the complexity of the band structure. In
addition, in some solids our fit underestimates the rise of the
mean free path � towards higher energies which occurred
after the dip. This discrepancy cannot be corrected by a
simple replacement of the Bethe-like term in Eq. �6� with the
TPP-2 fit.5 However, the discrepancies observed were not
large—of the order of a few Angstroms at most—and we
expect that they will not much affect the average ionization
rates.

The fitting equation �6� contained four free parameters
for metals, and five free parameters for semiconductors. Two
�three� of these parameters, a, b �and Eth�, appeared in the
low-energy term of these equations, and two other param-
eters, A and B, were included in the Bethe-like term of the
equations. As in the TPP-2 fits,40,41 the coefficients A and B
may be parametrized as approximate functions of the solid
density �, the gap energy EG, and the plasmon energy EP. We
do not expect that such parametrization would be possible

for coefficients a, b, and Eth, which depend strongly on the
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details of the band structure of the solid. We expect that any
reasonable estimation of these coefficients would require
dedicated band calculations.

The fitting equation �Eq. �6�� is similar to the empirical

fit by Seah and Dench: �= c̃ / �E−EF�2+ d̃ · �E−EF�m for
metals.57 However, in our equation the proposed shapes of
the low- and the high-energy terms represent the known
asymptotics of electron mean free path, whereas the fit by
Seah and Dench is purely empirical.

Our mean free path formula may be used for construct-
ing a general Monte-Carlo model of electron transport, nec-
essary for describing the interaction of the energetic photons
with matter. The differential cross sections needed for esti-
mating the energy loss by impact electrons may be approxi-
mated by the Bethe differential cross section at high electron
energies and the loss probability based on the random-k
approximation13 at low energies. Monte-Carlo codes employ-
ing Eq. �6� and the approximate differential cross sections
would then be efficient computationally. Such models may
be applied to simulate ionization phenomena induced by
electrons released by the FEL photons in many different sys-
tems, ranging from the explosion of atomic clusters to the
formation of warm dense matter and plasmas. The model can
also be used to estimate ionization rates and the spatio-
temporal characteristics of secondary electron cascades in
biological substances. In general, we expect that such models
may be used in all applications in which it is important to
follow the ionizations by an impact electron down to its very
low impact energies. However, in some FEL applications, as
the number of electrons released within the sample by pho-
tons from the FEL will be large, the number of ions in the
sample will increase rapidly. Therefore, one will need to cor-
rect the mean free path formula including the effect of prior
ionization.

In summary, we propose an effective method of fitting
electron mean free paths for impact ionization in solids over
a wide energy range. Our fit is based on: �i� the results of
first-principles calculations or experimental data available at
low energies and �ii� on the results of the well-established
optical model at high energies. We have presented a detailed
review of the available data and first-principles calculations
on �ii in nine elements and two compounds. The derived
fitting curves were then compared to these data, in order to
test the accuracy of the fit. The largest discrepancies were
observed in the region of intermediate energies, where both
low- and high-energy terms contribute to the mean free path.
As the effects of complex band structure of the solids are
strongly manifested also in this energy regime, the free-
electron-gas models were found to be no longer valid at in-
termediate energies. The available first-principles calcula-
tions, however, underestimate the data in this region. We
expect that our fit, which joins both the high- and low-energy
approaches, will be of use until first-principles calculations
are successfully extended to the intermediate energies, and
parametrized there. They can then be directly linked to the
optical models at high energies.

The formulas and fitting coefficients developed in this
article show that the region of low energies is no longer

inaccessible for the analysis of electron mean free paths.
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Therefore, a comprehensive description of an electron mean
free path should also include a description of � at low ener-
gies. We believe that our fit gives a useful approximation for
�ii both at high and at low energies, and that it will inspire
searching for more accurate and universal methods of fitting
the mean free paths at the wide energy range.
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