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The X-ray absorption in the K-edge region is measured on Cd vapor in a sealed high-temperature c

absorption spectrum, free of structural signal, represents atomic absorption of the element, with fingerp

multielectron excitations visible after natural-width deconvolution. Absolute values of the atomic photoabs

coefficient are obtained from renormalization with Cd foil data far from the edge. Possible sources of systemat

in synchrotron radiation measurement of absolute absorption are discussed.

r 2005 Elsevier Ltd. All rights reserved.
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Experimental determination of the X-ray abs

coefficient is of interest in two separate, weak

lapping fields of research. Absolute values

elemental photoabsorption cross-section over

spectral regions are required to build the abs

coefficient of materials for the purpose of do

radiological physics, absorption corrections in

fluorescence, diffraction and crystallography in

plasma diagnostics and astrophysics. Low-re

and moderate-precision data are sufficient si

information is often used in the compressed

Victoreen-formula parameters and edge jumps

garding the fine detail of non-monotonic intra

and structural contributions in the vicinity of abs
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the X-ray absorption spectrometry where high

tion, high-precision data are required but the a

measurement is seldom of interest since the

ization to the adjacent edge jump is imp

theoretical considerations. From the quasip

oscillations of the absorption coefficient above

absorption edges (XAFS ¼ X-ray absorption fin

ture) the atomic vicinity of the target atom

recovered (Koningsberger and Prins, 1988). Sma

spectral features such as resonant peaks and abs

edges are fingerprints of multielectron photoexc

(MPE): they provide experimental material in th

of the inner dynamics of the atom (Kodre et al.

The routine X-ray absorption spectrome

dedicated synchrotron lines is specifically ada

the second field of interest. In spite of its high p

and reproducibility, the experimental setup

optimized for the broad-range absolute measu

of the absorption coefficient. A discussion of th

problematic points is given in our previous repor

hts reserved.
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X-ray atomic absorption in Rb (Prešeren and Kodre,
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1999).

In an earlier series of experiments the absorp

the region of K edge has been measured on som

vapors: potassium (Prešeren et al., 1999), ru

(Prešeren et al., 1996), cesium (Padežnik Gomilše

2003), mercury (Filipponi et al., 1993) and zinc (

et al., 2002). In these experiments, devoted to th

of MPE, the pure atomic absorption, free

structural XAFS signal, had been determine

energy range of the data typically extende

�300 eV below the edge to 1 keV above it.

range measurements of K-edge profiles of so

transition metal vapors are reported by Arp et al.

In the conversion of the data to absolute abs

coefficient, the major obstacle is the poor defin

the mass of the investigated element sealed in th

temperature absorption cell. In the cells with dy

vapor regime (potassium heat-pipe cell and zinc

cell) the amount of vaporized element in the bea

remains unknown. The soft and extremely

rubidium and cesium are awkward to handle wi

protective paraffin oil layer and they tend to stic

walls of the duct in filling the cell. The a

absorption of Rb (Prešeren and Kodre, 1999

only be determined by a renormalization of th

data with the absorption coefficient of a soluti

rubidium salt measured at a few energy points wi

range.

Cadmium, like its homologue zinc, is one of

volatile metals and hence a candidate to conti

above series of experiments. In contrast to the co

Zn vapor which could only be contained in a

corundum cell, Cd vapor was found to be consi

less aggressive and plain sealed cells of the s

vacuum materials could be used to contain the v

a stable density. Unlike the alkaline metals, ca

was stable enough so that the quantity to

optimum absorption could be weighed with m

accuracy and reliably introduced into the

addition, a parallel measurement on a well

metal foil could provide the energy calibration

monochromator and a check on the vapor abs

further out from the edge. However, the prec

the cell charge weighing was too low to produce s

the-art absorption data with 2% accuracy: th

was achieved only by renormalization of the

Cd absorption with a set of dedicated measurem

the foil.

The volatility of Cd has already been explo

absorption spectrometry (Codling et al., 1978) bu

extremely soft X-ray region (o250 eV). A heat-p

has been used, with an ingenious method of dete

the absolute absorption from the compariso

absorption in the inert gas in the cell. In view

estimated accuracy of 20%, excellent for the sof
in

tal

region is not warranted.
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Cadmium vapor was contained in a quartz c

1mm thick quartz windows. A charge of 18mg

was completely vaporized by 900 1C with the r

K-edge jump of 1.8. The surface density of Cd

was estimated at (3772) mg/cm2.

The experiment was performed at the BM 29 b

of ESRF (Grenoble), using a Si 311 double

monochromator with 2 eV resolution in the regio

Cd K edge (26.7 keV). By detuning the monochr

crystals to 40% of the rocking curve maximum

the beam-stabilization feedback control, the

negligible intensity of the 3rd harmonic (at �75

further reduced by at least a factor of 103.

The intensity of the X-ray beam is measured b

consecutive ionization chambers filled with Kr

mixture (7%, 24% and 24% of Kr, respective

stable 2 bar pressure. The absorption cell is

between the first pair of chambers, and a Cd

energy calibration between the last pair. The abs

md of an absorber is determined as the logarithm

ratio of ionization currents in the front an

detector.

The absorption spectra of three identical ru

routinely superposed to improve the signal to no

while their reproducibility (within 0.2%) serve

check on the stability of the detection syste

spectra taken on the cell during the slow heating

the Cd charge started to evaporate, were used

reference absorption, accounting for the attenua

the beam in the cell windows and for the diff

sensitivity of the ionization chambers. The net C

absorption was determined as a difference of abs

measured on the heated and the cold ce

simultaneous measurement of the absorption o

metal foil provided a precise calibration of the c

energy scale.

In the renormalization measurement of the abs

coefficient a 25mm foil (Goodfellow CD00

99.7% Cd) was used. The average surface de

the foil, (21.870.3) mg/cm2, was determined by

ing (Sartorius MC 210S) and measuring the surfa

on an enlarged computer scan of the specime

experiment was performed at the X1 beamline

DORIS ring at HASYLAB, DESY, Hamburg. A

double-crystal monochromator with a resolu

about 3 eV was equipped with a similar har

rejection system as at BM29. The ionization ch

were kept at ambient pressure: the first one w

with a gas mixture of 10% Kr and 90% Ar,

second one with pure krypton.



An interval of 2.7 keV was covered in wide steps except
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for the densely scanned edge profile to provide a c

the stability of the energy scale. In several repeate

the influence of various experimental paramet

checked: most notably, scans with two and three l

the foil were made to test for deviations fr

exponential extinction, whereby harmonic contam

and some other sources of systematic error c

detected. In another check of the harmonic con

tion, the working point of the beam-stabilizat

harmonic-rejection feedback loop, routinely kept

of the rocking curve height, was moved for 710

no apparent effect on the absorbance except for

shift of the energy scale, as expected.

The fluorescence of the sample, if not tak

account, represents a major source of systematic

absolute absorption spectrometry. In our exp

changes in ionization current as much as 5%

observed when the absorber foil was shifted clos

of the ionization chambers. In the normal positio

absorber at the midpoint between the detect

fluorescence error was kept below 0.2%.
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3.1. Energy calibration

The K-edge profiles of Cd vapor and metal

shown in Fig. 1. The absolute energy scale is est

by aligning the foil edge profile with the profile f

high-precision measurement by Kraft (Kraft et a

defining a value (26 713.2970.20) eV for the C

K-edge inflection point.

The edge profile of the vapor starts with a R

series of resonances, ending in the continuum th
Fig. 1. K-edge profiles of Cd vapor and metal foil. The fi

inflection point in the foil spectrum (E0 foil) is �7.0 eV be

the atomic ionization energy (EK vapor).
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Dirac–Fock calculation (Dyall et al., 1989). A

sponding model of the profile comprising the

lorentzian resonance and an apparent arc

edge, shifted downward from the proper con

threshold by the unresolved higher Rydberg res

(Teodorescu et al., 1993), gives the lorentzian

at 26715.1 eV and hence the continuum thres

(26 720.371) eV. This is in good agreement w

accepted best theoretical value (26 720.5870

which includes nuclear-size effects and high

corrections (Indelicato et al., 1998; Deslattes et al

The fit of the model also yields the lorentzia

(7.370.1) eV, in perfect agreement with ta

data (Krause and Oliver, 1979), convoluted w

0.7 eV of the gaussian width. This gives a rea

estimate of 1.7 eV FWHM experimental resoluti

gaussian bandwidth profile has been recently co

for a similar monochromator device (de Jonge

2004).

3.2. Atomic absorption background

Cd vapor absorption, free of the structural

signal, represents the pure atomic absorption m

for the purpose of atomic inner-shell stud

convention, the K shell contribution is extrac

normalized to a unit edge jump (Fig. 2): the ambi

the definition of the exact value of the jump, intr

by the rich near-edge structure, is resolved in f

concordance with the wide-step tabulated abs

data (cf. discussion in Padežnik Gomilšek et al.

For that purpose the Victoreen exponents are

mined on both sides of the edge beyond the re

XAFS and MPE, and the edge jump is ca

from these asymptotic trends extrapolated to t

energy.
rst

low Fig. 2. Normalized K-shell photoabsorption of Cd vapor and

Cd foil.



The normalized atomic absorption can also serve as
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the atomic absorption background in the E

analysis of cadmium compounds. The perfect

with the absorption spectrum of the cadmium m

measured in parallel with the vapor shows the e

stability of the experiment. It is worth noting (ins

the atomic background runs exactly along the m

the EXAFS oscillations: with a properly m

atomic background there is no need for an a

spline background currently used in EXAFS

packages (Stern et al., 1995). Moreover, the m

atomic background incorporates all the collectiv

atomic effects, both the smooth extended fingerp

the virtual excitations and the sharp features

multielectron excitations (Kodre et al., 1997).

Apart from the steep rise �20 eV above the

none of the sharp multielectron features are

observable in the measured spectrum. The a

absence of the MPE is due to the large lifetime w

the K shell hole (7.3 eV), which smooths out th

features. The MPE can be recovered by the dec

tion of the natural width introduced recen

Filipponi (2000) (Fig. 3). A number of sharp

are revealed above the edge: they can be resolv

three basic profiles, according to the type of ex

process (Kodre et al., 2002). A small resonanc

small absorption edge are the fingerprints of

excitation and excitation–ionization, respectivel

ble ionization is recognized by a small change of

the cross-section. On this basis, the features

attributed to the formation of individual excited

A stronger criterion in the identification, howeve

agreement with the Dirac–Fock estimate of the

tion energy. These estimates are shown in Fig. 3

of markers, delineating the multiplet interval

excitation. The observed features within 100 eV
Fig. 3. Deconvoluted spectrum of Cd vapor above the K ed

DF estimates of MPE energy ranges are indicated. Compari

of the original and deconvoluted K-edge profile is shown in

inset.
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to

the two subvalence subshells. A triple excita

invoked to explain the wide rise at 26 790 eV

processes involving d-subshells have been o

before (Kodre et al., 2002; Padežnik Gomilšek

2003).

The deconvolution (inset of Fig. 3) reve

extremely strong atomic Cd pre-edge resonance

not observed in any other chemical species of

similar feature is observed in the homologue Zn (

et al., 2002).

3.3. Absolute absorption

The simultaneously measured absorption spe

Cd vapor and Cd metal foil are converted to th

absorption values with the help of respective

density values. The contribution of other absor

the beam path between the two detectors is rem

subtracting the reference absorption measurem

the vapor spectrum, two minor effects are tak

account by numerical correction:

(a) The absorption in the quartz windows
a

ble
precisely cancelled out by subtraction

reference absorption—the absorption on

cell is slightly lower due to thermal expansio

quartz.

(b) The absorption in the air column of the oven

is smaller in the hot-cell spectrum due to
es.

expansion.
of data
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ve

outside of the EXAFS region to within 10

discrepancy evidently arising from the uncerta

the cell volume and Cd mass in the vapor experim

view of the superior accuracy of the foil data

fact that beyond the EXAFS region the two sets

should coincide, the vapor absorption coeffici

renormalized by the metal data at both ends

energy interval.

Particular care was exercised to ensure the re

of the renormalization foil data. Although the va

the exponential decrease of the transmitted

intensity with the absorber thickness is seldom

tioned in synchrotron absorption experiments, a

check of the relation may reveal some sou

systematic error, such as the admixture of the ha

in the incident beam or an inhomogeneity

absorber, including a possibility of partial obs

of the beam on the path between the two ion

chambers. Such a check is hardly possible in th

experiment, but very simple in the measurement

Scans with identical step progression within

panded energy interval were taken with one, t

ge;

son

the
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Table 1

Absolute values of mass absorption coefficient of atomic Cd

E (eV) m/r (cm2/g)

25 782 9.5(2)

26 084 9.2(2)

26 384 8.9(2)

26 585 8.8(2)

26 820 54.7(9)

27 134 51.7(9)

27 480 49.6(9)

27 943 47.1(9)

28 529 44.3(8)

The probable error in units of the last decimal place is given in

parentheses.

A. Kodre et al. / Radiation Physics and Chemistry 75 (2006) 188–194192
empty absorption slot. The best-fit linear relatio

absorbance md vs. number of foils (0, 1, 2 and

determined for each energy point in the scan. I

defines the local absorption coefficient, and the

constant of the linear relation can be checked aga

absorption value of the empty slot.

The analysis gives no systematic quadratic d

from the linear relation expected from the contam

of the beam by higher harmonics. Indeed, in view

high energy of the beam fundamental, the lowest

harmonics of the third order at �75 keV is far bey

critical point of the bending magnet. The reflectio

second-order harmonics, at �50keV already ver

the primary spectrum, is forbidden in ideal S

crystals. We estimate the combined harmonic con

tion to o10�4, in agreement with the upper bond

quadratic term in the absorbance fits.

There is a systematic cubic deviation from th

relation, similar at all energy points, with am

below 1%. It is attributed to a slight inhomoge

the foil thickness, exposed in folding of the f

definition of the absorption coefficient by the slop
timated

ly from

Fig. 4. Measured values of metallic and (renormalized) ato

absorption coefficient of Cd in comparison with published da

(a) below edge and (b) above edge.
de

of

he

the

weighted average value, in view of the fact t

surface density of the foil is determined for the en

The resulting mass-absorption coefficient of ato

is shown in Fig. 4: the dense data are renormalize

values, and the separate points at both ends

continuing foil data. For the purpose of tab

selected values are given in Table 1. The overall es

error of the values is close to 2%: it stems main

the 1.5% uncertainty in the weighing of the foil.
4. Discussion

results
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As evident from Fig. 4, the comparison of our

with earlier experimental data (Hubbell, 2003) i

possible, since there is hardly any overlap. The

Tajuddin et al. (1995), Prema Chand et al. (19

Nageswara Rao et al. (1984) are measured at

energies of characteristic atomic and nuclear e

lines within a considerably wider interval. The c

ison is thus limited to the tabulated theoretica

(Berger et al., 1999; Chantler et al., 2003; Hubb

Seltzer, 2001; Henke et al., 1993; McMaster et al

Below the edge, the agreement with Chant

McMaster tables is very good, while values by

and Hubbell lie at the high end of the error i

Above the edge, the experimental values s

systematic disagreement with tabulated data. Dis

ing the small sharp features of MPE, the

absorption exhibits a pronounced overshoot at th

slowly approaching the tabulated absorption. Th

shoot is explained by the core relaxation (Tulk

Aberg, 1985) and post-collision interaction of t

photoelectron (Amusia et al., 1981): howeve

contributions to the photoelectric cross-section h

been quantitatively evaluated by the theory in t

mic

ta:
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order to bring them into a better agreemen

experiment. From our studies of noble-gas/a

metal pairs (Kodre et al., 2002), an exponentia

describes the deviation sufficiently well with

present accuracy of the data. In the Cd case, th

lifetime width obscures the exponential profile

deviation, since the slow saturation of the arctan

of the edge largely compensates the additional ex

tial decrease. The interplay of the two opposing

can be seen in the broad hump in the 200 eV

above the edge of the atomic absorption back

(Fig. 2 and its inset).

Asymptotically, the measured absorption co

decreases towards the values given by the Hen

McMaster compilations to within one error inter

other tabulated data are at most another error

lower.
5. Conclusion
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The absorption coefficient of cadmium is dete

in the region of the Cd K edge on two forms of t

element, the vapor and the metal. In the

absorption spectrum, free of the structural sig

fingerprints of collective excitations of the ato

and virtual, can be observed. With a possible ex

of coexcitations of the valence electrons, ap

within a few tens of eV above the edge in the X

region of the structural signal and depending

chemical state, the same pattern of the fingerp

present in all chemical or physical forms of the e

so that the vapor spectrum can be regarded

prototypical absorption of the element.

The comparison of metal and vapor absorptio

instrumental in the calibration of the energy scal

data. The metal absorption edge energy is defin

high precision from the X-ray optics metrolo

continuum threshold energy of the free atom,

other side, can be calculated from quantum-mec

models. In the comparison experiment, the a

accuracy of these estimates can be determined.
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Kraft, S., Stümpel, J., Becker, P., Kuetgens, U., 19

resolution X-ray absorption spectroscopy with

energy calibration for the determination of absorp

energies. Rev. Sci. Instrum. 67 (3), 681–687.

Krause, M.O., Oliver, J.H., 1979. Natural widths o

K-levels and L-levels, K-alpha X-ray-lines and seve

Auger lines. J. Phys. Chem. Ref. Data 8 (2), 329–3

McMaster, W.H., Del Grande, N.K., Mallett, J.H.,

J.H., 1970. Compilation of X-ray Cross Sections, L

Livermore National Laboratory Report UCRL-50

I, online available at: http://www.csrri.iit.edu/

table.html (January, 2004).
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