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1 Introduction

The emerging free-electron-lasers (FELs) promise tremendous progress in studying the struc-

ture of matter with soft and hard X-rays. The transversely fully coherent radiation from the

FEL will be delivered in flashes of ultrashort duration, emitted at peak brilliances more

than108 higher than those available from the present sources of synchrotron radiation [1, 2].

These unique properties of FELs enable probing dynamic states of matter, transitions and re-

actions happening within tens of femtoseconds, with wide-ranging implications to the solid

state physics, material sciences, and to the femtochemistry. The FEL beam, if focussed onto

a very small spot, is also an excellent tool to generate and probe extreme states of matter. The

X-ray FEL (XFEL) is expected to open new horizons in structural studies of biological sys-

tems, especially in the studies of non-repetitive samples,like viruses, living cells etc. Rapid

progress of radiation damage in these samples prevents an accurate determination of their

structure in standard diffraction experiments. However, the recent studies of the progress of

the damage formation [3–5] indicate that the radiation tolerance might be extended at ultra-

fast imaging with high radiation dose as that expected with the presently developed X-ray

FELs (LCLS, DESY).

For this and other applications of FELs, we have to understand in detail how the intense

radiation of short wavelengths, emitted in short pulses, interacts with matter. In particular,

accurate time characteristics of radiation damage is necessary in order to estimate the range

of pulse length at which imaging with XFEL would be possible.

The radiation damage of samples irradiated by soft X-rays differs considerably from that

induced by high power IR-Lasers. In the latter case plasma heating by inverse bremsstrahlung

is the dominant damage process [6–8]. For FELs, at differentenergies of the FEL photons

different processes are contributing to the radiation damage. At VUV photon energies the

inverse bremsstrahlung process is believed to deliver mostof the energy needed for the effi-

cient ionization of an irradiated system [9]. This ionization eventually leads to the Coulomb

explosion of the sample. Photons of shorter wavelengths mayexcite electrons from inner

shells of atoms, creating core holes [10]. Photoemissions,core-hole creations and subse-

quent Auger emissions of secondary electrons contribute tothe radiation damage that then

affects not only the sample but also the optical elements of the FEL beamline.

Radiation damage by photons from the VUV FEL is now under intense investigation.

First experimental studies on the interaction of the VUV photon beams with atoms, molecules

and clusters have been already performed at DESY [11]. The large number of VUV photons

absorbed per atom that was observed in these experiments could not be explained using the

well-established standard calculations for photon absorption [9, 11]. This indicated that the
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ionization of samples irradiated by energetic photons progresses in a different way than that

observed in the optical energy range. These surprising results stimulated intense theoreti-

cal effort. Several interesting models have been proposed [9, 12–14] which could explain

various aspects of the increased photoabsorption and ionization dynamics observed in the

experiments (for review see [15]). On the other hand, there are still some controversies, e.

g. regarding the role of the inverse bremsstrahlung mechanism and the inner ionization pro-

cesses. A model: (i) computationally efficient also for large spatially non-uniform samples

and (ii) able to test the influence of specific interactions onthe complex dynamics of elec-

trons and ions, could be useful in evaluating the contributions of different mechanisms to the

overall ionization dynamics.

Here we propose such efficient method of describing the evolution of irradiated sam-

ples which applies also to large systems. This first-principles Boltzmann method is based

on the statistical description of the charge dynamics in terms of statistical quantities: elec-

tron and ion densities in phase space,ρ(e,i)(r,v, t). These densities are functions of the

spatial and velocity coordinates,r andv, and are measured at some time,t. The quantity,

ρ(e,i)(r,v, t)d3r d3v, estimates a number of particles (electrons or ions) in an infinitesimal

volume element of phase space,dV = d3r d3v, which is located at the spatial point,r, and at

the velocity,v. Charge densities are evolved from their initial configuration at t = 0, using

semiclassical Boltzmann equations.

The Boltzmann method is a promising alternative to the first-principles Monte Carlo

(MC) or Molecular Dynamics (MD) methods which are commonly used [3, 4, 16]. The

Monte Carlo method may be viewed as an approximate stochastic method of solving trans-

port equations. During the simulation the MC code has to solve the separate equations of

motion for each particle in the sample, following the trajectories of all particles and their

interactions with other particles or external fields. If anyscatterings occur, the scattering

probabilities are estimated with quantum mechanical crosssections. Coordinates and veloc-

ities of particles are updated at each time-step. Simulations of single events are repeated

many times. Estimates of physical observables are obtainedby averaging their values ob-

tained from single events over the total number of events. Therefore these estimates are

biased with statistical errors.

Monte Carlo algorithms have a transparent structure and usually do not require an ap-

plication of any complex numerical methods. This is a great advantage of this method.

However, these algorithms become computationally inefficient when the number of parti-

cles,N , is large. The code efficiency is even worse, if the long-range interactions between

particles (e.g. Coulomb electrostatic forces) have to be included into the simulation. High

computational costs which scale with the number of particles restrict the applicability of the
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Monte Carlo method to the samples of small or moderate sizes.

In contrast, the efficiency of the simulation algorithm withthe Boltzmann equations does

not change directly with the number of particles in the sample, as the algorithm operates

on smooth density functions. Therefore the efficiency and accuracy of these algorithms

depend only on the phase-space shape of the sample which is reflected in the number of grid

points used in the simulation. Therefore this statistical approach can also work fine for large

samples, where the MD/MC methods are inefficient.

The full spatio-temporal characteristics of the electron and ion dynamics can be easily

obtained with the transport method. As charge densities aredirectly evolved with Boltzmann

equations, the averaged observables,O, of interest can then be calculated with their convolu-

tion with the charge densities obtained,〈O(t)〉 =
∫

O(r,v) ρ(r,v, t)d3r d3v. These results

are not biased with statistical errors.

The applicability of Boltzmann equations is, however, limited to the systems which fulfill

the assumptions of molecular chaos and two-body collisions. These assumptions are usually

justified by a presence of short range forces [17, 18]. The single particle density function ob-

tained with these equations does not contain any information on three-body and higher corre-

lations. If the higher order correlations are important, a more fundamental Liouville equation

for the N-particle density function should be applied. The Liouville equation reduces to the

collisionless Vlasov equation [17] in case of an uncorrelated system. Fokker-Planck equation

[17] can be derived as a limiting form of the Liouville equation for long-range (Coulomb)

forces. It was proven in Ref. [17] that a correct descriptionof many body long-range interac-

tions of plasma electrons and ions obtained with the dedicated Fokker-Planck equations can

be also obtained with the two-body Boltzmann collision term, assuming the Debye cutoff in

the Rutherford scattering cross section. This simplification does not apply to the electron-

electron interactions, where the interacting charged particles have identical masses, and the

momentum transfer during their collisions cannot be neglected.

Another disadvantage of the Boltzmann approach is its numerical complexity. Boltz-

mann equations are complicated sets of nonlinear integro-differential equations where par-

tial derivatives appear in both spatial and velocity coordinates,∂/∂r, and∂/∂v. Advanced

numerical methods have then to be applied.

In what follows we will show the potential of Boltzmann method for studies of the ra-

diation damage in samples irradiated by FEL photons. At the present state we do not aim

to obtain any quantitative predictions which could later becompared to the existing exper-

imental data. Actually, we are interested in proposing a newtheoretical approach for a

comprehensive description of the progress of radiation damage in irradiated samples, almost
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independently of the sample size. A construction of a realistic model including all relevant

physical processes is planned at later stages.

First we will write general Boltzmann equations for samplesirradiated with VUV pho-

tons. These equations will include basic physical processes contributing at those photon

energies. We will then solve these equations in a simplified (study) case of a spherically

symmetric xenon cluster. Due to the symmetries of the samplewhich eliminate the de-

pendence of charge densities on one of the azimuthal angles,the number of independent

coordinates in these equations can be reduced by one, from six to five. Further simplification

of Boltzmann equations is achieved by applying the first-order angular moments expansion

to the charge densities. These simplified equations, containing three different components of

charge density: the isotropic, transport and the drift one,can then be treated numerically in

an efficient way.

We will solve these simplified Boltzmann equations, and showhow efficiently they can

follow the dynamics of electrons. We will consider two studycases: (i) the case of the

pure Coulomb dynamics, where we restrict the interaction ofthe laser field with the sample

only to the photoionization effect, (ii) the case where a complete interaction of sample with

the laser field is implemented, i.e. the drift component of electron density describing the

interaction of electron density with laser field is treated,and the contribution of the inverse

bremsstrahlung process which heats up electrons during elastic electron-ion collisions is

included. The results obtained are discussed in detail. Afterwards, a short summary is given.

Finally, we list our conclusions.

2 Boltzmann equation

Statistical description of a classical system can be made interms of its density function,

ρ(r,v, t) [18–20], whereρ(r,v, t) is defined such thatρ(r,v, t)d3rd3v is the number of

particles at time t positioned betweenr and r + dr which have velocities in the range

(v,v + dv).

Evolution of this density function can then be described by Boltzmann equation,

∂tρ + v∂rρ + F∂vρ/m = Ω(ρ, r,v, t), (1)

whereF is a force (external of internal) acting within the system, andΩ(ρ, r,v, t) is a colli-

sion (source) operator, describing the change of charge density due to the interparticle colli-

sions or other short range processes ocurring within the system.

The most important feature of Boltzmann equation is the ability to describe non-equilibrium
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processes. Boltzmann equations are used for describing transport phenomena in many dif-

ferent physical contexts, ranging from the simulations of the hot electron transport in semi-

conductors, simulations of plasma kinetics [17, 21–24] to the evolution of protoneutron stars

[25] and to the modelling of the core collapse in supernovas [26].

We will now formulate the specific Boltzmann equations describing the transport of elec-
trons, atoms and ions inside a sample irradiated with FEL photons. In this case it is enough
to consider two gases: the gas of light electrons of masses,m and charges,−e, and the gas
of heavy atoms/ions of masses,M , and charges,ie. Photons need not to be considered as an
independent gas component, as they only enter the equationsas a flux term in the photoion-
ization source term. The gases of electrons and atoms/ions are represented by the density
functions: ρ(e)(r,v, t), ρ(i)(r,v, t), wherei denotes the ion chargei = 0, 1, . . . , NJ , and
NJ is an arbitrary number, describing the maximal ion charge inthe system. The general
coupled Boltzmann equations for these gases are:

∂tρ
(e)(r,v, t)+v ·∂rρ

(e)(r,v, t)+
e

m
(E(r, t) + v × B(r, t)) ·∂vρ(e)(r,v, t) = Ω(e)(ρ(e), ρ(i), r,v, t), (2)

for electrons, and

∂tρ
(i)(r,v, t)+v ·∂rρ

(i)(r,v, t)−
ie

M
(E(r, t) + v × B(r, t)) ·∂vρ(i)(r,v, t) = Ω(i)(ρ(e), ρ(i), r,v, t), (3)

for atoms/ions, where the forceF is the electromagnetic force,F(r,v, t) = q(E(r, t) +v×

B(r, t)), acting on electrons and ions positioned betweenr andr + dr, which have velocities

in the range(v,v + dv). The electric field,E, and magnetic field,B, have two components.

The first component describes the interaction of charges with external radiation. The second

component describes internal electromagnetic interaction between electrons and ions. This

component is a non-local function of electron and ion densities.

Collision terms,Ω(e,i), describe the change of the electron/ion densities of velocities

(v,v + dv) measured at the positions(r, r + dr) with time. This change may be due to:

(i) the creation of the secondary electrons and highly charged ions via photo- and collisional

ionizations of atoms and ions, (ii) elastic and inelastic collisions of electrons and ions, (iii)

the inverse bremsstrahlung process, i. e. absorptions and emissions of photons by electrons

during the elastic electron-ion collisions, (iv) recombination processes etc. Number of short-

range processes involved in the sample dynamics depends on the wavelength of the laser

radiation. If collision terms are neglected, Boltzmann equations, Eqs. (2), (3), reduce to the

Vlasov equation [17, 21] describing the evolution of a collisionless plasma.

Initial configuration of Eqs. (2), (3) is given by a smooth atomic density function,

ρ(0)(r,v, 0), which represents the sample att = 0.
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3 Boltzmann equation for an irradiated atomic cluster

First experimental studies on the interaction of intense VUV photon beams with matter were

performed for clusters of xenon atoms irradiated with VUV photons [11, 27]. New experi-

ments with clusters exposed to FEL radiation at higher photon energies are planned in the

next future. The existing and the future experimental data give a unique opportunity for

testing theoretical models.

Below we formulate the assumptions of the primary transportmodel dedicated for study-

ing the dissipative dynamics and the radiation damage in xenon clusters at the VUV photon

energies. We will fix the physical parameters as they were setin the first experiment with the

VUV photons [11].

The production terms,Ω(e,i), in our model will then include only basic predominant in-

teractions, i.e.:

(i) Single photoionizations of atoms. A single VUV photon of energy,Eγ = 12.7

eV, may excite electrons only from the5p3/2 shell of xenon atoms of the binding energy,

Ei = 12.1 eV. Here the photon energy was set as in the VUV FEL experiment[11]. We

neglect possible multistep photo- and multiphoton ionizations within this primary model. We

also neglect the effect of plasma screening on the atomic energy levels and photoionization

cross sections.

(ii) Elastic and inelastic collisions of electrons and atoms/ions. We assume that an

inelastic collision always releases a secondary electron.We neglect inelastic collisions of

electrons and atoms/ions which lead only to an excitation ofan atom/ion. These processes

contribute to the multistep collisional ionization which is not included within this primary

model. We also neglect the effect of plasma screening on the collisional cross sections.

(iii) Inverse bremsstrahlung photoabsorption in the presence ofatoms or ions. In

our model, as the primary kinetic energy of a photoelectron released by a VUV photon is

small, E ∼ 0.6 eV, comparing to the first ionization energy,Ei = 12.1 eV, a process of

energy pumping is necessary in order to initiate any collisional ionizations by electrons. In-

verse bremsstrahlung process is among the possible processes [9]. At the low photoelectron

energies, that we consider here, the proper description of inverse bremsstrahlung should be

quantum and not classical [28, 29]. Quantum cross sections for absorption or emission of

radiation photons by electrons during their collisions with ions were taken from Ref. [30].

In this approximation ions were treated as point-like charges [30].

(iv) Electromagnetic interaction of electrons with laser field. Here this interaction is

treated within the dipole approximation. This approach is justified by the small spatial size
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of the irradiated spherical cluster of a radius∼ 25 Å, when compared to the wavelength

of laser radiation (∼ 100 nm). We expect that the attenuation of the laser beam is small.

Rough calculation of the attenuation via photoabsorption at the beginning of the pulse gives

the transmission of about94%. After all atoms have been photoionized, photons from the

pulse can be still absorbed via inverse bremsstrahlung. Estimated total energy absorbed by

this xenon cluster is about300 thousand of eVs at most.

(v) Electromagnetic interactions of electrons and ions withinthe sample. They are

expressed in the form of the non-local potentials. We assumefor simplicity that both elec-

trons and ions are point-like charged particles, and neglect the effects of the atom/ion internal

structure and of its finite size on the interaction potentialwithin this primary model.

Finally, we note that within this primary model we also neglect the recoil energies and

the recoil momenta of the atoms/ions gained during their interactions with photons or elec-

trons. Electrons are assumed to scatter isotropically on atoms/ions. This is the first order

approximation which can be made: (i) in case of photoionizations due to the low energy of

the incoming photons, and (ii) in case of collisional interactions due to the large difference of

electron and ion masses and to the low impact energies of electrons. Within this approxima-

tion the movement of ions will be stimulated by the Coulomb repulsion only, and will start

at the final stages of the explosion. Additional pressure on ions due to the recoil momenta is

neglected.

Recoil effects, and also short-range electron-electron interaction can be conveniently

treated by the means of the Fokker-Planck equation. As otherrelevant processes which

were neglected within this primary model, e.g. three-body recombination, charge enhanced

ionization [12] or effects of electron screening [9], theseprocesses will be treated in forth-

coming papers.

3.1 General Boltzmann equations for electrons and ions in anirradi-

ated cluster

Before writing the equations, we will introduce the following notation. The integrated den-

sities,ρ(e,i)(r, t) are defined as,

ρ(e,i)(r, t) =
∫

d3v ρ(e,i)(r,v, t). (4)

Velocity vE =
√

2(Eγ − Ei)/m is the magnitude of the velocity of the photoelectrons. Co-

efficients,σi→i+1
γ , denote the total photoionization cross sections for a single ionization of

an ion of charge,i = 0, 1, . . . , NJ . Ionizations up toNJ = 7 are allowed within our model.
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Coefficients,σi→i+1
ic , denote the total collisional cross sections for a single ionization of ions

of charge,i = 0, 1, . . . , NJ by an electron. Coefficients,σi→i
ec , denote the elastic collisional

cross sections. Elastic collisional cross sections and ionization collisional cross sections were

measured experimentally for xenon [31–35]. Within this primary model the cross section

for the elastic electron-ion scattering was approximated by the cross section for the elastic

electron-atom scattering. The scattering of electrons on ions was assumed to be isotropic.

A compact notation for doubly differential cross sections is used,
dσi→j (ve;v

′

e
(vs))

dv
. Ve-

locity ve denotes the velocity of the incoming electron,v
′
e is the velocity of this electron

after a collision,vs is the velocity of the secondary electron.

Coefficientj(Eγ) describes the photon flux, andΩ is a spherical angle.

Starting from Eqs. (2), (3), we derive the following equations for electron and ion densi-
ties within an irradiated sample:

∂ρ(e)(r,v, t)

∂t
+ v

∂ρ(e)(r,v, t)

∂r
−

−
∂ρ(e)(r,v, t)

∂v
·

(

e2

4πǫ0m

∫

d3r′
r − r

′

| r − r′ |3

{

NJ
∑

i=0

i · ρ(i)(r′, t) − ρ(e)(r′, t)

}

+
e

m
E(t) ǫ

)

=

=

NJ
∑

i=0

ρ(i)(r, t) j(Eγ)
dσi→i+1

γ (Eγ ;v)

dΩv

δ(v − vE)

v2
+

+

NJ
∑

i=0

ρ(i)(r, t)

{∫

d3ve ve ρ(e)(r,ve, t)
dσi→i

ec (ve;v)

dΩev

δ(v − ve)

v2
− vρ(e)(r,v, t)σi→i

ec (v)

}

+

+

NJ
∑

i=0

ρ(i)(r, t)

{∫

d3ve ve ρ(e)(r,ve, t)

(

dσi→i+1
ic (ve;v

′

e
= v)

dv
+

dσi→i+1
ic (ve;vs = v)

dv

)

−

−vρ(e)(r,v, t)σi→i+1
ic (v)

}

+

NJ
∑

i=1

ρ(i)(r, t)

{

∞
∑

n=−∞

∫

d3ve d3v′e ρ(e)(r,ve, t) [δ(v′

e
− v) − δ(v − ve)]

× δ(
v′2e
2

−
v2

e

2
−

nh̄ω

m
)J2

n

(

−
e E0

h̄ω2
ǫ(v′

e
− ve)

)

dσi→i
ec (v′

e
− ve)

dΩel

}

(5)

for electrons and:

∂ρ(i)(r,v, t)

∂t
+ v

∂ρ(i)(r,v, t)

∂r
+

+
∂ρ(i)(r,v, t)

∂v
·





e2

4πǫ0M

∫

d3r′
r− r

′

| r − r′ |3







NJ
∑

j=0

(ij) · ρ(j)(r′, t) − iρ(e)(r′, t)







+
ie

M
E(t) ǫ



 =

= j(Eγ)σi−1→i
γ (Eγ)ρ(i−1)(r,v, t) − j(Eγ)σi→i+1

γ (Eγ)ρ(i)(r,v, t) +

+

{∫

d3ve σi−1→i
ic (ve) ve ρ(e)(r,ve, t)

}

ρ(i−1)(r,v, t) −
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−

{∫

d3ve σi→i+1
ic (ve) ve ρ(e)(r,ve, t)

}

ρ(i)(r,v, t) (6)

for ions, where we treated the interaction of charges with the external electric field ( also

inverse bremsstrahlung for electrons) within the dipole approximation,

E(r, t) ∼= E(t)ǫ, (7)

and neglected the subleading contribution coming from the interaction of charges with mag-

netic field. Vector,ǫ, is the polarization vector of the electric field.

Writing these equations we took into account only binary collisions between participating

particles. The assumption of binary collisions is not validfor very dense systems and for

systems with the presence of long-range forces, where many body effects become important

[14]. Within this primary model we neglected short-range three and higher order many body

interactions ocurring due to the high density of particles in the sample. Many body effects

due to the presence of Coulomb forces were treated correctlywithin the approximation that

recoil energies and recoil momenta of atoms and ions could beneglected.

Equations (5), (6) then describe the evolution of a cluster irradiated with VUV FEL

photons within our primary model. The structure of these equations is general, and other

interactions or improvements can conveniently be implemented into these equations. These

completed equations would then describe a more advanced model of the sample dynamics.

Eqs. (5), (6) can be also adapted for describing the dynamicsof an irradiated sample at other

photon energies.

3.2 Solving the Boltzmann equations

Equations (5), (6) are complicated integro-differential equations in six-dimensional phase

space. They can be treated only numerically. For a spherically symmetric cluster the number

of dimensions can be reduced by one, from six to five. A significant simplification of the

Boltzmann equations (5), (6) can be achieved by expanding the electron and ion densities in

terms of their angular moments. This method was successfully applied for the description of

the evolution of the protoneutron stars [25] and plasmas [17, 21]. An assumption has then

to be made that the isotropic components of the electron and ion densities are predominant.

Here we mean isotropy in phase space, and not only in space, i.e. at each spatial point

of an isotropic spatial distribution the velocity distribution has also to be isotropic. Such

approximate isotropy occurs in systems where there is a strong collisional dissipation of

particle energies, and the phase space component of the collective transport is small. This is

certainly the case for low energy electrons inside an ionic/atomic cluster or gas, as they then

frequently collide (with short range forces) with ions and atoms inside this sample.
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The validity of the angular moments method may be also verified a posteriori, i.e. after

solving the Boltzmann equations one may compare the magnitude of the isotropic component

of the charge densities to the angular ones. If the isotropiccomponents of the electron and

ion densities obtained with these equations were much larger that the other components of

the electron densities, the angular moments approximationworked correctly, and the solution

of the equation obtained within this approximation is a goodestimate of the full solution.

4 Test of Boltzmann method: simplified electron dynamics

inside an atomic cluster

In order to test the applicability and efficiency of the Boltzmann method for describing the

dynamics of electrons within FEL irradiated samples, we have applied it to two study cases of

a simplified electron dynamics: (i) the case of pure Coulomb dynamics, where the interaction

of sample with the laser field was restricted to photoionization effect, (ii) the case where the

complete interaction of the sample with laser field was included, i.e. the drift component of

the electron density describing the interaction of free electrons with the electric field of the

laser was treated, and the inverse bremsstrahlung process was included.

Our initial configuration was given by a smooth atomic density function, representing a

spherically symmetric cluster consisting of909 neutral xenon atoms. Edges of this sample

were smoothed to facilitate computation. The density in thecenter was comparable to that

of the xenon cluster,∼ 0.005 1/Å3. The radius of this cluster was∼ 25 Å. This sample

was irradiated with the VUV FEL photons of energies,Eγ = 12.7 eV. For simplicity we

have assumed that the photon pulse had a constant intensity,and that it was switched on

instantaneously att = 0 fs. The pulse intensity corresponded to an upper estimate ofthe

maximal FEL pulse intensity observed in the experiment [11], I = 1014 W/cm2.

4.1 Pure Coulomb dynamics inside the irradiated cluster

In this case we have applied the following simplifying assumptions to the electron and

ion/atom dynamics. First, we have expanded the electron density using the angular moment

expansion:

ρ(e)(r,v, t) ∼=
1

4π

(

ρ
(e)
0 (r, v, t) + cos(θvr) · ρ

(e)
1 (r, v, t)

)

, (8)

and within this diffusion approximation [25] kept only: (i)its zeroth order (isotropic) com-

ponent,ρ(e)
0 (r, v, t), which corresponds to the number of electrons inside a volume element
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dV = d3r d3v, and (ii) its first order (transport) component,ρ
(e)
1 (r, v, t), which contributes

to the particle flux through the borders of the phase space element. 3 Radius,r, is the dis-

tance from the centre of the sample (r =| r |), andv denotes the magnitude of the electron

velocity (v =| v |). The functioncos(θvr) denotes the cosine of the relative angle between

vectorsv andr. The isotropic component of the electron density,ρ
(e)
0 (r, v, t), has to be a

positive number, as it describes the number of electrons in an infinitesimal volume element,

dV = d3r d3v. The transport component of the density,ρ
(e)
1 (r, v, t), can be a positive or a

negative number. Positive values ofρ
(e)
1 indicate that there is a collective transport in phase

space outwards the sample, the negative ones indicate that there is a collective transport

inwards the sample.

The approximation (8) is valid only if the densities,ρ
(e)
0 (r, v, t) andρ

(e)
1 (r, v, t) fulfill the

condition:

ρ
(e)
0 (r, v, t) >>| ρ

(e)
1 (r, v, t) | . (9)

Within the approximation (8) we neglected the drift component of the electron density which

is coupled to the laser field. This component will be treated in the next study case.

Second, as we are only interested in following the electron dynamics within this simpli-

fied model, we further assume that the positions of ions are fixed and their velocities remain

equal to zero during the evolution:

ρ(i)(r,v, t) ∼=
1

4π
ρ

(i)
0 (r, v, t) ·

δ(v)

v2
. (10)

In the true physical case this assumption is valid only during the first stages of the exposure,

as ions are much heavier than electrons (for Xe:MXe ∼ 105 me). The approximation of a

frozen xenon gas (10) implies thatρ(i)(r, t) = ρ
(i)
0 (r, v = 0, t).

Within the diffusion approximation (8) Boltzmann equations for the electron density,
Eqs. (5), reduce to:

∂ρ
(e)
0 (r, v, t)

∂t
+

v

3r2
·
∂(r2ρ

(e)
1 (r, v, t))

∂r
−

A(r, ρ
(i)
0 , ρ

(e)
0 )

3v2
·
∂(v2ρ

(e)
1 (r, v, t))

∂v
=

=

NJ
∑

i=0

ρ
(i)
0 (r, 0, t)

{

j(Eγ)σi
γ(Eγ)

δ(v − vE)

v2
+

∫

∞

0

dve v3
e ρ

(e)
0 (r, ve, t) dσi

tot(ve; v)

−vρ
(e)
0 (r, v, t)σi

tot(v)
}

3Within the diffusion approximation the total electron flux in real space through the sphere of radius,r, is:

S(r) =
4π

3

∫

∞

0

dv v3 r2 ρ
(e)
1 (r, v, t), and the total flux in velocity space through the sphere of radius, v, is:

S(v) = −
4π

3

∫

∞

0

dr A(r, ρ
(i)
0 , ρ

(e)
0 ) v2 r2 ρ

(e)
1 (r, v, t), whereA(r, ρ

(i)
0 , ρ

(e)
0 ) is the radial acceleration (12).
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∂ρ
(e)
1 (r, v, t)

∂t
+ v ·

∂ρ
(e)
0 (r, v, t)

∂r
− A(r, ρ

(i)
0 , ρ

(e)
0 ) ·

∂ρ
(e)
0 (r, v, t)

∂v
=

= −

NJ
∑

i=0

ρ
(i)
0 (r, 0, t) vρ

(e)
1 (r, v, t)σi

tot(v), (11)

where:

A(r, ρ
(i)
0 , ρ

(e)
0 ) =

e2

4πǫ0m
·
4π

r2
·

∫ r

0

dr′ r′2

{

NJ
∑

i=0

i · ρ
(i)
0 (r′, 0, t) −

∫

∞

0

dv v2 ρ
(e)
0 (r′, v, t)

}

, (12)

dσi
tot(ve; v) = σi→i

ec (ve)
δ(v − ve)

v2
+

2

v2

dσi→i+1
ic (ve; v)

dv
, (13)

σi
tot(v) = σi→i

ec (v) + σi→i+1
ic (v), (14)

σi
γ(Eγ) ≡ σi→i+1

γ (Eγ). (15)

The Coulomb electrostatic force in Eq. (11) has been expanded using the multipole ex-

pansion with the accuracy consistent with the accuracy of the diffusion approximation (8).

Electron-ion and electron-atom collisions were assumed tobe isotropic which is a reasonable

approximation at low impact energies of electrons. For the simulation purpose the delta-like

photoionization velocity distribution,δ(v−vE )
v2 in Eq. (11), had to be approximated with a

gaussian profile of a non-zero width and a mean value at the photoelectron velocity,vE.

The normalization constant of this gaussian profile was chosen in order to obtain the correct

number of the photoelectrons released.

Inverse bremsstrahlung process or any other heating mechanism were not included within

this study case.

As there is no transport of ions within the approximation, Eq. (10), Boltzmann equation
for ions (6) reduces to an ordinary rate equation, describing the change of the number of ions
due to the photo- and collisional ionizations:

∂ρ
(i)
0 (r, 0, t)

∂t
= ρ

(i)
0 (r, 0, t)

{

j(Eγ)σi−1
γ (Eγ) +

∫

∞

0

dve v3
e ρ

(e)
0 (r, ve, t)σi−1

ic (ve)

}

−

− ρ
(i)
0 (r, 0, t)

{

j(Eγ)σi
γ(Eγ) +

∫

∞

0

dve v3
e ρ

(e)
0 (r, ve, t)σi

ic(ve)

}

, (16)

wherei = 1, 2, . . . , NJ . For atomic densities this equation simplifies to:

∂ρ
(0)
0 (r, 0, t)

∂t
= −ρ

(0)
0 (r, 0, t)

{

j(Eγ)σ0
γ(Eγ) +

∫

∞

0

dve v3
e ρ

(e)
0 (r, ve, t)σ0

ic(ve)

}

(17)

We have prepared a code dedicated for solving Boltzmann equations for a spherically

symmetric atomic cluster located inside a simulation box ofa finite size. This code has been

based on relevant numerical methods [36–38]. Integrals andpartial derivatives in Boltzmann

equations were evaluated using the pseudospectral method [37]. Our algorithm has been

carefully tested, e.g. the interactions terms were included step-by-step into the code, the
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energy and the particle number were monitored during the evolution. We have proved that

our algorithm was conservative so that particle number and energy were conserved with a

good accuracy with the Boltzmann equations if the source terms were equal to zero. The

accuracy of the time integration has been checked with two independent time-integration

methods. Obtaining the predictions for a single case took several hours on the AlphaStation

XP1000.

As in this study case the system of electrons and frozen ions reached equilibrium within

10 fs of the exposure, we followed the evolution of the sample upto 50 fs of the exposure.

The simulation box had the size: (0 < r < 120 Å)× (0 < v < 30 Å/fs), and it was divided

into 40×70 grid points respectively. The simulation box corresponded to a sphere in real

space of radius,r = 120 Å, and a sphere of radius,v = 30 Å/fs, in velocity space. This box

was surrounded by an absorbing wall. Figs. 1-11 show the results.

The quantities obtained after solving Boltzmann equationswere: the three-dimensional

electron density functions,ρ(e)
0 (r, v, t), ρ(e)

1 (r, v, t), and the integrated two-dimensional ion/atom

distributions,ρ(i)(r, t), recorded at different times,t = 0, . . . , 50 fs. Figs. 1, 2 show an ex-

ample of the isotropic and the transport component of the electron density in phase space ob-

tained with Boltzmann equations at time,t = 2 fs. Plotted are the functions:̃ρ(e)
j (r, v, t) =

r2 v2 ρ
(e)
j (r, v, t), wherej = 0, 1. The isotropic component of the electron density func-

tion, ρ̃(e)
0 (r, v, t), is a positively defined function (Fig. 1). This function is localized in phase

space (see the contour plot). In contrast, the transport component of the electron density,

ρ̃
(e)
1 (r, v, t), may take both positive and negative values. In the contour plot of Fig. 2, the

upper part of the contour atv = 4 − 8 Å/fs with a peak at negative values ofρ̃
(e)
1 (r, v, t)

indicates the inward transport. The lower part of the contour plot atv = 1 − 3 Å/fs with a

peak at positive values of̃ρ(e)
1 (r, v, t) indicates the outward transport.

These three-dimensional plots are not easy to analyze. Moretransparent information on

the evolution of the electron cloud can be obtained from plots of the integrated isotropic and

transport density functions,n, defined as,

nj(v, t) ≡
∫

ρ
(e)
j (r, v, t) r2 dr,

nj(r, t) ≡
∫

ρ
(e)
j (r, v, t) v2 dv. (18)

The integrated isotropic component,n0(v, t) andn0(r, t) are related to the full integrated

densities as,ρ(e)(r, t) = n0(r, t), and,ρ(e)(v, t) = n0(v, t), within the diffusion approxima-

tion (8). For ions we have:n(i)
0 (r, t) ≡ ρ

(i)
0 (r, 0, t). The total number of electrons (ions),

N (e,i)(t), can then be obtained after performing the integration of the isotropic component of

the density function overd3r d3v:

4π ·
∫

ρ
(e,i)
0 (r, v, t) r2 v2 dr dv = N (e,i)(t). (19)
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Fig. 3 show the atomic, single ion and double ion density functions. Almost all photo-

electrons have been released within the first femtosecond ofthe exposure. This result is

consistent with the photoionization rate estimated at thisphoton energy, the assumed pulse

intensity and the pulse shape. Atomic density significantlydecreased within the first fem-

tosecond of the exposure. In contrast, the single ion density at t = 1 fs followed the shape

of the initial atomic distribution att = 0 fs. There were no double or highly charged ions

observed in the sample, as the electrons released were not energetic enough for further col-

lisional ionizations. Also, photons were assumed to inducesingle photoionizations of the

neutral atoms only.

The dynamics of electrons was strongly non-equilibrium during the first stages of the

exposure. Interparticle Coulomb forces were preventing most of the electrons from leaving

the ionic sample. Some of the electrons were, however, able to escape. The largest flows of

energy and particles have been observed within5−15 fs of the exposure (Fig. 6d). Within this

time weak collective oscillations of the electron cloud around the ion cloud were observed

(not shown). After this time electrons thermalized, and their anisotropic transport component

became negligible. Fig. 4 shows the rapid progress of the thermalization process for both

the isotropic and the transport components of the integrated electron density,n0(v, t) and

n1(v, t). The initial free electron density was equal to zero. After the first femtosecond of the

exposure the shape of the isotropic electron density,n0(v, t), followed the gaussian profile

of the photoelectron velocity distribution, and it broadened with time. Full thermalization

was achieved at times≥ 10 fs within this test model. We have fitted Maxwell-Boltzmann

distribution to the results on the integrated density function, n0(v, t), obtained att = 20

fs (Fig. 4): n0(v, t) = a · exp(−mv2/(2kBT )). The electron temperature was estimated

to, kBT = 0.68 − 0.77 eV, which corresponded to the average energy,〈E〉 = 3kBT/2 =

1.02 − 1.15 eV. This value agreed well with the average energy estimatedwith the global

parameters att = 20 fs (Fig. 6a,c),〈E〉 ≡ Ekinet/Nel = 1.07 eV.

Here we again recall that the energy transferred to the system by a single photon of

energy,Eγ = 12.7 eV, wasEph−el = 1.1 eV instead of0.6 eV, as we had to approximate the

delta-like photoionization velocity distribution,δ(v−vE )
v2 in Eq. (11) with a gaussian profile of

a non-zero width.

Fig. 4b shows the time evolution of the transport component of the electron density,

n1(v, t), corresponding to the weak plasma oscillations. There is a strong increase of the

outward electron transport (in velocity space) within2 fs of the exposure. Energetic elec-

trons can then leave the simulation box (Fig. 6d). However, at some time point,t ∼ 5

fs, slower electrons travelling outward are stopped and attracted back by ions. The inward

transport start then to dominate. After the thermalizationof the electrons is achieved, the
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collective transport (in velocity space) reduces significantly, and the transport component of

the electron cloud becomes small.

Spatial evolution of the electron cloud (Fig. 5), describedby the integrated densities,

n0(r, t) andn1(r, t), is less dynamic than the evolution of the velocity densities, n0(v, t)

andn1(v, t). A rapid increase ofn0(r, t) is observed only within the first femtosecond of

the exposure. After this time, the shape of the isotropic component of the integrated electron

density does not change much with time. Weak plasma oscillations are visible, ifr2 n0(r, t) is

plotted (not shown). The magnitude of the spatial transportcomponent of the density func-

tion, n1(r, t), is much smaller than its isotropic component,n0(r, t), during the evolution.

During the first femtoseconds of the exposure there is a weak spatial transport outward, and

the position of the maximum of the transport component propagates towards lower values

of r at increasing times. This corresponds to a plasma wave propagating inside the sample.

These weak oscillations occur until about10− 20 fs of the exposure, when they are damped

due to the fast progressing thermalization of electrons.

In Fig. 6 we plot also global parameters of the sample as functions of time: (a) the total,

kinetic and (b) potential energy of the system, (c) the particle number, and (d) the flows of

energy and of the particle numbers recorded at a fixed distance of 10 grid points from the

external borders of the simulation box. These flows give a valuable qualitative information

about the escape rate of the electrons at different stages ofthe evolution, which is helpful for

estimating the correct size of the simulation box. If the boxsize would be too small, some

electrons of a total negative energy could leave the box during the evolution. This would

lead to a strong increase of the potential energy within the system and induce an unrealistic

electron dynamics.

Total kinetic energy of the sample and the number of electrons and ions increased rapidly

within 2 fs of the exposure. Within and after this time we observed a strong outward flow

of electrons. The fastest electrons were able to leave the simulation box. Potential energy

slowly increased with time, as more electrons escaped from the simulation box. It was,

however, small if compared to the total energy.

4.2 Extended electron dynamics including drift component of electron

density and inverse bremsstrahlung

Our aim is now to show that this statistical model is also ableto predict higher ionization

states, as observed in experiments [11, 27]. Highly chargedions will be created during in-

elastic collisions of ions with energetic electrons. Otherprocesses can also contribute to the
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formation of highly charged states [15]. Here we concentrate on the collisional ionization

that may be a leading process.

Collisional ionization was not possible in the preceding study case 4. 1. , as we did

not include any heating mechanism there, and electrons remained cold during the exposure.

Here, we enable electron heating, including the inverse bremsstrahlung process. As we will

later see, this process will lead to an efficient heating of electrons, and subsequent collisional

ionizations inside the cluster. As we are only interested infollowing the electron dynamics

within this simplified model, we will still keep the assumption of frozen atoms and ions, Eq.

(10).

Again, we stress here that within this study case we do not aimto reproduce the exper-

imental results of Refs. [11, 27]. This attempt is planned for the forthcoming papers, as it

requires detailed adjustments of the present model in orderto apply it to a realistic case.

Only qualitative comparison of our predictions to the data is possible within this study case.

In order to improve the description of the electromagnetic laser-matter interaction within

our cluster, we add a drift component,ρ
(e)
2 (r, v, t), to the diffusion expansion (8):

ρ(e)(r,v, t) ∼=
1

4π

(

ρ
(e)
0 (r, v, t) + cos(θvr) · ρ

(e)
1 (r, v, t) + cos(θvǫ) · ρ

(e)
2 (r, v, t)

)

, (20)

where the functioncos(θvǫ) denotes the cosine of the relative angle between vectors: electron

velocity,v, and polarization vector of the laser field,ǫ. This component describes electric

interaction of the electrons with the field of the laser, and completes the first-order angu-

lar moment expansion ofρ(e)(r,v, t) up to the terms involving only polar angles. Terms

involving azimuthal angles are neglected.

After substituting the ansatz (20) to Eq. (5), we obtain a system of three coupled equa-

tions forρ(e)
0 (r, v, t), ρ

(e)
1 (r, v, t), andρ

(e)
2 (r, v, t) (not shown), where we have also included

the inverse bremsstrahlung term defined in Eq. (5). We have checked that the term describing

the coupling of the inverse bremsstrahlung to the isotropiccomponent of electron density is

dominant. We have also proven that at the assumed parametersof the laser field, the argu-

ment of Bessel function,J2
n

(

−e E0

h̄ω2 ǫ(v′
e
− ve)

)

is small. Therefore single photon emissions

or absorptions will dominate during the inverse bremsstrahlung process.

We have solved the extended equations numerically with our Boltzmann solver. The

simulation box had the size: (0 < r < 100 Å)× (0 < v < 100 Å/fs), and it was divided

into 40×90 grid points respectively. The radius of the spherically symmetric xenon cluster

located inside this simulation box was∼ 25A. This cluster was irradiated with an intense

pulse of constant intensity,I = 1014 W/cm2. We followed the evolution of this system up to

180 fs of the exposure. At that time the majority of electrons hasalready left the sample and

17



collisional ionization rate saturated. The repulsive Coulomb forces within the sample were

so large that Coulomb explosion of ions should have already started. This was, however, not

possible within the approximation of frozen ions, and we stopped the simulation at entering

this unphysical regime.

As in the previous study case, we followed the evolution of irradiated cluster, recording

electron and ion densities at different times of the exposure (not shown). With these ob-

servables we estimated global parameters of the system as functions of time (Fig. 7): (a)

total, kinetic and potential energy, (b) electron temperature, (c) total number of electrons,

atoms and ions, (d) energy and particle flows. In Fig. 8 we alsoplotted the total numbers of

electrons and ions of different charges recorded as a function of time.

Including the drift component (20) into the Boltzmann equations lead to fast collective

oscillations of the electron cloud. Such plasma oscillations are expected to appear at intense

laser fields, when the strong electric field of the laser is sufficient to drive electron cloud

forth and back in the direction of the field polarization. Fig. 9 shows the oscillations of

kinetic energy and total energy of the electrons due to this effect.

In our extended model electrons gained energy via the inverse bremsstrahlung process.

This effect is reflected in the shapes of the kinetic energy curve and of the temperature curve

(Figs. 7a,b). The total kinetic energy of electrons and their temperature increased with time

until ∼ 160 fs of the exposure (Fig. 7a). After this time most of the electrons were energetic

enough to leave the simulation box (Fig. 7c,d), and the totalkinetic energy of electrons

within the box decreased. However, the temperature of electrons within the simulation box

still grew for some time as the remaining electrons still gained energy from the laser field

with the inverse bremsstrahlung process.

Two phases of fast electron escape occurred at about10 − 30 fs and after160 fs of the

exposure. These phases were reflected in energy flows recorded during the exposure (Fig.

7d). The first escape phase occurred before highly charged ions (+2 and higher) were created

within the sample (Fig. 8a). Some of electrons gained the amount of energy sufficient to leave

the sample and the simulation box. This escape phase ended, when the attracting Coulomb

force within the sample increased. It then kept most of the electrons inside the sample until

the second escape phase started at about160 fs. Within this phase a majority of electrons

left the simulation box. If the ions were not frozen, this should have lead to a fast Coulomb

explosion of remaining ions.

Between these two escape phases highly charged ions have been created in the subse-

quent ionization processes:Xe+q → Xe+q+1, whereq = 0, . . . , 6. Doubly charged ions

were observed after5−6 fs of the exposure. Triply charged ions were observed after30−40
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of the exposure. Ions of charges +4 up to +7 were created laterin the exposure, starting at

70 (Xe +4) and120 fs (Xe +7) of the exposure.

At the end of the exposure (t = 180 fs) there were no neutral atoms left within the cluster.

Contributions of ions of specific charges to the total numberof ions were following: Xe +1

(∼ 10%), Xe +2 (∼ 7%), Xe +3 (∼ 11%), Xe +4 (∼ 7%), Xe +5 (∼ 10%), Xe +6 (∼ 16%)

and Xe +7 (∼ 39%). The contribution of Xe +7 ions was the largest one.

Summary and conclusions.

We have formulated general Boltzmann equations describingthe evolution of a non-uniform

sample irradiated with VUV FEL photons. We have solved theseequations numerically with

a dedicated algorithm. Two study cases of a simplified electron dynamics inside a spher-

ically symmetric xenon cluster were considered. In case when the laser-matter interaction

was restricted to the photoionization effect, results obtained with Boltzmann equations gave

a comprehensive description of the evolution of electron cloud during its non-equilibrium

(before thermalization) and equilibrium stages (after thermalization). At photon energies,

Eγ = 12.7 eV, thermalization of electrons was observed after10 fs of the exposure within

this system. This thermalization was an effect of long-range Coulomb forces, and not of the

interparticle collisions, as the energy transfers in the non-ionizing electron collisions were

not allowed within this model.

During the exposure almost all photoelectrons were confinedinside the ion cluster by the

Coulomb internal field. Only a few photoelectrons were energetic enough to escape. There-

fore the electrostatic energy of the sample was too low to accelerate remaining electrons and

initiate further collisional ionizations. These results confirm that efficient mechanisms of en-

ergy pumping are necessary for the creation of highly charged ions in the sample irradiated

with VUV photons.

In the second study case we extended the description of the laser-matter interaction in-

cluding the drift component of electron density. This driftcomponent induced fast collective

oscillations of the electron cloud in the intense electric field of the laser.

In this case the inverse bremsstrahlung process was also introduced as a mechanism of

energy pumping. We then observed higher ionization states created within the irradiated

cluster after about6 fs (Xe +2),30 fs (Xe +3),70 fs (Xe +4),90 fs (Xe +5),100 fs (Xe +6)

and120 fs (Xe +7) of the exposure. These states were created during inelastic collisions of

energetic electrons with ions. Simulation ended up with themajority of Xe +7 ions (∼ 40%)
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within the sample.

Two phases of fast electron escape were observed during the exposure. After the second

escape phase majority of the electron has left the sample, and at this time the Coulomb

explosion of unscreened ions should have started. This was not possible, as the ions were

kept frozen within this model.

The results obtained with the extended model are promising.We observe a qualitative

agreement between the charge densities and the average energy absorbed per atom estimated

with this primary model and the experimental data. In the first experiments [11] at a power

density in the range1013- 1014 W/cm2 charge states up to 8+ where observed. The kinetic

energy of the ions varies between 100 eV and 2500 eV, depending on the charge state. These

numbers are in the same range as the values predicted in the present work. However, at this

stage we can make only qualitative comparison of our predictions to the data. The model de-

veloped here needs further improvements of its physical assumptions in order to be applied

to a realistic case. Effects of plasma screening on atomic energy levels and on photo- and

collisional ionization cross sections have to be treated [9, 12]. So far potentials used in equa-

tions were unscreened, and cross sections (also inverse bremstrahlung cross sections) were

also obtained with those unscreened potentials. Includingthe screening effects within this

non-uniform sample will significantly affect the ionization dynamics. Within the improved

model also the realistic pulse shape, correct cluster size and density should be implemented.

Ions should not be kept frozen during the evolution. Important mechanisms of thermaliza-

tion: recoil effects and short-range electron-electron interactions, need to be treated in this

improved model. Possible influence of recombination and of other many body processes on

the sample dynamics requires dedicated analysis.

However, we do not expect that including further interactions into these equations will

lead to more numerical complicacies. As the main nonlinearity and stability problems have

been successfully treated in the primary algorithm, and this algorithm correctly followed the

dynamics of the sample in our study cases, we expect that it can easily be extended for a

more advanced model.

At this point we have also to discuss the applicability of theclassical approximation

for describing the evolution of FEL irradiated samples (seealso [39]). We stress here that

our final aim is to obtain a description of radiation damage atshort wavelenghts of photon

radiation (soft and hard X-rays), when plasma electrons plasma are hot, and their treatment

with classical Boltzmann equations therefore justified. When we try to apply the classical

description to a sample irradiated with VUV FEL photons ofλ ∼ 100 nm (Eγ = 12.7

eV), and estimate the degeneracy parameterΥ = EFermi/kBT for electrons, it is∼ 1 for

electron plasma of temperature,T ∼ 1 eV and densityne ∼ 1022cm−3, and it is∼ 20 for the
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plasma of the same temperature and densityne ∼ 1024cm−3 These values are much above

the classical regime,Υ ≪ 1.

However, the evolution of an irradiated sample is a non-equilibrium process, and if the

energy gain by electrons and electron escape rate from the sample were fast enough, the

system could enter the classical regime very early in the exposure. Classical description

could then still be applicable. This scenario is probable, according to the results obtained

with our second study case. Therefore, in the realistic caseit will be necessary to monitor

the degeneracy parameters during the evolution of the sample. Their value will justify the

validity of the classical approximation.

We believe that despite those limitations the method proposed here offers a unique pos-

sibility of studying the complex dynamics of large spatially non-uniform samples, irradiated

with the FEL pulses. Whereas in real experiments the sample is exposed to several pro-

cesses contributing simultaneously to the radiation damage, the Boltzmann simulation tool

enables one to include specific interactions only. In this way the influence of different ion-

ization mechanisms on the overall dynamics of the sample canconveniently be tested. Also,

accurate time characteristics of damage processes can easily be obtained.

To sum up, Boltzmann approach is a first principle model whichcan follow non-equilibrium

classical processes in phase space. Single particle densities evolved with Boltzmann equa-

tions include the full information on particle positions and velocites, and not only on their

collective components. Average observables obtained withthe Boltzman solver are not bi-

ased with statistical errors. However, the information on the three and higher order cor-

relations is not included within Boltzmann equations. Including the effects of many body

correlations into these classical equations is generally not possible, only in a few cases and

under simplifying assumptions, e.g. by applying the Fokker-Planck equation in case of long-

range Coulomb forces. The other serious disadvantage of theBoltzmann approach is its

numerical complexity which requires an application of advanced numerical methods.

Computational costs within Boltzmann approach do not scalewith the number of atoms

within a sample, as in the MC method. Therefore, a Boltzmann solver is usually much more

efficient for larger samples of a regular structure than a Monte Carlo code. This does not

apply for samples of a complex or irregular structure. As these samples cannot be accurately

represented by a smooth density function, Boltzmann equations can only give a crude esti-

mate of their damage dynamics. Improving the accuracy within the Boltzmann approach is

possible only by extending the number of grid points used to represent the sample. This may

lead to very long computational times when a large number of grid points was applied.

To sum up, we have demonstrated that the Boltzmann equationsare a useful method to
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follow the radiation damage of non-uniform samples irradiated with the FEL photons. We

believe that these equations may soon become a standard toolfor investigating the complex

dynamics of irradiated samples.
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Figure 1: Isotropic component of the electron density in phase-space,ρ̃0(r, v, t) =

r2 v2 ρ0(r, v, t), recorded at time,t = 2 fs: a) three-dimensional view and b) contour plot.

This density was obtained in case of the irradiation with theVUV FEL photons of energies,

Eγ = 12.7 eV. Coulomb interactions between charged particles were included. Initial den-

sity of free electrons att = 0 fs was equal to0. The ranges of axes correspond to the size of

the simulation box.
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Figure 2: Transport component of the electron density in phase-space,ρ̃1(r, v, t) =

r2 v2 ρ1(r, v, t), recorded at time,t = 2 fs: a) three-dimensional view and b) contour plot.

This density was obtained in case of the irradiation with theVUV FEL photons of energies,

Eγ = 12.7 eV. Coulomb interactions between charged particles were included. Initial den-

sity of free electrons att = 0 fs was equal to0. The ranges of axes correspond to the size of

the simulation box.
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Figure 3: Integrated atom and ion densities,ni=0,1,2
0 (r, t): a) atomic density, b) single ion

density, c) double ion density, recorded at times,t = 0, . . . , 50 fs. These densities were

obtained in case of the irradiation with the VUV FEL photons of energies,Eγ = 12.7 eV.

Coulomb interactions between charged particles were included.
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Figure 4: Integrated electron density: a) isotropic component,n0(v, t), b) transport compo-

nent,n1(v, t), recorded at different times,t = 0, . . . , 50 fs. These densities were obtained

in case of the irradiation with the VUV FEL photons of energies, Eγ = 12.7 eV. Coulomb

interactions between charged particles were included.
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Figure 5: Integrated electron density: a) isotropic component,n0(r, t), b) transport compo-

nent,n1(r, t), recorded at different times,t = 0, . . . , 50 fs. These densities were obtained

in case of the irradiation with the VUV FEL photons of energies, Eγ = 12.7 eV. Coulomb

interactions between charged particles were included.
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Figure 6: Global parameters of the irradiated sample as functions of time: a) total energy, b)

potential energy, c) number of electrons and singly chargedions in the sample, d) flows of

energy and particles measured at the distance of 10 grid points from the external borders of

the simulation box. These parameters were obtained in case of the irradiation with the VUV

FEL photons of energies,Eγ = 12.7 eV. Coulomb interactions between charged particles

were included.
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Figure 7: Global parameters of the irradiated sample as function of time: a) total, kinetic and

potential energy, b) electron temperature, c) number of electrons and gross-number of ions,

Nion =
∑

i i ·Ni, whereNi is the number of ions of chargei, d) flows of energy and particles

measured at the distance of 16 grid points from the external borders of the simulation box.

These parameters were obtained in case of the irradiation with the VUV FEL photons of

energies,Eγ = 12.7 eV, in the extended model, where both the inverse bremsstrahlung

process and drift component of the electron density were included.
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Figure 8: Number of electrons and ions created within the sample during the exposure to

VUV FEL photons of energies,Eγ = 12.7 eV: a) electrons and ions up to +3, b) electrons

and ions from +4 up to +7. Those results were obtained with theextended model, where

both the inverse bremsstrahlung process and drift component of the electron density were

included.
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Figure 9: Total, kinetic and potential energy of electrons within the simulation box within

first femtoseconds of the exposure. Characteristic plasma oscillations are reflected by kinetic

energy curve. Those results were obtained with the extendedmodel, where both inverse

bremsstrahlung process and drift component of the electrondensity were included.
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