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1 Introduction

The emerging free-electron-lasers (FELS) promise tremengrogress in studying the struc-
ture of matter with soft and hard X-rays. The transverselly ftoherent radiation from the
FEL will be delivered in flashes of ultrashort duration, dgedt at peak brilliances more
than10® higher than those available from the present sources ohsygtron radiation [1, 2].
These unique properties of FELs enable probing dynamiestdtmatter, transitions and re-
actions happening within tens of femtoseconds, with wateging implications to the solid
state physics, material sciences, and to the femtochgmigte FEL beam, if focussed onto
a very small spot, is also an excellent tool to generate avlokpextreme states of matter. The
X-ray FEL (XFEL) is expected to open new horizons in struatstudies of biological sys-
tems, especially in the studies of non-repetitive samfilesyiruses, living cells etc. Rapid
progress of radiation damage in these samples preventscarase determination of their
structure in standard diffraction experiments. Howeves,recent studies of the progress of
the damage formation [3-5] indicate that the radiationréoiee might be extended at ultra-
fast imaging with high radiation dose as that expected withgresently developed X-ray
FELs (LCLS, DESY).

For this and other applications of FELs, we have to undedsitadetail how the intense
radiation of short wavelengths, emitted in short pulse®gracts with matter. In particular,
accurate time characteristics of radiation damage is sacg@ order to estimate the range
of pulse length at which imaging with XFEL would be possible.

The radiation damage of samples irradiated by soft X-rafysrdiconsiderably from that
induced by high power IR-Lasers. In the latter case plasratrigeby inverse bremsstrahlung
is the dominant damage process [6—8]. For FELs, at diffexaatgies of the FEL photons
different processes are contributing to the radiation dgmait VUV photon energies the
inverse bremsstrahlung process is believed to deliver ofdbe energy needed for the effi-
cient ionization of an irradiated system [9]. This ionipatieventually leads to the Coulomb
explosion of the sample. Photons of shorter wavelengths eraife electrons from inner
shells of atoms, creating core holes [10]. Photoemissiomi®-hole creations and subse-
guent Auger emissions of secondary electrons contributegeadiation damage that then
affects not only the sample but also the optical elementsefEL beamline.

Radiation damage by photons from the VUV FEL is now underns¢einvestigation.
First experimental studies on the interaction of the VUVplhndeams with atoms, molecules
and clusters have been already performed at DESY [11]. Tge lumber of VUV photons
absorbed per atom that was observed in these experimentsrauitbe explained using the
well-established standard calculations for photon aligor9, 11]. This indicated that the



ionization of samples irradiated by energetic photons iasges in a different way than that
observed in the optical energy range. These surprisindtsestimulated intense theoreti-
cal effort. Several interesting models have been propa8gtPf-14] which could explain
various aspects of the increased photoabsorption andaiboizdynamics observed in the
experiments (for review see [15]). On the other hand, thexestll some controversies, e.
g. regarding the role of the inverse bremsstrahlung meshaand the inner ionization pro-
cesses. A model: (i) computationally efficient also for &gpatially non-uniform samples
and (ii) able to test the influence of specific interactiongl@complex dynamics of elec-
trons and ions, could be useful in evaluating the contridmsiof different mechanisms to the
overall ionization dynamics.

Here we propose such efficient method of describing the &wvolwf irradiated sam-
ples which applies also to large systems. This first-priesifBoltzmann method is based
on the statistical description of the charge dynamics imseof statistical quantities: elec-
tron and ion densities in phase spap€;” (r,v,t). These densities are functions of the
spatial and velocity coordinates,andv, and are measured at some timeThe quantity,
pl) (r, v, t)d®r d*v, estimates a number of particles (electrons or ions) in éinitesimal
volume element of phase spad&, = d3r d3v, which is located at the spatial poimt,and at
the velocity,v. Charge densities are evolved from their initial configiamagtt = 0, using
semiclassical Boltzmann equations.

The Boltzmann method is a promising alternative to the fpirgteiples Monte Carlo
(MC) or Molecular Dynamics (MD) methods which are commonked [3,4,16]. The
Monte Carlo method may be viewed as an approximate stochasthod of solving trans-
port equations. During the simulation the MC code has toestie separate equations of
motion for each patrticle in the sample, following the trépees of all particles and their
interactions with other particles or external fields. If awoatterings occur, the scattering
probabilities are estimated with quantum mechanical csestons. Coordinates and veloc-
ities of particles are updated at each time-step. Simulataf single events are repeated
many times. Estimates of physical observables are obtdipexveraging their values ob-
tained from single events over the total number of eventserdfore these estimates are
biased with statistical errors.

Monte Carlo algorithms have a transparent structure andllysdo not require an ap-
plication of any complex numerical methods. This is a greiaatage of this method.
However, these algorithms become computationally inefficiwhen the number of parti-
cles, N, is large. The code efficiency is even worse, if the long-eaimgeractions between
particles (e.g. Coulomb electrostatic forces) have to bkided into the simulation. High
computational costs which scale with the number of pagiobstrict the applicability of the



Monte Carlo method to the samples of small or moderate sizes.

In contrast, the efficiency of the simulation algorithm wiitle Boltzmann equations does
not change directly with the number of particles in the sanpk the algorithm operates
on smooth density functions. Therefore the efficiency antuiexy of these algorithms
depend only on the phase-space shape of the sample whidleced in the number of grid
points used in the simulation. Therefore this statistipgiraach can also work fine for large
samples, where the MD/MC methods are inefficient.

The full spatio-temporal characteristics of the electrad &n dynamics can be easily
obtained with the transport method. As charge densitiediegetly evolved with Boltzmann
eqguations, the averaged observahigsf interest can then be calculated with their convolu-
tion with the charge densities obtainéd,(t)) = [ O(r,v) p(r, v, t)d®*r d®v. These results
are not biased with statistical errors.

The applicability of Boltzmann equations is, however, texiito the systems which fulfill
the assumptions of molecular chaos and two-body collisibhese assumptions are usually
justified by a presence of short range forces [17, 18]. Thglsiparticle density function ob-
tained with these equations does not contain any informatithree-body and higher corre-
lations. If the higher order correlations are important,aefundamental Liouville equation
for the N-particle density function should be applied. Theuville equation reduces to the
collisionless Vlasov equation [17] in case of an uncorezdlaystem. Fokker-Planck equation
[17] can be derived as a limiting form of the Liouville equatifor long-range (Coulomb)
forces. It was proven in Ref. [17] that a correct descripbmany body long-range interac-
tions of plasma electrons and ions obtained with the desticBokker-Planck equations can
be also obtained with the two-body Boltzmann collision teassuming the Debye cutoff in
the Rutherford scattering cross section. This simpliftcatioes not apply to the electron-
electron interactions, where the interacting chargedgl@sthave identical masses, and the
momentum transfer during their collisions cannot be nagtéc

Another disadvantage of the Boltzmann approach is its nigadecomplexity. Boltz-
mann equations are complicated sets of nonlinear inteiffierehtial equations where par-
tial derivatives appear in both spatial and velocity coeaties,0/0r, ando/dv. Advanced
numerical methods have then to be applied.

In what follows we will show the potential of Boltzmann methfor studies of the ra-
diation damage in samples irradiated by FEL photons. At tiesgnt state we do not aim
to obtain any quantitative predictions which could latercbenpared to the existing exper-
imental data. Actually, we are interested in proposing a tlesoretical approach for a
comprehensive description of the progress of radiationadgnmn irradiated samples, almost



independently of the sample size. A construction of a realieodel including all relevant
physical processes is planned at later stages.

First we will write general Boltzmann equations for samptesdiated with VUV pho-
tons. These equations will include basic physical processatributing at those photon
energies. We will then solve these equations in a simplifstddy) case of a spherically
symmetric xenon cluster. Due to the symmetries of the sampieh eliminate the de-
pendence of charge densities on one of the azimuthal artgkesyjumber of independent
coordinates in these equations can be reduced by one, framfsie. Further simplification
of Boltzmann equations is achieved by applying the firseoahgular moments expansion
to the charge densities. These simplified equations, atntaihree different components of
charge density: the isotropic, transport and the drift @a®, then be treated numerically in
an efficient way.

We will solve these simplified Boltzmann equations, and show efficiently they can
follow the dynamics of electrons. We will consider two stuchses: (i) the case of the
pure Coulomb dynamics, where we restrict the interactiothefaser field with the sample
only to the photoionization effect, (ii) the case where a ptate interaction of sample with
the laser field is implemented, i.e. the drift component etC&bn density describing the
interaction of electron density with laser field is treatadg the contribution of the inverse
bremsstrahlung process which heats up electrons durirsgicekectron-ion collisions is
included. The results obtained are discussed in detaiénifirds, a short summary is given.
Finally, we list our conclusions.

2 Boltzmann equation

Statistical description of a classical system can be maderms of its density function,

p(r,v,t) [18-20], wherep(r, v, t) is defined such that(r, v,t)d*>rd>v is the number of

particles at time t positioned betweenand r + dr which have velocities in the range
(v,v+dv).

Evolution of this density function can then be described bytBnann equation,
Op+vorp +Foyp/m = Q(p,r, v, t), (1)

whereF is a force (external of internal) acting within the systemd &(p, r, v, t) is a colli-
sion (source) operator, describing the change of chargatgeatue to the interparticle colli-
sions or other short range processes ocurring within thesys

The mostimportant feature of Boltzmann equation is thetgibd describe non-equilibrium



processes. Boltzmann equations are used for describingpma phenomena in many dif-
ferent physical contexts, ranging from the simulationshefhot electron transport in semi-
conductors, simulations of plasma kinetics [17, 21-24htodvolution of protoneutron stars
[25] and to the modelling of the core collapse in superno2és [

We will now formulate the specific Boltzmann equations disieg the transport of elec-
trons, atoms and ions inside a sample irradiated with FEltqstso In this case it is enough
to consider two gases: the gas of light electrons of masses)d charges;-e, and the gas
of heavy atoms/ions of masséd, and chargese. Photons need not to be considered as an
independent gas component, as they only enter the equasamfux term in the photoion-
ization source term. The gases of electrons and atoms/rengpresented by the density
functions: p® (r, v, t), p®(r,v,t), wherei denotes the ion charge= 0,1,..., N,, and
N is an arbitrary number, describing the maximal ion chargth@system. The general
coupled Boltzmann equations for these gases are:

8tp(6) (r,v, t)—l—v-Brp(e) (r, V,t)-l-% (E(r,t) + v x B(r,t)) -0y (e)(r,v,t) =0 (p(e),p(i), r,v,t), (2)

for electrons, and

ie

5tp(i) (r,v,1) —|—V-8rp(i)(r,v7t) M (E(r,t) + v x B(r, t)) -3Vp(i)(r,v,t) =0 (p(e),p(i), r,v,t), (3)

for atoms/ions, where the fordis the electromagnetic forcE(r,v,t) = q(E(r,t) + v x
B(r, t)), acting on electrons and ions positioned betweandr + dr, which have velocities
in the rangdv, v + dv). The electric fieldE, and magnetic field3, have two components.
The first component describes the interaction of chargdsexitiernal radiation. The second
component describes internal electromagnetic intenadt@ween electrons and ions. This
component is a non-local function of electron and ion desssit

Collision terms, (¢, describe the change of the electron/ion densities of itesc
(v,v +dv) measured at the positioris, r + dr) with time. This change may be due to:
(i) the creation of the secondary electrons and highly awrgns via photo- and collisional
ionizations of atoms and ions, (ii) elastic and inelastiltigions of electrons and ions, (iii)
the inverse bremsstrahlung process, i. e. absorptionsrarssiens of photons by electrons
during the elastic electron-ion collisions, (iv) recomddion processes etc. Number of short-
range processes involved in the sample dynamics dependseonmavelength of the laser
radiation. If collision terms are neglected, Boltzmannaans, Eqgs. (2), (3), reduce to the
Vlasov equation [17, 21] describing the evolution of a sitinless plasma.

Initial configuration of Eqgs. (2), (3) is given by a smoothrato density function,
p©(r,v,0), which represents the sampletat 0.



3 Boltzmann equation for an irradiated atomic cluster

First experimental studies on the interaction of intens&/\flloton beams with matter were
performed for clusters of xenon atoms irradiated with VU\bfans [11, 27]. New experi-
ments with clusters exposed to FEL radiation at higher phetwergies are planned in the
next future. The existing and the future experimental data g unique opportunity for
testing theoretical models.

Below we formulate the assumptions of the primary transparxdel dedicated for study-
ing the dissipative dynamics and the radiation damage inxetusters at the VUV photon
energies. We will fix the physical parameters as they wermdbe first experiment with the
VUV photons [11].

The production termg€(¢%, in our model will then include only basic predominant in-
teractions, i.e.:

(i) Single photoionizations of atoms A single VUV photon of energyf, = 12.7
eV, may excite electrons only from thgs,, shell of xenon atoms of the binding energy,
E; = 12.1 eV. Here the photon energy was set as in the VUV FEL experifidijt We
neglect possible multistep photo- and multiphoton ionaret within this primary model. We
also neglect the effect of plasma screening on the atomigehevels and photoionization
Cross sections.

(i) Elastic and inelastic collisions of electrons and atoms/is. We assume that an
inelastic collision always releases a secondary electva.neglect inelastic collisions of
electrons and atoms/ions which lead only to an excitatiocanodtom/ion. These processes
contribute to the multistep collisional ionization whichnot included within this primary
model. We also neglect the effect of plasma screening onaffisional cross sections.

(i) Inverse bremsstrahlung photoabsorption in the presence catoms or ions In
our model, as the primary kinetic energy of a photoelectedaased by a VUV photon is
small, E ~ 0.6 eV, comparing to the first ionization energy; = 12.1 eV, a process of
energy pumping is necessary in order to initiate any colfial ionizations by electrons. In-
verse bremsstrahlung process is among the possible pesd&sAt the low photoelectron
energies, that we consider here, the proper descriptionvefse bremsstrahlung should be
guantum and not classical [28,29]. Quantum cross sectmmalfsorption or emission of
radiation photons by electrons during their collisionshwins were taken from Ref. [30].
In this approximation ions were treated as point-like ckarf$0].

(iv) Electromagnetic interaction of electrons with laser field Here this interaction is
treated within the dipole approximation. This approachugified by the small spatial size



of the irradiated spherical cluster of a radits25 A, when compared to the wavelength
of laser radiation{ 100 nm). We expect that the attenuation of the laser beam is small
Rough calculation of the attenuation via photoabsorptidh@beginning of the pulse gives
the transmission of aboWtl%. After all atoms have been photoionized, photons from the
pulse can be still absorbed via inverse bremsstrahlungmgtd total energy absorbed by
this xenon cluster is abod00 thousand of eVs at most.

(v) Electromagnetic interactions of electrons and ions withinthe sample They are
expressed in the form of the non-local potentials. We asfom&mplicity that both elec-
trons and ions are point-like charged particles, and netfleeffects of the atom/ion internal
structure and of its finite size on the interaction potentighin this primary model.

Finally, we note that within this primary model we also neglide recoil energies and
the recoil momenta of the atoms/ions gained during thegradtions with photons or elec-
trons. Electrons are assumed to scatter isotropically omsfions. This is the first order
approximation which can be made: (i) in case of photoiorwnastdue to the low energy of
the incoming photons, and (ii) in case of collisional int¢i@ans due to the large difference of
electron and ion masses and to the low impact energies df@hsc Within this approxima-
tion the movement of ions will be stimulated by the Coulompuision only, and will start
at the final stages of the explosion. Additional pressureoas due to the recoil momenta is
neglected.

Recoil effects, and also short-range electron-electréeraction can be conveniently
treated by the means of the Fokker-Planck equation. As atievant processes which
were neglected within this primary model, e.g. three-baabombination, charge enhanced
ionization [12] or effects of electron screening [9], th@secesses will be treated in forth-
coming papers.

3.1 General Boltzmann equations for electrons and ions in anradi-
ated cluster

Before writing the equations, we will introduce the followinotation. The integrated den-
sities,p(*") (r, t) are defined as,

29 (r, 1) :/d?’vp(e’i)(r,v,t). 4)

Velocity vy = \/2(EV — E;)/m is the magnitude of the velocity of the photoelectrons. Co-
efficients,o’ !, denote the total photoionization cross sections for alsimgization of
an ion of charge; = 0,1, ..., N;. lonizations up taV; = 7 are allowed within our model.



Coefficientsg "1, denote the total collisional cross sections for a singtéziation of ions
of charge; = 0,1,..., N, by an electron. Coefficients;_ ", denote the elastic collisional
cross sections. Elastic collisional cross sections andadion collisional cross sections were
measured experimentally for xenon [31-35]. Within thisyary model the cross section
for the elastic electron-ion scattering was approximatgthle cross section for the elastic
electron-atom scattering. The scattering of electron®pga was assumed to be isotropic.

. . . . . oI (Ve (Vg))
A compact notation for doubly differential cross sectionsised, e . Ve-

locity v. denotes the velocity of the incoming electror, is the velocity of this electron
after a collisiony, is the velocity of the secondary electron.

Coefficientj(E,) describes the photon flux, afilis a spherical angle.

Starting from Egs. (2), (3), we derive the following equasdor electron and ion densi-
ties within an irradiated sample:

8/)(6) (r7 V7 t) + 8p(e) (r7 V7 t)
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for electrons and:
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- {/ d*ve o7 (Ve) ve p (x, Ve, f>} P (r, v, 1) (6)

for ions, where we treated the interaction of charges wiéhekternal electric field ( also
inverse bremsstrahlung for electrons) within the dipolerapimation,

E(r,t) = E(t)e, (7)

and neglected the subleading contribution coming fromnberaction of charges with mag-
netic field. Vectorg, is the polarization vector of the electric field.

Writing these equations we took into account only binarjisioins between participating
particles. The assumption of binary collisions is not vdtid very dense systems and for
systems with the presence of long-range forces, where maahy dffects become important
[14]. Within this primary model we neglected short-range#hand higher order many body
interactions ocurring due to the high density of partickeshie sample. Many body effects
due to the presence of Coulomb forces were treated cornettiyn the approximation that
recoil energies and recoil momenta of atoms and ions couteegkected.

Equations (5), (6) then describe the evolution of a clustediated with VUV FEL
photons within our primary model. The structure of theseatigas is general, and other
interactions or improvements can conveniently be impldeteimto these equations. These
completed equations would then describe a more advancedlrabthe sample dynamics.
Egs. (5), (6) can be also adapted for describing the dynamhis irradiated sample at other
photon energies.

3.2 Solving the Boltzmann equations

Equations (5), (6) are complicated integro-differentigu&tions in six-dimensional phase
space. They can be treated only numerically. For a sphirahmetric cluster the number
of dimensions can be reduced by one, from six to five. A sigmifisimplification of the
Boltzmann equations (5), (6) can be achieved by expandmgltttron and ion densities in
terms of their angular moments. This method was succegsipplied for the description of
the evolution of the protoneutron stars [25] and plasmasZ1Jl An assumption has then
to be made that the isotropic components of the electron@ndeénsities are predominant.
Here we mean isotropy in phase space, and not only in sp&ceat.each spatial point
of an isotropic spatial distribution the velocity distrtmn has also to be isotropic. Such
approximate isotropy occurs in systems where there is agteollisional dissipation of
particle energies, and the phase space component of tleetdadl transport is small. This is
certainly the case for low energy electrons inside an iatdehic cluster or gas, as they then
frequently collide (with short range forces) with ions andnas inside this sample.
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The validity of the angular moments method may be also vdrdiposteriori, i.e. after
solving the Boltzmann equations one may compare the maigdithe isotropic component
of the charge densities to the angular ones. If the isotropicponents of the electron and
ion densities obtained with these equations were muchrange the other components of
the electron densities, the angular moments approximetioked correctly, and the solution
of the equation obtained within this approximation is a gestimate of the full solution.

4 Test of Boltzmann method: simplified electron dynamics
inside an atomic cluster

In order to test the applicability and efficiency of the Batiann method for describing the
dynamics of electrons within FEL irradiated samples, weetapplied it to two study cases of
a simplified electron dynamics: (i) the case of pure Coulograthics, where the interaction
of sample with the laser field was restricted to photoiomira¢ffect, (ii) the case where the
complete interaction of the sample with laser field was idetl; i.e. the drift component of
the electron density describing the interaction of freetetms with the electric field of the
laser was treated, and the inverse bremsstrahlung proesssi@iuded.

Our initial configuration was given by a smooth atomic dgniinction, representing a
spherically symmetric cluster consisting %9 neutral xenon atoms. Edges of this sample
were smoothed to facilitate computation. The density inddxeter was comparable to that
of the xenon cluster~ 0.005 1/A3. The radius of this cluster was 25 A. This sample
was irradiated with the VUV FEL photons of energids, = 12.7 eV. For simplicity we
have assumed that the photon pulse had a constant intessitythat it was switched on
instantaneously at = 0 fs. The pulse intensity corresponded to an upper estimatieeof
maximal FEL pulse intensity observed in the experiment,[11 10'* W/cm?.

4.1 Pure Coulomb dynamics inside the irradiated cluster

In this case we have applied the following simplifying asgtions to the electron and
ion/atom dynamics. First, we have expanded the electrosityamsing the angular moment
expansion:

1 € €
PO v 1) = (o (0. 0) + cos(Bu) - pi7 (r0,1) ) ®)

and within this diffusion approximation [25] kept only: {ts zeroth order (isotropic) com-
ponent,pée)(r, v, 1), which corresponds to the number of electrons inside a velal@ment

11



dV = d*r dv, and (ii) its first order (transport) componepﬁf) (r,v,t), which contributes

to the particle flux through the borders of the phase spaeeegie * Radius,r, is the dis-
tance from the centre of the sample=| r |), andv denotes the magnitude of the electron
velocity (v =| v |). The functioncos(f,,.) denotes the cosine of the relative angle between
vectorsv andr. The isotropic component of the electron densdzéflz (r,v,t), has to be a
positive number, as it describes the number of electrons infaitesimal volume element,
dV = d®r d3v. The transport component of the dens}dﬁi,)(r, v, 1), can be a positive or a
negative number. Positive valuespiﬁf) indicate that there is a collective transport in phase
space outwards the sample, the negative ones indicatehirat iis a collective transport
inwards the sample.

The approximation (8) is valid only if the densme% )(r v, t) andp1 (r, v, t) fulfill the
condition:

pS (ry v, 1) >>| i (r,0,8) | (9)

Within the approximation (8) we neglected the drift compatrad the electron density which
is coupled to the laser field. This component will be treatetthe next study case.

Second, as we are only interested in following the electgarachics within this simpli-
fied model, we further assume that the positions of ions aeel fand their velocities remain
equal to zero during the evolution:

o(v)

i ~ 1 G
P, t) = () - =57 (10)

In the true physical case this assumption is valid only dytite first stages of the exposure,
as ions are much heavier than electrons (for X&;. ~ 10° m.). The approximation of a
frozen xenon gas (10) implies that) (r, t) = p{ (r,v = 0, ).

Within the diffusion approximation (8) Boltzmann equatofor the electron density,
Egs. (5), reduce to:

oo (rv,t) v e (v ) Al el pt”) 0@l (r v, 1)
ot 3r2 or 32 Ov

NJ oo
i ) i o(v—w ;
ZW@M&@M@#ﬁﬁ+AMﬁ®%%M%mm

v

—upl) (1,0, )010, (v) |

3within the diffusion approximation the total electron fluxrieal space through the sphere of radiyss:

4 . . . .
il / dvv®r2 p{¥ (r, v, ), and the total flux in velocity space through the sphere ousad, is:

S(v) = dr A(r, pi, 05 02 12 p{ (r, 0, 1), whereA(r, p”, p{”) is the radial acceleration (12).

3 0
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The Coulomb electrostatic force in Eq. (11) has been exmhondeng the multipole ex-
pansion with the accuracy consistent with the accuracy efdifiusion approximation (8).
Electron-ion and electron-atom collisions were assumée igotropic which is a reasonable
approximation at low impact energies of electrons. For thmei&tion purpose the delta-like
photoionization velocity distribution% in Eqg. (11), had to be approximated with a
gaussian profile of a non-zero width and a mean value at theoeleatron velocityp .
The normalization constant of this gaussian profile wasehas order to obtain the correct

number of the photoelectrons released.

Inverse bremsstrahlung process or any other heating mischarere not included within
this study case.
As there is no transport of ions within the approximation, @d), Boltzmann equation

forions (6) reduces to an ordinary rate equation, desaithie change of the number of ions
due to the photo- and collisional ionizations:

(i) ‘ _ o0 .
W0l 00 (et ¢ [ e ool e | -
0
= 000 {iE)n )+ [ at ol ook | (16)
0
wherei = 1,2,..., N;. For atomic densities this equation simplifies to:
9" (,0.8) () 0 R 0
L0 — 000 (B0 + [ vttt} an
g 0

We have prepared a code dedicated for solving Boltzmanntiegsafor a spherically
symmetric atomic cluster located inside a simulation boa fifiite size. This code has been
based on relevant numerical methods [36—38]. Integralgpartthl derivatives in Boltzmann
equations were evaluated using the pseudospectral me®ipd Qur algorithm has been
carefully tested, e.g. the interactions terms were inadustep-by-step into the code, the
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energy and the particle number were monitored during thiugoa. We have proved that
our algorithm was conservative so that particle number amigy were conserved with a
good accuracy with the Boltzmann equations if the souraesexere equal to zero. The
accuracy of the time integration has been checked with twlependent time-integration
methods. Obtaining the predictions for a single case toekraéhours on the AlphaStation
XP1000.

As in this study case the system of electrons and frozen mashed equilibrium within
10 fs of the exposure, we followed the evolution of the sampleéaufd fs of the exposure.
The simulation box had the sized & r < 120 A)x (0 < v < 30 A/fs), and it was divided
into 40x70 grid points respectively. The simulation box correspmhtb a sphere in real
space of radius; = 120 A, and a sphere of radius,= 30 A/fs, in velocity space. This box
was surrounded by an absorbing wall. Figs. 1-11 show thdtsesu

The quantities obtained after solving Boltzmann equatisese: the three-dimensional
electron density functiong”’ (r,v,t), o\ (r,v,t), and the integrated two-dimensional ion/atom
distributions;5)(r, t), recorded at different timeg,= 0, ..., 50 fs. Figs. 1, 2 show an ex-
ample of the isotropic and the transport component of theirele density in phase space ob-
tained with Boltzmann equations at tinte= 2 fs. Plotted are the functionﬁf) (r,v,t) =

r2v? p§-e) (r,v,t), wherej = 0,1. The isotropic component of the electron density func-

tion, ﬁée) (r,v,t), is a positively defined function (Fig. 1). This function exhlized in phase

space (see the contour plot). In contrast, the transporpoaent of the electron density,
ﬁﬁe) (r,v,t), may take both positive and negative values. In the conttmirgh Fig. 2, the
upper part of the contour at = 4 — 8 Alfs with a peak at negative values f)f) (r,v,t)
indicates the inward transport. The lower part of the confat atv = 1 — 3 A/fs with a

peak at positive values (ﬁﬁe)(r, v, t) indicates the outward transport.

These three-dimensional plots are not easy to analyze. tvlmsparent information on
the evolution of the electron cloud can be obtained fromspddthe integrated isotropic and
transport density functions, defined as,

nj(v,t) = /pg-e)(r,v,t) rdr,

n;(r,t) = / pg-e)(r,v, t) v* dv. (18)
The integrated isotropic componeni(v,t) andng(r,t) are related to the full integrated
densities asp' (r, t) = no(r, t), and,p'® (v, t) = ny(v, t), within the diffusion approxima-
tion (8). For ions we havengf)(r, t) = pg)(r,o,t). The total number of electrons (ions),
N9 (t), can then be obtained after performing the integration@fghtropic component of

the density function ovei®r d3v:

4 - / p(()e’i)(r, v,t) r2v?drdv = N©9(t). (19)
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Fig. 3 show the atomic, single ion and double ion density fions. Almost all photo-
electrons have been released within the first femtosecornldeoéxposure. This result is
consistent with the photoionization rate estimated atpghiston energy, the assumed pulse
intensity and the pulse shape. Atomic density significadédgreased within the first fem-
tosecond of the exposure. In contrast, the single ion deasit= 1 fs followed the shape
of the initial atomic distribution at = 0 fs. There were no double or highly charged ions
observed in the sample, as the electrons released wereergetéin enough for further col-
lisional ionizations. Also, photons were assumed to indiingle photoionizations of the
neutral atoms only.

The dynamics of electrons was strongly non-equilibriumirtuthe first stages of the
exposure. Interparticle Coulomb forces were preventingtrabthe electrons from leaving
the ionic sample. Some of the electrons were, however, aldedape. The largest flows of
energy and particles have been observed withiih5 fs of the exposure (Fig. 6d). Within this
time weak collective oscillations of the electron cloudward the ion cloud were observed
(not shown). After this time electrons thermalized, andrthrisotropic transport component
became negligible. Fig. 4 shows the rapid progress of thendléezation process for both
the isotropic and the transport components of the intedrakectron densitypy(v,¢) and
ni(v,t). Theinitial free electron density was equal to zero. Afterfirst femtosecond of the
exposure the shape of the isotropic electron densify, t), followed the gaussian profile
of the photoelectron velocity distribution, and it broaddrwith time. Full thermalization
was achieved at times 10 fs within this test model. We have fitted Maxwell-Boltzmann
distribution to the results on the integrated density fiomctn, (v, ¢), obtained at = 20
fs (Fig. 4): no(v,t) = a - exp(—mwv?/(2kpT)). The electron temperature was estimated
to, kgT = 0.68 — 0.77 eV, which corresponded to the average ene(@y, = 3kp7/2 =
1.02 — 1.15 eV. This value agreed well with the average energy estimattddthe global
parameters at= 20 fs (Fig. 6a,C){FE) = Eyinet/ N = 1.07 eV.

Here we again recall that the energy transferred to the rsybte a single photon of
energy,ll, = 12.7 eV, wasE,,_ = 1.1 eV instead 0f).6 eV, as we had to approximate the
delta-like photoionization velocity distributioA?2) in Eq. (11) with a gaussian profile of
a non-zero width.

Fig. 4b shows the time evolution of the transport componérthe electron density,
ni(v,t), corresponding to the weak plasma oscillations. There tsaang increase of the
outward electron transport (in velocity space) witBifs of the exposure. Energetic elec-
trons can then leave the simulation box (Fig. 6d). Howevesome time pointf ~ 5
fs, slower electrons travelling outward are stopped amdetd back by ions. The inward
transport start then to dominate. After the thermalizatbthe electrons is achieved, the
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collective transport (in velocity space) reduces signifia and the transport component of
the electron cloud becomes small.

Spatial evolution of the electron cloud (Fig. 5), descriliydthe integrated densities,
no(r,t) andny(r,t), is less dynamic than the evolution of the velocity densijtig (v, t)
andnq(v,t). A rapid increase ofiy(r,t) is observed only within the first femtosecond of
the exposure. After this time, the shape of the isotropicpament of the integrated electron
density does not change much with time. Weak plasma osaiiagre visible, if-2 ng(r, t) is
plotted (not shown). The magnitude of the spatial transpamponent of the density func-
tion, ny(r, t), is much smaller than its isotropic componem(r, t), during the evolution.
During the first femtoseconds of the exposure there is a weatkas transport outward, and
the position of the maximum of the transport component pyafes towards lower values
of r at increasing times. This corresponds to a plasma wave gatipg inside the sample.
These weak oscillations occur until abdut— 20 fs of the exposure, when they are damped
due to the fast progressing thermalization of electrons.

In Fig. 6 we plot also global parameters of the sample as imebf time: (a) the total,
kinetic and (b) potential energy of the system, (c) the pkrthumber, and (d) the flows of
energy and of the particle numbers recorded at a fixed distah&0 grid points from the
external borders of the simulation box. These flows give aalae qualitative information
about the escape rate of the electrons at different staghe ef/olution, which is helpful for
estimating the correct size of the simulation box. If the Be would be too small, some
electrons of a total negative energy could leave the boxhduthe evolution. This would
lead to a strong increase of the potential energy within yiséesn and induce an unrealistic
electron dynamics.

Total kinetic energy of the sample and the number of elesten ions increased rapidly
within 2 fs of the exposure. Within and after this time we observeda@ngtoutward flow
of electrons. The fastest electrons were able to leave thelaiion box. Potential energy
slowly increased with time, as more electrons escaped fl@rsimulation box. It was,
however, small if compared to the total energy.

4.2 Extended electron dynamics including drift component belectron
density and inverse bremsstrahlung
Our aim is now to show that this statistical model is also ablpredict higher ionization

states, as observed in experiments [11, 27]. Highly chaigesiwill be created during in-
elastic collisions of ions with energetic electrons. Othercesses can also contribute to the
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formation of highly charged states [15]. Here we conceataat the collisional ionization
that may be a leading process.

Collisional ionization was not possible in the precedingdgtcase 4. 1. , as we did
not include any heating mechanism there, and electronsimeshaold during the exposure.
Here, we enable electron heating, including the inversmbstrahlung process. As we will
later see, this process will lead to an efficient heatingeftedbns, and subsequent collisional
ionizations inside the cluster. As we are only interestefblilowing the electron dynamics
within this simplified model, we will still keep the assungatiof frozen atoms and ions, Eq.
(20).

Again, we stress here that within this study case we do nott@iraproduce the exper-
imental results of Refs. [11,27]. This attempt is plannedtf@ forthcoming papers, as it
requires detailed adjustments of the present model in dadapply it to a realistic case.
Only qualitative comparison of our predictions to the datpassible within this study case.

In order to improve the description of the electromagneiset-matter interaction within
our cluster, we add a drift componep&‘j)(r, v, 1), to the diffusion expansion (8):

1
PO (r, v, t) = —

= (A (r0.0) + cos(Br) - 017 (r,0,1) + cos(8ue) - 97 (r0.1) ) (20)

where the functiomos(6,.) denotes the cosine of the relative angle between vect@streh
velocity, v, and polarization vector of the laser field, This component describes electric
interaction of the electrons with the field of the laser, anthpletes the first-order angu-
lar moment expansion gf®)(r, v,¢) up to the terms involving only polar angles. Terms
involving azimuthal angles are neglected.

After substituting the ansatz (20) to Eq. (5), we obtain @esysof three coupled equa-
tions for p (r, v, t), p\ (r,v, 1), andp’ (r, v, t) (not shown), where we have also included
the inverse bremsstrahlung term defined in Eq. (5). We haseked that the term describing
the coupling of the inverse bremsstrahlung to the isotropraponent of electron density is
dominant. We have also proven that at the assumed paranoétées laser field, the argu-
ment of Bessel function]? (—% €(vl — ve)) is small. Therefore single photon emissions

or absorptions will dominate during the inverse bremssétraprocess.

We have solved the extended equations numerically with amlizBiann solver. The
simulation box had the size0 (< » < 100 A)x (0 < v < 100 A/fs), and it was divided
into 40x 90 grid points respectively. The radius of the sphericafiysietric xenon cluster
located inside this simulation box was 25A. This cluster was irradiated with an intense
pulse of constant intensity,= 10'* W/cm?. We followed the evolution of this system up to
180 fs of the exposure. At that time the majority of electrons &lasady left the sample and
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collisional ionization rate saturated. The repulsive ©oub forces within the sample were
so large that Coulomb explosion of ions should have alretatyesl. This was, however, not
possible within the approximation of frozen ions, and weptm the simulation at entering
this unphysical regime.

As in the previous study case, we followed the evolution i@fdrated cluster, recording
electron and ion densities at different times of the expmgoot shown). With these ob-
servables we estimated global parameters of the systermasdias of time (Fig. 7): (a)
total, kinetic and potential energy, (b) electron tempe®t(c) total number of electrons,
atoms and ions, (d) energy and particle flows. In Fig. 8 we plstied the total numbers of
electrons and ions of different charges recorded as a fumofitime.

Including the drift component (20) into the Boltzmann eguad lead to fast collective
oscillations of the electron cloud. Such plasma osciltaiare expected to appear at intense
laser fields, when the strong electric field of the laser isicgaht to drive electron cloud
forth and back in the direction of the field polarization. F&yshows the oscillations of
kinetic energy and total energy of the electrons due to fiese

In our extended model electrons gained energy via the iavarsmsstrahlung process.
This effect is reflected in the shapes of the kinetic energyecand of the temperature curve
(Figs. 7a,b). The total kinetic energy of electrons andrttegnperature increased with time
until ~ 160 fs of the exposure (Fig. 7a). After this time most of the el@ts were energetic
enough to leave the simulation box (Fig. 7c,d), and the tkitatic energy of electrons
within the box decreased. However, the temperature ofrelestwithin the simulation box
still grew for some time as the remaining electrons stilihgdi energy from the laser field
with the inverse bremsstrahlung process.

Two phases of fast electron escape occurred at alibut30 fs and after160 fs of the
exposure. These phases were reflected in energy flows relcdulimg the exposure (Fig.
7d). The first escape phase occurred before highly charged+@ and higher) were created
within the sample (Fig. 8a). Some of electrons gained theusutnaf energy sufficient to leave
the sample and the simulation box. This escape phase ented,the attracting Coulomb
force within the sample increased. It then kept most of teetedns inside the sample until
the second escape phase started at ab#ufs. Within this phase a majority of electrons
left the simulation box. If the ions were not frozen, this gslabhave lead to a fast Coulomb
explosion of remaining ions.

Between these two escape phases highly charged ions haveilgzged in the subse-
guent ionization processesiet? — Xetitl whereq = 0,...,6. Doubly charged ions
were observed aftér— 6 fs of the exposure. Triply charged ions were observed after40
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of the exposure. lons of charges +4 up to +7 were createdifatbe exposure, starting at
70 (Xe +4) and120 fs (Xe +7) of the exposure.

At the end of the exposure £ 180 fs) there were no neutral atoms left within the cluster.
Contributions of ions of specific charges to the total nundfeons were following: Xe +1
(~ 10%), Xe +2 (~ 7%), Xe +3 (~ 11%), Xe +4 (~ T%), Xe +5 (~ 10%), Xe +6 (~ 16%)
and Xe +7 & 39%). The contribution of Xe +7 ions was the largest one.

Summary and conclusions.

We have formulated general Boltzmann equations descrtbhmgvolution of a non-uniform
sample irradiated with VUV FEL photons. We have solved tleggeations numerically with
a dedicated algorithm. Two study cases of a simplified edecttynamics inside a spher-
ically symmetric xenon cluster were considered. In casermthe laser-matter interaction
was restricted to the photoionization effect, results ioletd with Boltzmann equations gave
a comprehensive description of the evolution of electraudlduring its non-equilibrium
(before thermalization) and equilibrium stages (afterriaization). At photon energies,
E., = 12.7 eV, thermalization of electrons was observed aftefs of the exposure within
this system. This thermalization was an effect of long-ea@gulomb forces, and not of the
interparticle collisions, as the energy transfers in the-momizing electron collisions were
not allowed within this model.

During the exposure almost all photoelectrons were coniim&de the ion cluster by the
Coulomb internal field. Only a few photoelectrons were eetcgenough to escape. There-
fore the electrostatic energy of the sample was too low telacate remaining electrons and
initiate further collisional ionizations. These resultstirm that efficient mechanisms of en-
ergy pumping are necessary for the creation of highly clthigies in the sample irradiated
with VUV photons.

In the second study case we extended the description of ke taatter interaction in-
cluding the drift component of electron density. This dedfimponent induced fast collective
oscillations of the electron cloud in the intense electetdfiof the laser.

In this case the inverse bremsstrahlung process was atsalilted as a mechanism of
energy pumping. We then observed higher ionization staemted within the irradiated
cluster after about fs (Xe +2),30 fs (Xe +3),70 fs (Xe +4),90 fs (Xe +5),100 fs (Xe +6)
and120 fs (Xe +7) of the exposure. These states were created dumahastic collisions of
energetic electrons with ions. Simulation ended up withntiagority of Xe +7 ions € 40%)
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within the sample.

Two phases of fast electron escape were observed duringplose. After the second
escape phase majority of the electron has left the samptkatithis time the Coulomb
explosion of unscreened ions should have started. This wiagassible, as the ions were
kept frozen within this model.

The results obtained with the extended model are promisikg.observe a qualitative
agreement between the charge densities and the averagg absorbed per atom estimated
with this primary model and the experimental data. In the &xperiments [11] at a power
density in the rang&0'3- 10** W/cm? charge states up to 8+ where observed. The kinetic
energy of the ions varies between 100 eV and 2500 eV, depgndithe charge state. These
numbers are in the same range as the values predicted ingbenpmork. However, at this
stage we can make only qualitative comparison of our priedisto the data. The model de-
veloped here needs further improvements of its physicalragtons in order to be applied
to a realistic case. Effects of plasma screening on atormaoggrievels and on photo- and
collisional ionization cross sections have to be treatedZ9 So far potentials used in equa-
tions were unscreened, and cross sections (also inversestradlung cross sections) were
also obtained with those unscreened potentials. Incluttiagscreening effects within this
non-uniform sample will significantly affect the ionizatiolynamics. Within the improved
model also the realistic pulse shape, correct cluster sidelansity should be implemented.
lons should not be kept frozen during the evolution. Impadrtaechanisms of thermaliza-
tion: recolil effects and short-range electron-electrderactions, need to be treated in this
improved model. Possible influence of recombination andioéiomany body processes on
the sample dynamics requires dedicated analysis.

However, we do not expect that including further interatsiinto these equations will
lead to more numerical complicacies. As the main nonlingamnd stability problems have
been successfully treated in the primary algorithm, argldalgorithm correctly followed the
dynamics of the sample in our study cases, we expect thahitaaily be extended for a
more advanced model.

At this point we have also to discuss the applicability of thassical approximation
for describing the evolution of FEL irradiated samples (aks® [39]). We stress here that
our final aim is to obtain a description of radiation damagshatrt wavelenghts of photon
radiation (soft and hard X-rays), when plasma electronsmpéaare hot, and their treatment
with classical Boltzmann equations therefore justified. eWkwve try to apply the classical
description to a sample irradiated with VUV FEL photons)of~ 100 nm (£, = 12.7
eV), and estimate the degeneracy param®ter FEr.,..;/kgT for electrons, it is~ 1 for
electron plasma of temperatui®~ 1 eV and density:. ~ 10*2cm =3, and it is~ 20 for the
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plasma of the same temperature and densitye 10*cm—2 These values are much above
the classical regimél < 1.

However, the evolution of an irradiated sample is a non{dayium process, and if the
energy gain by electrons and electron escape rate from thplsavere fast enough, the
system could enter the classical regime very early in thesxg. Classical description
could then still be applicable. This scenario is probabteoeding to the results obtained
with our second study case. Therefore, in the realistic tas@# be necessary to monitor
the degeneracy parameters during the evolution of the samleir value will justify the
validity of the classical approximation.

We believe that despite those limitations the method pregpdere offers a unique pos-
sibility of studying the complex dynamics of large spatialbn-uniform samples, irradiated
with the FEL pulses. Whereas in real experiments the samspdxposed to several pro-
cesses contributing simultaneously to the radiation dantog Boltzmann simulation tool
enables one to include specific interactions only. In thig tix@ influence of different ion-
ization mechanisms on the overall dynamics of the samplecaveniently be tested. Also,
accurate time characteristics of damage processes cayleasbtained.

To sum up, Boltzmann approach is a first principle model whatfollow non-equilibrium
classical processes in phase space. Single particle @snsiblved with Boltzmann equa-
tions include the full information on particle positionsdavelocites, and not only on their
collective components. Average observables obtained twétBoltzman solver are not bi-
ased with statistical errors. However, the information lo@ three and higher order cor-
relations is not included within Boltzmann equations. ltthg the effects of many body
correlations into these classical equations is generallypossible, only in a few cases and
under simplifying assumptions, e.g. by applying the FolRienck equation in case of long-
range Coulomb forces. The other serious disadvantage dBdltemann approach is its
numerical complexity which requires an application of athed numerical methods.

Computational costs within Boltzmann approach do not seélethe number of atoms
within a sample, as in the MC method. Therefore, a Boltzmahres is usually much more
efficient for larger samples of a regular structure than a t@arlo code. This does not
apply for samples of a complex or irregular structure. Aséheamples cannot be accurately
represented by a smooth density function, Boltzmann egusttan only give a crude esti-
mate of their damage dynamics. Improving the accuracy witte Boltzmann approach is
possible only by extending the number of grid points useépoasent the sample. This may
lead to very long computational times when a large numberidfgpints was applied.

To sum up, we have demonstrated that the Boltzmann equatiers useful method to
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follow the radiation damage of non-uniform samples irrgetlawith the FEL photons. We
believe that these equations may soon become a standarfditaolestigating the complex
dynamics of irradiated samples.
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b)

Figure 1: Isotropic component of the electron density in gghspace,po(r,v,t) =
r?v? po(r,v,t), recorded at time, = 2 fs: a) three-dimensional view and b) contour plot.
This density was obtained in case of the irradiation with\th®/ FEL photons of energies,
E, = 12.7 eV. Coulomb interactions between charged particles wenleidied. Initial den-
sity of free electrons at= 0 fs was equal t®. The ranges of axes correspond to the size of
the simulation box.
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Figure 2: Transport component of the electron density inspkepacep(r,v,t) =
r?v? pi(r,v,t), recorded at time, = 2 fs: a) three-dimensional view and b) contour plot.
This density was obtained in case of the irradiation with\th®/ FEL photons of energies,
E, = 12.7 eV. Coulomb interactions between charged particles werledied. Initial den-
sity of free electrons at= 0 fs was equal t@. The ranges of axes correspond to the size of
the simulation box.
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Figure 3: Integrated atom and ion densitiego’”(r, t): a) atomic density, b) single ion
density, ¢) double ion density, recorded at timess 0,...,50 fs. These densities were
obtained in case of the irradiation with the VUV FEL photorigpergies,E, = 12.7 eV.
Coulomb interactions between charged particles were declu
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: @) isotropic congudm, (v, t), b) transport compo-

nent,n, (v, t), recorded at different times,= 0,...,50 fs. These densities were obtained
in case of the irradiation with the VUV FEL photons of enesji, = 12.7 eV. Coulomb
interactions between charged particles were included.
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Figure 5: Integrated electron density: a) isotropic congum(r, t), b) transport compo-
nent,n,(r,t), recorded at different timeg,= 0,...,50 fs. These densities were obtained
in case of the irradiation with the VUV FEL photons of enesgi, = 12.7 eV. Coulomb
interactions between charged particles were included.
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Figure 6: Global parameters of the irradiated sample agifumeof time: a) total energy, b)
potential energy, c) number of electrons and singly chargesl in the sample, d) flows of
energy and particles measured at the distance of 10 gridsoioom the external borders of
the simulation box. These parameters were obtained in ¢ddbe oradiation with the VUV
FEL photons of energiedy, = 12.7 eV. Coulomb interactions between charged particles
were included.
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Figure 7: Global parameters of the irradiated sample agifumof time: a) total, kinetic and
potential energy, b) electron temperature, ¢) number atras and gross-number of ions,
Nion = >_; i+~ N;, whereN; is the number of ions of charged) flows of energy and particles
measured at the distance of 16 grid points from the extemradrs of the simulation box.
These parameters were obtained in case of the irradiatitntive VUV FEL photons of
energies,l, = 12.7 eV, in the extended model, where both the inverse bremsstgh
process and drift component of the electron density weledied.
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Figure 8: Number of electrons and ions created within thepdarduring the exposure to
VUV FEL photons of energiedy, = 12.7 eV: a) electrons and ions up to +3, b) electrons
and ions from +4 up to +7. Those results were obtained witrettended model, where
both the inverse bremsstrahlung process and drift comparidhe electron density were
included.
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Figure 9: Total, kinetic and potential energy of electronthim the simulation box within
first femtoseconds of the exposure. Characteristic plastidations are reflected by kinetic

energy curve. Those results were obtained with the extentwmiel, where both inverse
bremsstrahlung process and drift component of the eledeosity were included.
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