Fit of Electroweak Parameters in Polarised Deep-Inelastic Scattering using data from the H1 experiment

Daniel Britzger for H1 Collaboration and H. Spiesberger

DIS 2016 – Workshop on DIS and Related Subjects
DESY, Hamburg-Bahrenfeld, Germany
Deep-inelastic scattering

Kinematic variables
- virtuality of exchanged boson
 \[Q^2 = -q^2 = -(k - k')^2 \]
- Bjorken scaling variable
 \[x = \frac{Q^2}{2p \cdot q} \]
- Inelasticity
 \[y = \frac{p \cdot q}{p \cdot k} \]

Neutral current scattering
\[ep \rightarrow e'X \]

Charged current scattering
\[ep \rightarrow \nu_e X \]

Factorization in ep collisions
Hard scattering coefficients and parton distribution functions (PDFs)

\[\sigma_{ep \rightarrow eX} = \int p \rightarrow i \otimes \hat{\sigma}_{ei \rightarrow eX} \]

PDFs are not observables – only structure functions are
PDFs are largely determined from DIS data
Polarised deep-inelastic ep scattering

Neutral and charged current at tree level

\[\frac{d\sigma_{NC}^{\pm}}{dQ^2 dx} = 2\pi\alpha^2 \left(\frac{1}{Q^2} \right)^2 \left(Y_+ F_2 + Y_+ x F_3 + y^2 F_L \right) \]

\[\frac{d\sigma_{CC}^{\pm}}{dQ^2 dx} = \frac{1 \pm P}{2} \frac{G_F}{4\pi x} \left(\frac{m_W^2}{m_W^2 + Q^2} \right)^2 \left(Y_w W^z_2 \pm Y_w x W^z_3 - y^2 W_L^z \right) \]

\[Y_\pm = 1 \pm (1 - y)^2 \]

Generalised structure functions

\[F_2 = F_2^Y + \kappa_Z (v_e \mp Pa_e) F_2^{YZ} + \kappa_Z^2 (v_e^2 + a_e^2 \pm P v_e a_e) F_2^Z \]

\[x F_3 = + \kappa_Z (\pm a_e + P v_e) F_3^{YZ} + \kappa_Z^2 \left(\pm 2 v_e a_e - P (v_e^2 + a_e^2) \right) x F_3^Z \]

\[Z^0-exchange \]

\[\kappa_Z (Q^2) = \frac{Q^2}{Q^2 + m_Z^2} \frac{G_F m_Z^2}{2\sqrt{2} \pi \alpha} \]

Structure functions in QPM

\[[F_2, F_2^{YZ}, F_2^Z] = x \sum_q \left[e_q^2, 2 e_q v_q, v_q^2 + a_q \right] [q \bar{q}] \]

\[[x F_3^{YZ}, x F_3^Z] = x \sum_q \left[2 e_q a_q, 2 v_q a_q \right] [q \bar{q}] \]

Weak couplings to Z-boson

\[v_f = I_{f,L}^{[3]} - 2 e_f \sin^2 \theta_W \]

\[a_f = I_{f,L}^{[3]} \quad (f = e, u, d, ...) \]

Calculations in on-shell scheme

\[G_F = \frac{2\pi\alpha}{2\sqrt{2} m_W^2} \left(1 - \frac{m_W^2}{m_Z^2} \right)^{-1} \left(1 + \Delta r \right) \]

Corrections to G_F

\[\Delta r = \Delta r \left(\alpha, m_W, m_Z, m_t, m_H, ... \right) \]

Parameters to calculations

Parameters to cross section calculation: \(\alpha, m_Z, m_W, (m_t, m_H, ...) \)

More general, also couplings: \(v_e, a_e, v_u, a_u \) and \(v_d, a_d \)
HERA Operation

HERA-I operation 1993-2000
- $E_e = 27.6$ GeV
- $E_p = 820 / 920$ GeV
- $\sqrt{s} = 301 \ & \ 318$ GeV
- int. Lumi. ~ 110 pb$^{-1}$

HERA-II operation 2003-2007
- $E_e = 27.6$ GeV
- $E_p = 920$ GeV
- $\sqrt{s} = 318$ GeV
- int. Lumi. ~ 330 pb$^{-1}$
- Longitudinally polarised leptons

Polarisation:

$$P_e = \frac{N_R - N_L}{N_R + N_L}$$

Low-Energy Run 2007
- $E_e = 27.6$ GeV
- $E_p = 575 \ & \ 460$ GeV
- $\sqrt{s} = 225 \ & \ 251$ GeV
- Dedicated F_L measurement
The H1 Detector

H1 multi-purpose detector
- Asymmetric design

Trackers
- Silicon tracker
- Jet chambers
- Proportional chambers

Calorimeters
- Liquid Argon sampling calorimeter
- SpaCal: scintillating fiber calorimeter

Superconducting solenoid
- 1.15T magnetic field

Muon detectors

Excellent control over experimental uncertainties
- Overconstrained system in NC DIS
- Electron measurement: 0.5 – 1% scale uncertainty
- Jet energy scale: 1%
- Luminosity: 1.5 - 2.5%
- Continuous upgrades with time
H1 Structure Function Data

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Q^2 min</th>
<th>Q^2 max</th>
<th>No. Points</th>
<th>Polarisation [%]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>e+ Combined low-Q^2</td>
<td>12 [0.5]</td>
<td>150</td>
<td>81 [262]</td>
<td></td>
<td>EPJC71 (2011) 1579</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>arXiv:1012.4355</td>
</tr>
<tr>
<td>e+ Combined low-E_p</td>
<td>12 [1.5]</td>
<td>90</td>
<td>118 [136]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e+ NC 94-97</td>
<td>150</td>
<td>30000</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e+ CC 94-97</td>
<td>300</td>
<td>15 000</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e− NC 98-99</td>
<td>150</td>
<td>30 000</td>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e− CC 98-99</td>
<td>300</td>
<td>15 000</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e− NC 98-99 high y</td>
<td>100</td>
<td>800</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e− NC 99-00</td>
<td>150</td>
<td>30 000</td>
<td>147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e+ CC 99-00</td>
<td>300</td>
<td>15 000</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e+ NC high y</td>
<td>60</td>
<td>800</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e− NC high y</td>
<td>60</td>
<td>800</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e+ NC L</td>
<td>120</td>
<td>30 000</td>
<td>137</td>
<td>-37.0 ± 1.0</td>
<td>JHEP 1209 (2012) 061</td>
</tr>
<tr>
<td>e+ CC L</td>
<td>300</td>
<td>15 000</td>
<td>28</td>
<td>-37.0 ± 1.0</td>
<td>arXiv:1206.7007</td>
</tr>
<tr>
<td>e+ NC R</td>
<td>120</td>
<td>30 000</td>
<td>137</td>
<td>+32.5 ± 0.7</td>
<td></td>
</tr>
<tr>
<td>e+ CC R</td>
<td>300</td>
<td>15 000</td>
<td>28</td>
<td>+32.5 ± 0.7</td>
<td></td>
</tr>
<tr>
<td>e− NC L</td>
<td>120</td>
<td>50 000</td>
<td>138</td>
<td>-25.8 ± 0.7</td>
<td></td>
</tr>
<tr>
<td>e− CC L</td>
<td>300</td>
<td>30 000</td>
<td>29</td>
<td>-25.8 ± 0.7</td>
<td></td>
</tr>
<tr>
<td>e− NC R</td>
<td>120</td>
<td>30 000</td>
<td>139</td>
<td>+36.0 ± 0.7</td>
<td></td>
</tr>
<tr>
<td>e− CC R</td>
<td>300</td>
<td>15 000</td>
<td>28</td>
<td>+36.0 ± 0.7</td>
<td></td>
</tr>
</tbody>
</table>
Fit methodology I

Determine light-quark couplings
• Use iterative minimisation procedure (‘fit’) of cross section predictions to data

Unfortunate correlation
• PDFs have considerable uncertainties
• These PDFs are essentially determined from H1 structure function data
 -> Large correlations
• Consider PDF uncertainty by simultaneous fit of PDFs and light quark couplings

Consistency of fit-parameters in SM formalism
• Perform calculations strictly in on-shell scheme
 Parameters are: α, m_Z, m_W, (m_t, m_H, ...)

Polarisation measurement
• Measurements of the beam polarisations are measurements on their own
 -> Consider these measurements as independent measurements in fit

1-loop EW corrections
• May be considered in terms of ‘EW form factors’
• Are ignored in the present analysis, but will be included in the future
Fit methodology II

New C++-based fitting code for PDF and more general fits developed (Alpos)

- DGLAP evolution of PDFs in NNLO QCD (QCDNUM with ZMVFNS)
- PDFs are parameterised at starting scale $Q_0^2 = 1.9 \text{GeV}^2$ (similar to HERAPDF2.0)

\[
\begin{align*}
 x_g & \to x_g \\
 x_{u,v} & \to x_U = x_u + x_c \\
 x_d & \to x_D = x_d + x_s \\
 x_{\bar{U}} & \to x_{\bar{U}} = x_{\bar{u}} + x_{\bar{c}} \\
 x_{\bar{D}} & \to x_{\bar{D}} = x_{\bar{d}} + x_{\bar{s}}
\end{align*}
\]

- Use only data with $Q^2 \geq 12 \text{ GeV}^2$

χ^2 Definition

- Uncertainties on cross sections are assumed to be 'log-normal' distributed (relative uncertainties)
- Uncertainties on polarisation measurements are assumed to be 'normal' distributed
- Correlations of syst. uncertainties between different datasets are considered

\[
\chi^2 = \left(\log(d) - \log(t) \right)^T V_R^{-1} \left(\log(d) - \log(t) \right) + \left(d - t \right)^T V_A^{-1} \left(d - t \right)
\]

Fit parameters

- 13 PDF parameters
- 4 polarisation values
- 4 Light-quark couplings (or other SM parameters)
- More general also 'nuisance parameters' of syst. uncertainties
Light quark couplings

Couplings of light quarks to Z-boson
- $\chi_2^2 / \text{ndf} = 1370.5 / (1388 - 21)$
- u-type coupling better constrained than d-type coupling
 -> sensitivity from valence quarks
- Results compatible with SM expectation
- PDF uncertainties are small

Comparison to H1 HERA-I
- Considerably improved sensitivity using final H1 HERA-II data
- Polarisation in HERA-II important for vector couplings

Fit: PDF + 2 couplings
- Reduced correlations and uncertainties
- Correlations between a_u-a_d and v_u-v_d are large
Light quark couplings

Couplings of light quarks to Z-boson
 Effective couplings from asymmetry at Z-pole
- D0 [Phys. Rev. D 84 (2011) 012007]
 Forward-backward charge asymmetry

Comparable precision of complementary processes
Study of Standard Model Parameters

Standard Model is now overconstrained
- Important to study consistency in many complementary processes
- HERA: Space-like momentum transfers
- Only purely virtual exchange of bosons

\((m_W - m_Z) + PDF \) fits
- Assume \(\alpha \) is known
- On-shell masses \(m_W \) and \(m_Z \) are only free EW parameters
- Agreement within PDG14 SM values
- Large correlation between \(m_W \) and \(m_Z \)

Mass of W-boson
Take other masses \((m_Z) \) as external input to calculations

\[
m_W = 80.407 \pm 0.118 \text{ (exp, pdf-fit)} \pm 0.005 \text{ (} m_Z, m_t, m_H \text{)} \text{ GeV}
\]

Approx. half the exp. uncertainty may be attributed to PDFs

Compare to H1 HERA-I: \(m_W = 80.786 \pm 0.205 \text{ (exp)} +0.063_{-0.098} \text{ (th)} \text{ GeV} \)

\[
m_{W,PDG} = 80.385 \pm 0.015 \text{ GeV}
\]
Study of Standard Model Parameters

Different view on SM parameters
- Fermi coupling constant G_F
 \[G_F = \frac{\pi \alpha}{\sqrt{2} m_w^2 \sin^2 \theta_W} \left(1 + \Delta r \right) \]
- Weak mixing angle
 \[\sin^2 \theta_W = 1 - \frac{m_w^2}{m_Z^2} \]

Perform calculations consistently in on-shell scheme (α, m_Z, m_w)
- Calculate m_Z (iteratively) from G_F or $\sin^2 \theta_W$

Results from fits together with PDF and m_w
- H1 values consistent with precise values from PDG
- Correlation to m_w are different for m_Z, $\sin^2 \theta_W$ and G_F
Exploit Q^2 dependence of data

Virtually exchanged bosons allow for SM tests at various energy scales

- Weak mixing angle is extracted for different scales $\mu = \sqrt{Q^2}$
- Simultaneous fit of PDF and values of $\sin^2 \theta_W$
- Data are subdivided into different Q^2 regions each with independent $\sin^2 \theta_W(Q^2)$

Results

- Results compatible with precise value from Z-pole measurements
- Unique measurement of weak mixing angle at different scales
- Comparison to MSbar values straight forward

Graphs

- On-shell scheme
- MS scheme
- PDG14
Summary and Outlook

Light quark couplings to Z-boson
- Couplings determined from all H1 structure function data
- Longitudinal polarisation improves significantly H1 HERA-I result
- Values are consistent with SM expectations and compatible with other collider data

Standard model tests
- SM parameters are tested in deep-inelastic scattering
- Good consistency is found for m_Z, m_W, G_F and $\sin^2\Theta_W$
- Weak mixing angle is determined at different scales in a single experiment

W-boson mass
- W-boson mass determined with an experimental precision of 118 MeV
- Fitted value consistent with precise direct measurements
- Significantly improves H1 HERA-I results ($\Delta m_W \sim 200$ MeV)

Outlook
- Calculations to be supplemented with full 1-loop EW corrections
- \rightarrow NNLO-QCD + NLO-EW fit to H1 data