Jet Production at Low Momentum Transfer at HERA

Daniel Britzger for the H1 Collaboration

DIS 2016 – Workshop on DIS and Related Subjects
DESY, Hamburg-Bahrenfeld, Germany
12.04.2016
Deep-inelastic scattering

Neutral current deep-inelastic scattering
Process: \(ep \rightarrow e'X \)
Electron or positron

Kinematic variables
Virtuality of exchanged boson \(Q^2 \)
\[
Q^2 = -q^2 = -(k - k')^2
\]
Inelasticity
\[
y = \frac{p \cdot q}{p \cdot k}
\]

Factorisation in \(ep \) collisions
Hard scattering coefficients and parton distribution functions (PDFs)
\[
\sigma_{ep \rightarrow eX} = \int_{p \rightarrow i} \hat{\sigma}_{ei \rightarrow eX}
\]

Predictions in perturbative QCD
Hard scattering is calculated perturbatively
PDFs have to be determined from experimental data (usage of DGLAP)
Jet production in ep scattering

Jet measurements are performed in Breit reference frame
- Exchanged virtual boson collides 'head-on' with parton from proton

Jet measurement sensitive to α_s already at leading-order
- Boson-gluon fusion
- QCD compton

Trijet measurement
- More than three jets with significant transverse momenta
- Leading-order already at $O(\alpha_s^2)$
The HERA ep collider

HERA ep collider in Hamburg

- Data taking periods
 - HERA I: 1994 – 2000
 - HERA II: 2003 – 2007
- Special runs with reduced E_p in 2007
- Delivered integrated luminosity ~ 0.5 fb$^{-1}$

HERA-II period

- Electron and positron runs
- $\sqrt{s} = 319$ GeV
 - $E_e = 27.6$ GeV
 - $E_p = 920$ GeV
- Analysed int. Luminosity: $L = 184$ pb$^{-1}$
The H1 experiment

H1 multi-purpose detector
Asymmetric design
Trackers
- Silicon tracker
- Jet chambers
- Proportional chambers
Calorimeters
- Liquid Argon sampling calorimeter
- SpaCal: scintillating fiber calorimeter
Superconducting solenoid
- 1.15T magnetic field
Muon detectors

Excellent control over experimental uncertainties
- Overconstrained system in NC DIS
- Electron measurement: 0.5 – 1% scale uncertainty
- Jet energy scale: 1%
- Luminosity: 2.5%
Analysis strategy and kinematic range

Data must be corrected for detector effects
- Kinematic migrations
- Acceptance and efficiency effects

Regularised unfolding
- Matrix based unfolding method
- Consider an 'extended phase space' for accurate description of migrations into and out of 'measurement phase space'

Extended phase space for unfolding

<table>
<thead>
<tr>
<th>NC DIS</th>
<th>$Q^2 > 3$ GeV2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$y > 0.08$</td>
</tr>
<tr>
<td>(inclusive) Jets</td>
<td>$P_T^{jet} > 3$ GeV</td>
</tr>
<tr>
<td></td>
<td>$-1.5 < \eta^{lab} < 2.75$</td>
</tr>
<tr>
<td>Dijet and Trijet</td>
<td>$<P_T^{jet}> > 3$ GeV</td>
</tr>
</tbody>
</table>

Phase space of cross sections

<table>
<thead>
<tr>
<th>NC DIS</th>
<th>$5 < Q^2 < 100$ GeV2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$0.2 < y < 0.65$</td>
</tr>
<tr>
<td>(inclusive) Jets</td>
<td>$P_T^{jet} > 5$ GeV</td>
</tr>
<tr>
<td></td>
<td>$-1.0 < \eta^{lab} < 2.5$</td>
</tr>
<tr>
<td>Dijet and Trijet</td>
<td>$M_{jj} > 18$ GeV</td>
</tr>
<tr>
<td></td>
<td>$<P_T^{jet}> > 5$ GeV</td>
</tr>
</tbody>
</table>
Control distributions

Acceptance of NC DIS events
- Scattered lepton is found in SpaCal
- Lepton energy $E_e > 11$ GeV
- Selection based on un-prescaled SpaCal electron trigger

Monte Carlo generators
- Rapgap: LO matrix elements + PS
- Djangoh: Color-dipole model
- String fragmentation for hadronisation

Background
- Photoproduction simulation using Pythia
- Normalised to data using dedicated event selection
- Background for jet quantities almost negligible
Detector-level distributions for jets

Jet reconstruction
- k_T jet algorithm with $R=1$
- Jets built from tracks and clusters
- Jet energy calibration using neural networks

Monte Carlo predictions
- MC simulations used for unfolding procedure
- Jet multiplicities and spectra not well modelled
 - Djangoh: p_T^{jet} spectra too hard
 - Rapgap: Jet multiplicity underestimated
 - Both generators tend to have too few jets in forward direction
- -> MC generators are weighted to describe data
- Weighted MC predictions

Dijet and Trijet
- Distributions raise steeply due to $p_T^{\text{jet}} > 5$ GeV requirement
- Extended phase space important for migrations
Regularised unfolding

Regularised unfolding using ROOT::TUnfold
- Calculate unfolded distribution x by minimising
 \[
 \chi^2(x, \tau) = (y - Ax)^T V_y^{-1} (y - Ax) + \tau L^2
 \]
- Linear analytic solution
- Linear propagation of all uncertainties
- Statistical correlations are considered in V_y

Simultaneous unfolding of Inclusive jet, Dijet, Trijet, NC DIS
- Similar to EPJ C75 (2015) 2
 -> One measurement of multiple observables
- Matrix constituted from $O(10^6)$ entries
- Migrations in up to 6 variables considered for a single measurement
- 'detector-level-only' jets/events are constrained with NC DIS data
- System of linear equation becomes overconstrained when using more bins on detector than on generator level

\[
\chi^2(x, \tau) = (y - Ax)^T V_y^{-1} (y - Ax) + \tau L^2
\]
Data to theory comparisons

Data is compared to predictions based on next-to-leading order QCD calculations

NLO calculations
nlojet++ (Z. Nagy et al.) with NNPDF 3.0
- $ep \rightarrow 2 \text{jets}$ for inclusive jet and dijet
- $ep \rightarrow 3 \text{jets}$ for trijets
Scale choices
$$\mu_r^2 = \mu_f^2 = \frac{1}{2} \left(P_T^2 + Q^2\right)$$

Estimated uncertainty
- 6-point asymmetric scale variations
k-factors: $0.9 < \text{NLO/LO} < 3.8$

Hadronisation corrections to NLO predictions
Lund string model
- Average of correction factors from the two MC models
Multiplicative factors
- typically $0.88 - 0.95$
- up to 0.75 for trijets at low $<P_T>$

Corrections to data
Bin-wise correction factors for QED radiative effects
Dijet cross sections

Double-differential Dijet cross sections

\[\langle P_T \rangle = \frac{P_{T,1} + P_{T,2}}{2} \]

High precision
- Exp. uncertainty dominated by jet energy scale and model uncertainty

Compared with NLO
- NLO gives reasonable description over full kinematic range
- Large k-factors may indicate relevant contributions beyond NLO
- Large uncertainties from scale variation

Data precision overshoots significantly theory precision
Inclusive jet cross sections

Double-differential inclusive jet cross sections

Inclusive jets
- Count each jet in an NC DIS event
- Stat. uncertainty and correlations are measured
- Well described by NLO

Compared to H1 HERA-I
- Largely independent measurement
- HERA-II data with comparable precision
- Benefit from refined experimental methods
- Statistical uncertainty reduced for high P_T and high Q^2

Inclusive jet
- $H1$ HERA-II (prel.)
- Systematic uncertainty
- NLO ⊗ hadr. corr.
- $H1$ HERA-I
Double-differential Trijet cross sections

- Precision limited by systematic uncertainties over whole kinematic range
- dominated by: Jet energy scale and model uncertainty
- At low values of Q^2:
 Data precision significantly overshoots NLO precision

$$\langle P_T \rangle = \frac{P_{T,1} + P_{T,2}}{2}$$
Correlation matrix of multijets

Covariance matrix
- Correlations between all data points are measured
- Obtained through linear error propagation of statistical uncertainties

Correlations
- Resulting from unfolding
- Physical correlations
 - Between measurements
 - Within inclusive jet

Useful for
- Cross section ratios
- Combined fits
- Normalised cross sections
History and Outlook

Last missing piece of H1 jet legacy

<table>
<thead>
<tr>
<th>Process</th>
<th>HERA-I</th>
<th>HERA-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Q^2</td>
<td>Inclusive jet</td>
<td>This analysis</td>
</tr>
<tr>
<td></td>
<td>Dijet</td>
<td>H1prelim 16-061</td>
</tr>
<tr>
<td></td>
<td>Trijet</td>
<td></td>
</tr>
<tr>
<td>High Q^2</td>
<td>Inclusive jet</td>
<td>EPJ C 75</td>
</tr>
<tr>
<td></td>
<td>Dijet</td>
<td>(2015) 2</td>
</tr>
<tr>
<td></td>
<td>Trijet</td>
<td></td>
</tr>
</tbody>
</table>

Probing running of α_s over one order of magnitude with all H1 jet data

- Very high experimental precision on $\alpha_s(M_Z)$
 Expect experimental precision of ~5.5%
- Looking forward for theory developments
 - aNNLO for low-Q^2 regime
 - full NNLO predictions
 (Currie, Niehues, Gehrmann et al., see plenary on monday)
Summary

New double-differential inclusive jet, dijet and trijet cross sections
- New measurements of multijet cross sections at low Q^2 presented
- Large HERA-II dataset analysed
- High statistical and experimental precision
- Analysis uses final H1 data re-processing and precise calibration of the H1 detector
- Sophisticated unfolding allows simultaneous usage of all data in future fits
- Data well described by NLO predictions within large theoretical uncertainties

Outlook
- Data will be valuable input for α_s extractions
 - Use HERA-I and HERA-II, low- and high-Q^2 jet data
- Looking forward for confrontation with aNNLO and NNLO predictions