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Abstract: We report a new classification scheme with computation
complexity well within the capacity of a PC for coherent X-ray imaging
of single biomolecules. In contrast to current methods, which are based on
data from large scattering angles, we propose to classify the orientations of
the biomolecule using data from small angle scattering, where the signals
are relatively strong. Further we integrate data to form radial and azimuthal
distributions of the scattering pattern to reduce the variance caused by the
shot noise. Classification based on these two distributions are shown to
successfully recognize not only the patterns from molecules of the same
orientation but also those that differ by an in-plane rotation.
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1. Introduction

With the advent of the X-ray free electron laser, it is possible to image a single biomolecule
through coherent diffraction imaging [1–4], albeit at lower wavelengths. Many promising ap-
proaches have been suggested for accomplishing this goal [5–18]. In a typical coherent X-ray
imaging experiment, single biomolecules are injected into a pulsed X-ray beam. The elasti-
cally scattered photons are recorded by a detector array placed downstream. Due to the ul-
trashort time scale of the pulse, the scattering pattern can be recorded before the molecule is
destroyed [19]. The recorded scattering data are then sorted according to the orientations of the
biomolecules. Signal strength can be improved by averaging shots of the biomolecules having
the same orientation, which will benefit subsequent steps of phase retrieval and image recon-
struction. Due to the small size of the biomolecule and small elastic scattering cross-section of
the electron, we encounter two problems for the coherent X-ray diffraction imaging. One is that
the detected signal will be mostly dominated by Poisson noise. This is especially the case when
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the scattering angle is large, as the scattering is mostly in the forward direction for coherent
illumination. The other difficulty is that the biomolecule itself is intrinsically a 3D structure
and its orientation is not controlled. Thus, orientation classification is the first crucial step of
data processing in coherent X-ray imaging.

Early work on classification was based on large scattering angle data where the diffraction
pattern is modeled as a speckle pattern [12, 20]. In practice, this is primarily true for large-
angle scattering where the detected photon level is very low with the current or near future
X-ray photon budgets. Thus the classification schemes based on large-angle-scattering-data are
not currently practical. Recently there are two interesting developments where Expectation-
Maximization algorithms is utilized for classification [21, 22]. The signal level for successful
classifications is much reduced. Another imaging scheme is to simultaneously inject many
randomly oriented biomolecules [23]. The scattered photons are much more and the orientation
classification is unnecessary in this setup.

In this paper we focus on scattering by a single particle and propose a classification scheme
based on patterns of low scattering angles where a substantial number of photons can be de-
tected. Further the comparison among different rotations is not directly based on the pattern
itself but on compressed signals which are the radial and azimuthal distributions of the scatte-
ring pattern. As both of these distributions are signals integrated over many pixels, the variance
in the radial or azimuthal distribution is much smaller than that in the individual pixels. Conse-
quentially a classification can be relatively immune to the shot noise and the results of the clas-
sification can be trustworthy. An example of utilizing those compressed signals is given in this
paper for classification of in-plane rotations (i.e., relative orientations between biomolecules
are within a plane parallel to the detector plane).

2. Weak elastic scattering process and the issue of shot noise

In a typical setup for coherent diffraction imaging of single biomolecules, the samples are
injected into the waist of the focused coherent X-ray beam and a detector is placed downstream
to record the scattering pattern. The scattered pattern recorded by the detector array, I(x,y), can
be written as

I(x,y) = Φincr
2
eΩpix

∣
∣
∣
∣
∣

Natom

∑
n=1

fn(x
′
n,y

′
n,z

′
n)exp( j2π

xx′n + yy′n
λ z

)

∣
∣
∣
∣
∣

2

, (1)

where re is the free electron scattering length, Φinc is the incident fluence and Ωpix is the solid
angle of one detector pixel extended with respect to the biomolecule. The coordinates and
atomic form factor of the nth atom in the biomolecule are described by (x′n,y′n,z′n) and fn,
respectively. The pixel coordinates for the detector array are (x,y,z) and the wavelength of the
X-ray is lambda. The center region of the detector array has a hole to pass the unscattered
photons. In this paper we are interested in the small-angle scattering patterns, the variation of
the atomic form factor over the scattering angles can thus be ignored and fn is assumed to be
a real function. The DNA polymerase delta (PDB ID:3IAY, molecular weight: 113822; total
number of atoms: ∼ 8.2K) is used as an example of a typical biomolecule to calculate the
diffraction pattern and perform orientation classifications.

In this paper we also assume that the noise is mainly shot noise, the detected photon number
in any pixel is a Poisson distributed random variable whose mean value can be calculated from
Eq. (1). In Fig. 1 we show a typical scattering pattern by the single biomolecule when the
incident photon number is infinite (noise free), 2× 1014 and 2× 1012 per pulse. The beam is
assumed to be 100 nm and the X-ray wavelength is 1.5Å. The detector array is 150 mm away
from the sample and the pixel size is 0.11 mm.
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±1.4o ±3.15o ±3.15o±20o

Fig. 1. Typical simulated scattering patterns of a DNA polymerase delta (PDB ID:3IAY).
The data are shown in logarithmic scale. The radius of the hole in the center of the detector
array is 3.72 mm. Left: “noise free” pattern; Middle: incident photon number is 2× 1014

and the number of collected photons is 818875; Right: incident photon number is 2×1012

and the number of collected photons is 8114.

From Fig. 1 we can see that for the “noise free” case, the scattering pattern looks like speck-
les in regions corresponding to large scattering angles. However, with a finite incident photon
number such as 2×1014 photons per pulse, the contrast of the speckles is diminished and some
even disappear. For the 2× 1012 photons per pulse case, which is the current available level
at LCLS, the number of photons scattered with scattering angles larger than 2◦ is so little that
basically all speckles disappear. It will be very difficult to distinguish any exposures from each
other, not to mention conducting orientation classification with this incident photon level.

Consider an annular area of the scattering pattern with radius ρmin ≤ ρ ≤ ρmax. We divide this
area into regions of radial or azimuthal segments as shown in Fig. 2(a) and 2(b). The boundaries

ρmax

ρn+1

ρn

ρn−1

(a)

δθ

(b)

Fig. 2. Detector array is divided into radial (a) or azimuthal segments (b).

between these radial segments are rings with radii ρ1,ρ2, ...,ρN , which can be defined as

ρn+1 = ρn +Δρn, n = 0,1,2, ...N −1; (2)

Δρn+1 =

(

1+

(
Δρn

ρn

)2
)

Δρn,

where ρ0 = 3.72mm,Δρ0 = 0.66mm. We see that the width of the outer ring is larger than the
inner rings. This will help to compensate for the decreasing signal strength with increasing
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radius. The radial distribution, Iρ(n), can be written as,

Iρ(n) =

∫ ρn+1
ρn

∫ 2π
0 I(ρ ,θ)dθρdρ

∫ ρmax
ρmin

∫ 2π
0 I(ρ ,θ)dθρdρ

, n = 0,1,2, ...N −1 (3)

Note that Iρ is normalized with respect to the total scattered photons in the effective detection
area. In this paper we choose N = 60, which is able to significantly reduce the variance in
the radial distribution and still give us sufficient sensitivity to rotations as we will see in the
following parts of this paper.

In the simulation study we choose δθ = 1◦. As the scattering pattern is symmetric about the
origin, we limit the value of θ to be within [0,180◦]. The azimuthal distribution can be written
as:

Iθ (n) =

∫ θn+1
θn

∫ ρmax
ρmin

I(ρ ,θ)ρdρdθ
∫ π

0

∫ ρmax
ρmin

I(ρ ,θ)ρdρdθ
, n = 0,1,2, ...179. (4)

In order to study the effect of the noise, the mean value of the radial and azimuthal distribu-
tions are first calculated from the “noise free” diffraction patterns. The noisy versions of the
radial or azimuthal distribution are calculated from the noisy diffractions when the incident
photon number is 2× 1014 and 2× 1012 respectively. A typical radial and azimuthal distribu-
tions and their mean values are shown in Fig. 3(a) and 3(b) respectively. We see that when the
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Fig. 3. Typical radical (a) and azimuthal (b) distributions. Three cases are studied: the mean
value case (dotted line); the 2× 1014 photon number case (solid line) and the 2× 1012

photon number case (dashed line).

incident photon number is 2× 1014, the noisy version of the radial and azimuthal distribution
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is similar to its mean value. However when the incident photon number is 2× 1012, the noisy
version of the radial and azimuthal distribution deviates substantially from their corresponding
mean values, which will affect the reliability of the classification adversely.

In Figs. 4 we show surface plots when the biomolecule rotates about the x, y, and z axes.
We see that with rotations about x or y, both the radial and the azimuthal distributions change
smoothly with rotation angles. For rotations about z, the radial distribution stays the same while
the azimuthal distribution shifts continuously with the rotation angle. Thus rotation about z
(also called an in-plane rotation) can be recognized by studying the evolution of the radial dis-
tributions, and the rotation angles can be identified by finding the amount of the shift of the
azimuthal distribution. For rotations other than along the z-axis, both the radial and azimuthal
distributions are going to change smoothly with the rotation angles. Thus a distance between
two distributions, e.g. Euclidean distance, can be a measure describing the global changes dur-
ing continuous rotation. A small distance between distributions means that the two distributions
are quite similar to each other and the relative rotation angle between them is small. In a sep-
arate simulation we modified a large biomolecule (PDB ID: 3I55, size ∼ 200Å) by removing
all atoms greater than 90Å from the centroid and showed that the same process can be easily
applied to spherical molecules.

3. Euler angles and the possibility of in-plane rotation

In the previous sections we have devised a method to preprocess the scattering data to improve
the data consistency for the classification of orientations. In this section, we will use intro-
duce Euler angles, which have been widely used in the cryo-EM field, to represent arbitrary
orientations [24–26].

An arbitrary rotation of an angle φ about an arbitrary axis can be described by three consec-
utive rotations, i.e.,

R(φ) = Rz(γ)Ry(β )Rz(α); −π ≤ α,γ ≤ π, 0 ≤ β ≤ π, (5)

where R is the rotation matrix that depends on the rotation axis and rotation angle φ . The first
rotation is about the intrinsic z-axis, the second rotation is about the intrinsic y-axis and the last
one is again a rotation about the intrinsic z-axis.

As the low-angle scattering pattern is proportional to the square of the amplitude of the
Fourier transform of the scattering potential, which is a real and even function, we can limit the
ranges of α , β and γ to [0,π].

The last γ-rotation is the so-called in-plane rotation because the z-axis of the intrinsic coor-
dinate and the z-axis of the laboratory coordinates are co-axial. If we can classify the in-plane
rotation out of all possible rotations and know the angle of the in-plane rotation of a selected
pattern with respect to a reference pattern, we can rotate that pattern to overlap with the ref-
erence pattern. This will give us an opportunity to increase the SNR by averaging over all the
in-plane rotations. The extent of the SNR improvement depends on the number of in-plane
rotations.

Consider the random orientation of a single biomolecule when injected into the passage of
the X-ray beam, the probability of the orientation which can be described by the Euler angles
(α,β ,γ) and can be written as [27]

p(α,β ,γ) =
sinβ
8π2 . (6)

Due to the symmetry of the scattering pattern, the effective ranges for Euler angles are within
[0,π], thus we can write the effective probability density function in terms of α,cosβ ,γ as

pe f f (α,cosβ ,γ) =
1

2π2 , 0 ≤ α,β ,γ ≤ π. (7)
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Fig. 4. Surface plots of the radial (left column) and azimuthal (right column) distributions
of the scattering patterns when the biomolecule rotates about the x-axis (a,b), y-axis (c,d),
and z-axis (e-f). The incident photon number is 2×1014.
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Thus the probability density function is uniform within a rectangular volume of 2π2 with
Euler rotations defined by α,γ and cosβ . With a total number Ntotal of random rotations, the

number density for α and γ is N1/3
total/pi and N1/3

total/2 for cosβ . Thus the mean number of in-
plane rotations is expected to be:

Ninplane =
Ntotal

1/3

n
. (8)

where n is the number of classes for each Euler angles. Thus the SNR of averaging over all

the in-plane rotations can be further improved by
N1/6

total√
n times compared to averaging over only

same orientations.

4. In-plane rotation recognition through the radial distribution

We can also see from the surface plots shown in Fig. 4(e) that the radial distribution stays
unchanged with continuous rotation about z. Thus, we may identify the in-plane rotation by
studying the radial distribution.

Consider a distance defined as

Dρ(Ire f , Itest) =

∣
∣
∣
∣
∣

N

∑
n=1

(Ire f
ρ (n)− Itest

ρ (n))2

∣
∣
∣
∣
∣

1/2

, (9)

where Itest and Ire f are the scattering pattern before and after the in-plane rotation, respec-

tively, Ire f
ρ and Itest

ρ are the radial distributions calculated according to Eq. (3). This “radial”
distance should be zero if there is no shot noise, but with shot noise unavoidable, this distance
should still be minimum if it is to be an effective classification measure. Thus we start from
the biomolecule in an initial orientation, compute the scattering pattern according to Eq. (1),
include the Poisson distributed noise and compute the corresponding radial distribution. This
radial distribution is taken as the reference distribution Ire f

ρ . Then we rotate the biomolecule
along y- and z-axis by angles from 0 to 180◦. The corresponding noisy scattering pattern Itest

and radial distribution Itest
ρ are computed in the same way as Ire f and Ire f

ρ . Then the distance

between Itest
ρ and the reference distribution Ire f

ρ is computed according to Eq. (9). Clearly this
distance is a function of the rotation of the test pattern with respect to the reference pattern. We
repeat the distance calculation 100 times independently and calculate the mean and variance of
the distance from those results (Fig. 5). In order to understand the effect of the incident photon
number on the distance calculation, we have used two incident photon number levels: 2×1014

(Fig. 5(a)) and 2×1012 (Fig. 5(b)). We see that with both cases, the mean value of the distance
maintains the lowest level for the in-plane rotations and increases with the out-of-plane rota-
tion (rotation about y-axis) in general. Zoomed-in versions of the distance curves around the
reference position are plotted in Fig. 5(c) and 5(d). We can see that for the case of 2× 1014

incident photon number, the variance in the distance is so small that we can differentiate even
a half degree of out-of-plane rotation from in-plane rotations with high certainty. This means
that the sensitivity of the above classification is about 0.5◦. With less incident photon number,
the scattering patterns are more noisy and have a larger variance (Fig. 5(d)). The sensitivity of
the classification is about ±2.5◦ in this case.

5. Finding the in-plane rotation angles through the azimuthal distribution

After having identified scattering patterns corresponding to in-plane rotations, we can find the
angle of the in-plane rotation by studying the azimuthal distribution Iθ . This angle information
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is needed if we hope to average over in-plane rotations. In this section we describe a simple
method to find this angle.

If Ire f
θ is the azimuthal distribution of the reference pattern and Itest

θ is the azimuthal distribu-
tion of the test pattern with only an in-plane rotation γ with respect to the reference pattern,
then these two distributions should be shifted with respect to each other. This can be clearly
seen in the surface plot shown in Fig. 4(f). The amount of the shift should be the angle of the
in-plane rotation of the biomolecule with respect to its original position.

Consider a new function, I′θ , which is a circularly-shifted version of Itest
θ , i.e.,

I′θ (θ ,θshi f t) = Itest
θ (θ −θshi f t), (10)

where θshi f t is the shift angle. When the shift angle equals the in-plane rotation angle γ , the

shifted azimuthal distribution I′θ shall overlap with the reference azimuthal distribution Ire f
θ .

Thus we can define a distance between I′θ and Ire f
θ as:

Dθ (Ire f , Itest ,θshi f t) =

∣
∣
∣
∣
∣
∣

π∫

0

(

Ire f
θ − Itest

θ (θ −θshi f t)
)2

dθ

∣
∣
∣
∣
∣
∣

1/2

, (11)

where Ire f and Itest are the scattering patterns before and after the in-plane rotation, respectively.
This distance is a function of the shift angle θshi f t . When the shift angle is exactly the in-plane
rotation angle, this distance should be zero if there is no shot noise. With shot noise being
unavoidable, this distance should reach the minimum when θshi f t = γ . For example, when the
in-plane rotation is 90 degrees, we compute the distance according to Eq. (11) as a function
of the shift angle θshi f t . In order to study the effect of the incident photon number on the
distance, we have again studied two cases, 2× 1014 and 2× 1012 (Fig. 6). We can see that the
distance reaches the minimum when the shift angle equals the in-plane rotation angle for both
incident photon number levels. Note the steepness of the curves around the in-plane rotation
angle, indicating that the distance is quite sensitive to the shift angle. In this example, it is about
0.5◦, which is much smaller than the sensitivity for identifying the in-plane rotations from all
possible rotations. Thus in the next few sections, we will use the sensitivity of the radial distance
as the limit of the overall sensitivity of in-plane rotation classification.

With in-plane rotations classified (section 5) and the angle of in-plane rotation determined as
described in this section, we can rotate those in-plane rotated patterns to overlap the reference
patterns, and average those patterns to improve the signal-to-noise ratio. In Fig. 7 we show a
typical single shot of the scattering pattern and the averaged pattern from 19 shots with different
in-plane rotations. Comparing these two images we can clearly see that the signal-to-noise ratio
is improved after the averaging, especially in regions away from the center.

6. Accuracy of the classification vs photon budget

As we saw in the previous sections, the simple distances can be used to compare the radial
or azimuthal distributions to distinguish between in-plane rotations and out-of-plane rotations,
and to find the degree of in-plane rotation. In this section we are going to study the performance
of the classification scheme for different incident photon numbers. To be specific, we want to
know the ratio of the correct classification results from the results of the proposed classification
method.

In order to visualize the success rate of the proposed algorithm, we have generated a num-
ber of random orientations and their corresponding diffraction patterns, then used the method
described in Section 5 to find the in-plane rotations. The Euler angles for those orientations are
limited to {0o,180o}. Twenty random values for each α,cosβ ,γ are generated independently.
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Fig. 5. The radial distance as a function of the rotation angle when the protein rotates about
y, and z respectively. The curve for rotation along z is shown in pink; in blue for rotation
along y. Two incident photon levels are studied here: (a) 1014; (b) 1012; The mean values
of the distances are shown in the solid lines; The color-shaded areas represent ±σ around
the mean values for both the rotation about y and z respectively. σ is the variance. (c)-(d)
are zoomed-in versions of (a) and (b) respectively.
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Fig. 6. Azimuthal distance reaches minimum at the in-plane rotation angle. Two incident
photon number levels are studied: 2×1014(solid line) and 2×1012(dashed line).
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(a) (b) (c)

Fig. 7. (a) Scattering pattern from a single measurement; (b) Scattering pattern after aver-
aging over 19 patterns with different in-plane rotations; (c) “Noise free” pattern.

Thus a total number of orientations is 20× 20× 20 = 8000, ignoring the inconsequential fact
that the ranges for those three random variables (α,cosβ ,γ) are not all equal to each other. The
diffraction patterns for the protein with those orientations are generated using Eq. (1). Then we
select an arbitrary pattern as a reference frame and assign the rest of the patterns to be the test
patterns. The corresponding radial distribution for the reference frame and the test patterns are
computed according to Eq. (3). Then the distance is calculated using Eq. (9) to compare the
reference and test frames.

Consider a total number Ntotal of patterns from randomly oriented biomolecules, the total
number of pairwise distances, Nd , will be Ntotal × (Ntotal − 1) if each pattern is compared to
other patterns in the data set. Note that the comparison between any two patterns are performed
twice since each one has the opportunity to be a reference pattern. We also assume that the

number of random values for each Euler angle is N1/3
total . Thus the percentage for in-plane ro-

tations among all possible rotations shall be N1/3
total/Ntotal . The total number of distances that

describe in-plane rotations, Nd
in, is expected to be

Nd
in = Ntotal × (Ntotal −1)× N1/3

total

Ntotal
. (12)

As the distances describing the in-plane rotations should be zero if there is no noise in the
experiment, but with noise, we choose Nd

in shortest distances as arising from comparison of two
patterns who differ by at most an in-plane rotation. Of course, the noise inherent in the frames
will tend to mix the in-plane rotations and out-of-plane rotations, especially those patterns with
small out-of-plane rotations.

As we have generated the patterns and know the orientations of the test frames, we can verify
the results of the classification with the known information. Thus we can define the accuracy of
the classification as:

η =
Ntrue

Nclassi f ied
, (13)

where Ntrue and Nclassi f ied are the number of true and assigned in-plane rotations, respectively.
This accuracy rate can provide a quantitative measure of the classification performance. For a
certain classification scheme, it depends mainly on two factors, noise level and the size of the
orientation classes. For patterns that were found to be in-plane rotations, their values for α and
β should be identical in the ideal case, but with noise, we say the classification is accurate if α
and β differ by an amount smaller than the size of the orientation class. In this section we will
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test the class size from 1◦ to 5◦. In Table 1 we list the accuracy of these simulation results for
different incident photon numbers and different orientation class sizes.

Table 1. Accuracy of the In-Plane Rotation Classificationa

Incident photon number

Size of the orientation class 2×1014 2×1013 2×1012

1◦ 98.9% (84.9%) 97.6% (78.0%) 79.3% (49.3%)
2◦ 99.5% (93.6%) 98.9% (90.3%) 86.2% (73.3%)
3◦ 99.5% (95.9%) 99.4% (94.5%) 92.1% (82.2%)
4◦ 99.5% (96.9%) 99.4% (95.9%) 95.0% (85.9%)
5◦ 99.5% (97.2%) 99.4% (96.8%) 97.3% (90.5%)

aThe values outside the parenthesis are for a complete data set and those inside the parenthesis are for the smaller
data set described in the text.

We can see that even with the current incident level, the success of the classification can
be as high as 79% with a class size of 1◦, which is required for atomic resolution. If we can
relax the requirement on the sensitivity of the classification, we can achieve 92% accuracy for
the class size of 3◦ and 97% accuracy for 5◦. In this way we can break the data set into smaller
groups and use more sophisticated algorithms such as described in [21] or [22] to find additional
information. Research in this direction is underway. With higher photon levels, almost 99%
accuracy can be achieved for class size of 1◦. The accuracy from a mere guess is expected to
be Ninplane/Ntotal , which is only 0.25% in this case.

Note that with the limited number of generated random orientations due to available comput-
ing speed, the orientations which are close to each other in the R3 space may not have been fully
simulated in the above example. Thus we perform another round of simulations where the Euler
angles are limited to α ∈ (0,10◦),cosβ ∈ (0.9,1). As the radial distributions are invariant to in-
plane rotations, we choose the limit on the in-plane rotation angle still to be (0,180◦). For each
Euler angle we generate 10 random numbers resulting in 1000 patterns. With a much smaller
range of Euler angles, the percentage for two orientations whose Euler angles (αi,βi, i = 1,2)
are within 1◦ becomes much higher. In our simulation, the percentage is about 48%, i.e., al-
most half of the orientations have a similar orientation. The accuracy in this small data set can
be lower compared to the entire data set. In Table 1 we list the accuracy (numbers inside the
parenthesis) for different photon numbers and orientation class sizes.

We see that even in this smaller data set where almost half of the orientations have a nearby
orientation, the success of the classification is still almost 50%. Note that with a smaller data
set, the expected success rate by a mere guess is bigger. In the case we have described above,
it is about 10/1000 = 1% and so the proposed classification scheme still gives a much better
result.

7. Discussion and summary

In this paper we have shown a method to compress the 2-dimensional diffraction patterns into
1-dimensional distributions, namely, radial and azimuthal distributions. With the compressed
signals, the variance is greatly reduced. Those signals can be utilized as a first step in processing
the data from coherent X-ray experiments. As an example, we have used a simple distance
measure computed from the radial and azimuthal distributions to compare the test frame and the
reference frames. As the radial distributions are invariant to in-plane rotations, we can use the
radial distribution to find the in-plane rotations. The data is divided into classes of (α,β ). With
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the proposed classification scheme we can achieve 79% accuracy even with current incident
photon number. With a protein that is bigger than used in this paper or possesses additional
symmetries, a good classification may be achieved with an even lower incident photon level. We
have performed two simulations to test the performance of the proposed classification scheme.
The performance for a real situation should be between these two cases.

With the degree of in-plane rotation identified, we can rotate one pattern to overlap with
the corresponding reference pattern. This provides us an opportunity to be able to average
over more patterns improving the signal-to-noise level further compared to averaging over only
patterns with the same orientations. The method is non-iterative in nature, which makes it a
good candidate for data preprocessing.

Another interesting aspect of the suggested compression method is that the radial distribution
is invariant to in-plane rotations. This property could be used in conjunction with the manifold
method described in [22]. A hyper-space constructed from the radial distribution shall exhibit
a 2-manifold depending only on α and β . With fewer parameters to estimate, searching the
manifold will be easier, which could potentially lower the required photon level even more.
Further as the variance in the radial distributions is much smaller than those in the individual
pixels, the searching of the 2-manifold will be more robust to noise, thus offering us a possibility
to work with even fewer photons per pixel.

As far as atomic resolution is concerned, it is associated with large-angle scattering data,
which lies on the Ewald sphere. As the signal-to-noise ratio is extremely low in these regions,
averaging diffraction patterns within the same orientation class is necessary to obtain mean-
ingful large-angle-scattering data. If the size of the orientation class is large, information will
be lost during averaging. For a biomolecule of size a, the maximum displacement of the same
atom within one orientation class of size δθ can be estimated as

|δr|= a
2

δθ .

In order to maintain atomic resolution, the displacement of atoms within one class should be
smaller than an angstrom. Thus for a biomolecule of size about 10 nm, such as the one consid-
ered in this paper, the size of the orientation class should be around 1.2◦. From Table 1 we see
that the classification scheme proposed in this paper can divide the data into orientation classes
with size of 1◦, thus maintaining the atomic resolution desired for coherent X-ray imaging.

In this paper, the biomolecules are assumed to be rigid during the injection and measuring
time. Other than their orientations and relative positions in the X-ray beam, the biomolecules
are also assumed to be identical, i.e. no shot-to-shot variation of the structure or conforma-
tion is considered. Different conformations of the molecules will result in different diffraction
patterns. The small-angle scattering data and the resulting radial and azimuthal distributions
will encode information on different confirmations [28]. The classification scheme proposed in
this paper will hence distinguish different classes to different conformations. Whether a certain
class belongs to an out-of-plane orientation of the reference molecule in the same conformation
or an orientation class of the molecule in a different conformation can be addressed in the next
step of the classification. One possible method for such purpose is the manifold method [22]. A
general heterogeneous sample may not be solely classified by means of the low-angle scattering
data, large-angle-scattering may have to be additionally included in the classification algorithm.
This is a research direction we are currently pursuing.

A common technique for solving the orientation problem in cryo-EM is the common line
approach [24–26]. Because of the extremely low signal-to-noise level, this method is not appli-
cable in current x-ray diffraction experiments. Current classification work on X-ray diffraction
data [21,22] is primarily focused on the direct 2D diffraction patterns. We propose to compress
the diffraction data by radial and azimuthal integrals, so that the orientation information can
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still be extracted, but the variance is greatly reduced. As we have shown in Section 2, we can
use the simple difference measure as described in Section 4 and 5 for classification of in-plane
rotations. We can also use more elaborate methods for a complete orientation classification,
such as [21, 22], with the advantage of improved SNR.

In summary, the radial and azimuthal distributions of scattering patterns from single
biomolecules has shown a great success in classifying in-plane rotations by using a simple
distance measure. With more sophisticated algorithms such as the manifold method, we may
be able to perform a complete orientation classification and produce the expected diffraction
patterns with enough sensitivity to obtain atomic resolution.
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