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We present a method to establish, experimentally, the relation between the top-quark mass mMC
t as

implemented in Monte Carlo generators and the Lagrangian mass parameter mt in a theoretically well-
defined renormalization scheme. We propose a simultaneous fit of mMC

t and an observable sensitive to mt,
which does not rely on any prior assumptions about the relation between mt and mMC

t . The measured
observable is independent of mMC

t and can be used subsequently for a determination of mt. The analysis
strategy is illustrated with examples for the extraction of mt from inclusive and differential cross sections
for hadroproduction of top quarks.
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Introduction.—The top-quark mass is one of the funda-
mental parameters of the standard model (SM). Its value
significantly affects predictions for many observables either
directly or via radiative corrections. As a consequence, the
measured top-quark mass is one of the crucial inputs to
electroweak precision fits, which enable comparisons
between experimental results and predictions within and
beyond the SM [1]. Furthermore, together with the Higgs-
boson mass, it has critical implications on the stability of
the electroweak vacuum [2–4].
In fixed-order and analytically resummed predictions,

the top-quark mass appears as a parameter of the
Lagrangian and, therefore, depends on the choice of the
renormalization scheme once corrections beyond leading
order (LO) are consistently included. The conventional
scheme choice in many applications of quantum chromo-
dynamics (QCD) is the pole mass mp

t , while alternative
definitions based on the (modified) minimal subtraction
realize the concept of a running mass m̄tðμÞ at a renorm-
alization scale μ as a particular example of so-called short-
distance masses. On the other hand, Monte Carlo (MC)
simulations generally contain not only hard-interaction
calculations at LO or next-to leading order (NLO), with
the fixed-order matrix elements as functions of the top-
quark’s pole mass mp

t , but also contributions from initial
and final state radiation, hadronization, as well as under-
lying-event interactions, modeled by parton shower pro-
grams based on leading-logarithm approximations and
heuristic models. All these effects can lead to systematic
shifts in the value of the top-quark mass [5]. Therefore, MC
simulations presently do not allow for a precise definition
of the quark mass renormalization scheme.
The top-quark mass has been determined with remark-

able precision: the current world average quoted as
173.34� 0.76 GeV is obtained by combining results from

the Tevatron and the LHC [6]. However, these measure-
ments rely on the relation between the top-quark mass and
the respective experimental observable, e.g., the recon-
structed invariant mass of the top-quark decay products.
This relation is derived by using MC simulations, so that
these measurements determine the top-quark mass param-
eter implemented in these simulations. Therefore, the
determined parameter is the so-called Monte Carlo mass
mMC

t , which appears most appropriate to describe exper-
imental data [1,6,7].
The unambiguous interpretation of the experimental

results for mMC
t in terms of a Lagrangian top-quark mass

(mt) in a specific renormalization scheme employed in the
SM has been a longstanding and increasingly urgent
problem, given the importance of the value of the top-quark
mass for SM physics analysis and the small uncertainty in
the experimental measurement of mMC

t [6]. At present, the
translation from mMC

t to a theoretically well-defined mass
definition in a short-distance scheme at a low scale can only
be estimated to be Oð1Þ GeV, see, e.g., Refs. [8,9].
In consequence, a measurement of mt is preferable and

can be performed by confronting a measured observable
sensitive to mt with its prediction, calculated at NLO in
QCD or beyond in a well-defined renormalization scheme
for the top-quark mass. For this purpose, the inclusive cross
section (σ) and the normalized differential cross sections
for top-quark pair (tt̄) production have been employed to
determine the pole mass [10–12]. For these measurements
of mp

t , detector and process modeling effects are evaluated
using MC simulations, so that the measured observable
typically depends onmMC

t . Even though the extracted value
of mp

t does not depend on a specific mMC
t hypothesis, it

relies on the relation between both parameters, the exact
difference (Δp

m ¼ mp
t −mMC

t ) being unknown. However, it
is often assumed to be up to 1 GeV, leading to a systematic
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uncertainty on the measurement [10–12], which might be
under- or overestimated. This uncertainty can be small
when only the shape of a particular observable defined
within the detectors fiducial volume is considered [12],
since the dependence on mMC

t mainly enters through
detector-acceptance effects. However, the sensitivity to
mt increases when the total tt̄ production rate is also taken
into account.
The pole mass scheme, which is inspired by the

definition of the electron mass in quantum electrodynam-
ics, has short-comings when applied to quarks in a confined
theory [13,14]. Nonperturbative corrections to mp

t due to
the infrared renormalon lead to an intrinsic theoretical
ambiguity of the order of ΛQCD [13–15]. Alternatively, σ
can be calculated using other mass schemes [16–19], such
as the aforementioned running mass definition at a scale μ,
m̄tðμÞ, the so-called MS mass. By using m̄t in the
calculation of σ, the perturbative expansion in the strong
coupling exhibits a significantly faster convergence [19].
This Letter describes a generic approach to measure an

observable ξ sensitive to mt in a particular renormalization
schemewithout any prior assumptions onmMC

t or its relation
tomt. The method employs a simultaneous likelihood fit of
mMC

t and ξ, comparing an observed distribution in data to its
MCprediction. For the latter, two categories of processes are
taken into account. The first one corresponds to the signal
process, i.e., top-quark pair production or single top-quark
production, for which the cross section and event kinematics
depend on mt. The second category comprises background
processes such as, e.g., the production of electroweak
bosons and shows no significant dependence on mt.
Subsequently, a determination of mt can be performed in
a given renormalization scheme comparing data to theory
predictions for ξðmtÞ and, therefore, a calibration ofmMC

t by
quantifying the differenceΔm ¼ mt −mMC

t is possible. The
method is first discussed for the special case with ξ being an
inclusive signal production cross section and extended to
differential cross sections in a second step.
Calibration with inclusive cross sections.—Assume, to

measure the inclusive cross section σ, a number of detected
events, Nd, is reconstructed and selected experimentally,
with an efficiency ϵ estimated by using simulation. In total,
Np expected events are confronted with those observed in
data. We propose to perform this comparison in bins of an
observable sensitive to mMC

t . The parameterization is
chosen such that the shape of the distribution constrains
mMC

t , while its normalization determines σ. For this
purpose, the fraction of predicted signal events npi in bin
i is considered and the total number of predicted events Np

i
in the same bin is written as

Np
i ¼ L · ϵðmMC

t ; ~λÞ · σ · npi ðmMC
t ; ~λÞ þ Nbg

i ð~λÞ; ð1Þ

withNbg
i being the contribution from background processes

and L the integrated luminosity. Systematic uncertainties

due to detector effects as well as signal and background
process modeling are symbolized as parameters ~λ and affect
the expected event yields. For each bin i, a Poisson like-
lihood P is derived from Np

i and the number of observed
events Nd

i . The values for σ and mMC
t are determined from

the maximum Lmax of the global likelihood

Lðσ; mMC
t ; ~λÞ ¼

Y

i

P(Np
i ðσ; mMC

t ; ~λÞ; Nd
i ) · Ξð~λÞ: ð2Þ

Here, Ξð~λÞ represents optional terms that can model prior
knowledge on the systematic uncertainties specific to the
experiment. Alternatively, the fit can be repeated for each
individual systematic variation, leaving only mMC

t and σ as
free parameters.
Explicit correlations between σ and mMC

t are introduced

by the term ϵðmMC
t ; ~λÞ. Hence, the contribution of mMC

t to
the total uncertainty on σ can be minimized by reducing the
dependence of ϵ on mMC

t or by the strong constraints on
mMC

t through npi .
The dependence of the resulting measured cross section

on mMC
t has been diminished and absorbed into the

uncertainty, while the predicted cross section σp remains
a function of mt. Therefore, mt is given by the value at
which the predicted and measured cross sections coincide.
For calculating the uncertainties on Δm, correlations
between σ and mMC

t need to be accounted for but are
known precisely as a result of the simultaneous fit.
Precise measurements of the inclusive tt̄ cross section are

performed in the dileptonic decay channel by the ATLAS
and CMS collaborations [10,11]. The uncertainties of these
measurements are below 4% and the dependence onmMC

t is
small. In both analyses, mp

t is extracted assuming jΔmj≲
1 GeV, and assigning a corresponding uncertainty. The
resulting total precision of mp

t is about 2 GeV [10].
Measurements of mMC

t have been performed in the same
tt̄ decay channel using LHC data at a center-of-mass energy
of

ffiffiffi
s

p ¼ 7 or 8 TeV [20,21]. The value of mMC
t is extracted

from the normalized distribution of the lepton and b-jet
invariant mass mlb. The resulting precision is about
1.3 GeV and the dominant uncertainties of both measure-
ments are mostly orthogonal. Therefore, combining these
analyses, the correlation between the simultaneously deter-
mined σ and mMC

t will become small.
For illustration, we use the tt̄ production cross section,

measured in Ref. [22] at
ffiffiffi
s

p ¼ 8 TeV, σ ¼ 243.9� 9.3 pb
to determine m̄t and mp

t for different orders of perturbative
QCD. The LHC beam-energy uncertainty of 1.72% is
assigned to the predicted cross section, evaluated with the
program HATHOR [23] based on calculations of
Refs. [19,24–27]. The cross section is calculated at LO,
NLO, and next-to-next-to leading order (NNLO) accuracy
with αS at the Z-boson mass MZ set to αSðMZÞ ¼ 0.118�
0.001 and is obtained using the parton distribution (PDF)
set CT14 [28] evaluated at NNLO. Renormalization and
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factorization scales are set tomp
t or m̄t, respectively, and are

varied independently by a factor of 2 up and down. The
uncertainties due to variations of the CT14 PDF eigenvec-
tors are scaled to 68% confidence level.
The extraction ofmp

t and m̄t is performed by comparison
of predicted and measured σ. Experimental and theoretical
uncertainties are considered uncorrelated. The resulting
top-quark mass values are illustrated in Fig. 1. The scheme
choice does not play a role at LO. When higher orders are
considered in the calculation of σ, m̄t exhibits a more rapid
convergence than mp

t .
A detailed experimental analysis employing the method

proposed here is documented in Ref. [22]: the fit of mMC
t

and σ is performed simultaneously at center-of-mass
energies of 7 and 8 TeV. As illustrated in Fig. 2, the
measured values are mostly uncorrelated.
The obtained cross sections are compared to calculations

with NNLO accuracy to determine m̄t. For the extraction of
mp

t , next-to-next-to leading log (NNLL) contributions are
also accounted for. The measured m̄t is converted to the
pole mass mp;c

t in perturbation theory with up to four-loop

accuracy in QCD [29]. It is well known that this leads to an
additional positive shift of the value of mp

t , the size of
which indicates the residual theoretical uncertainty ofmp

t at
yet higher orders. For example, using a fixed m̄t as input,
the value of mp

t is approximately 0.5 GeV (0.2 GeV) larger
if the conversion formula is applied at three(four)-loop
instead of two(three)-loop accuracy, respectively.
The results obtained at

ffiffiffi
s

p ¼ 7 and 8 TeV for m̄t, m
p
t ,

and mp;c
t are listed in Table I for different PDF sets

[28,30–32]. A strong correlation between the strong cou-
pling constant, αS, and the measured top-quark mass can be
observed. All extracted values for mt are used to calibrate
themMC

t parameter, which is nonuniversal and, in principle,
depends on the subtleties of its implementation in the MC
simulation. In Ref. [22], Δ̄m¼m̄t−mMC

t , Δp
m ¼ mp

t −mMC
t ,

and Δp;c
m ¼ mp;c

t −mMC
t are calculated for mMC

t as imple-
mented in MADGRAPH5 [33] interfaced with PYTHIA6 [34]
using the tune Z2� [35] and top-quark decays simulated
with MADSPIN2 [36]. The results are listed in Table II. A
precision of about 2 GeV is achieved.
Calibration with differential cross sections.—An exten-

sion of the method to differential cross sections used for the
determination of mt can provide a larger sensitivity and,
possibly, a further reduction of systematic uncertainties. In
the following, a differential production cross section for the
signal process as a function of an observable x is considered
and employed to determine mt. The approach used for σ is
applied to each bin of this differential cross section. For this
purpose, the efficiency ϵ is replaced by a matrix M
describing the detector response to the predicted cross
section σMC

k in bin k of the distribution in terms of x,
defined by

150

155
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p
tm tm

NNLO

NLO

LO

 [G
eV

]
t

m

FIG. 1. Top-quark pole (mp
t ) and MS mass (m̄t) extracted from

the inclusive tt̄ production cross section by comparison with its
prediction at different orders of perturbative QCD. The hatched
areas indicate the total uncertainty on the measured mass values.

FIG. 2. Likelihood L for the measured MC mass (mMC
t ) and tt̄

production cross section (σtt̄) at a center-of-mass energy of 8 TeV.
The black contour corresponds to the 1 sigma uncertainty [22].

TABLE I. Measured MS (m̄t), pole (mp
t ), and pole mass from

conversion (mp;c
t ) for different PDF sets and values for the strong

coupling constant, αS, evaluated at the Z-boson mass, MZ [22].

αSðMZÞ m̄t [GeV] mp
t [GeV] mp;c

t [GeV]

ABM12 0.113 158.4�1.2
1.9 166.6�1.6

1.9 168.0�1.3
2.1

NNPDF3.0 0.118 165.2�1.1
1.7 174.0�1.4

1.7 175.1�1.2
1.9

MMHT2014 0.118 165.4�1.1
1.9 174.3�1.4

1.8 175.3�1.3
2.1

CT14 0.118 165.5�1.5
2.0 174.4�1.8

2.0 175.4�1.7
2.2

TABLE II. Difference between the top quark mass in well-
defined schemes and the top-quark MC mass for different PDF
sets. The MC mass is compared to the MS mass (Δ̄m), pole mass
(Δp

m), and the pole mass from conversion (Δp;c
m ) [22].

Δ̄m [GeV] Δp
m [GeV] Δp;c

m [GeV]

ABM12 −14.3�1.4
2.0 −6.1�1.7

2.0 −4.7�1.5
2.2

NNPDF3.0 −7.6�1.3
1.9 1.3�1.6

1.9 2.4�1.5
2.0

MMHT2014 −7.3�1.3
2.1 1.5�1.6

2.0 2.6�1.5
2.2

CT14 −7.2�1.7
2.1 1.6�1.9

2.1 2.7�1.8
2.3
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Nps
j ¼ L

X

k

Mjkσ
MC
k ; ð3Þ

with Nps
j being the predicted number of reconstructed and

selected signal events in bin j of the reconstructed distri-
bution. The response matrix is derived from MC simulation
and therefore depends on ~λ as well as on mMC

t [37].
Each bin j of the reconstructed distribution is considered

as a category. In each category, a second observable y is
defined, sensitive to mMC

t . The shape of this observable is
used to constrain mMC

t , while the total number of signal
events in each category corresponds to Nps

j , and hence
can be used to derive the differential cross section. The
number of predicted events, Np

ij, in bin i of the observable y
is given as

Np
ij ¼ L

X

k

MjkðmMC
t ; ~λÞσMC

k · npijðmMC
t ; ~λÞ þ Nbg

ij ð~λÞ;

ð4Þ
with npij being the fraction of predicted signal events in bin i
with respect to Nps

j and Nbg
ij the contribution from back-

ground processes.
By comparison with the number of observed events Nd

ij
in each category j and bin i, and considering σMC

k → σk as
free parameters, a fit can be performed maximizing the
likelihood:

Lðσ0;…; σk; mMC
t ; ~λÞ ¼

Y

i

Y

j

PðNp
ij; N

d
ijÞ · Ξð~λÞ: ð5Þ

This unfolding problem can be ill-posed and regularization
techniques might need to be applied. A well-suited regu-
larization condition is provided, for instance, by the aim to
determine mt by comparison of σk with its prediction
σpk ðmtÞ as a function of mt. Replacing σk with this
prediction corresponds to the folding approach used in
Ref. [20] and reduces the number of free parameters
significantly, such that the likelihood becomes

Lðmt;mMC
t ; ~λ; ~κÞ ¼

Y

i

Y

j

PðNp
ij; N

d
ijÞ · Ξð~λ; ~κÞ; ð6Þ

with Ξð~λ; ~κÞ representing optional nuisance terms and ~κ
being theoretical uncertainties on the predicted σpk ðmtÞ.
Both, ~λ and ~κ can be incorporated as nuisance terms in Ξ or
can be evaluated individually. In the latter case, L depends
on mt and mMC

t , only. A maximization of L directly returns
the relation between these parameters as well as their
correlations. The correlations are mainly incorporated
through the response matrix M. Therefore, the event
selection and the observable x should be chosen such, that
the dependence of M on mMC

t is minimized and the
sensitivity of y on mMC

t becomes maximal.
For the optimization of the result, also the correlation

between the observables x and y should be small. A
possible choice for x would be the differential tt̄ production

cross section as a function of the top-quark transverse
momentum predicted up to NNLO accuracy [38]. The
dependence of this observable onmp

t and m̄t can be studied
at approximate NNLO with programs publicly available
[39]. This distribution, describing the production dynamics,
can be combined with an observable based on the kin-
ematics of the decay products such as mlb in the dileptonic
decay channel or the invariant mass of the 3 jets that
originate from the top-quark decay t → Wb → bqq̄ in the
semileptonic channel.
The additional sensitivity of the differential cross sec-

tions to mt can result in uncertainties below 2 GeV on the
extracted mt and Δm, starting to challenge the measure-
ments of mMC

t in precision and improving the under-
standing of this parameter. Moreover, determinations of
the running of m̄tðμÞ at varying scales μ as well as
simultaneous extractions of the strong coupling αS and
mt become possible.
Conclusion.—The simultaneous determination of mMC

t
and of differential or inclusive production cross sections of
processes sensitive to the top-quark mass mt allows for
subsequent extraction of mt in a well-defined renormaliza-
tion scheme. This method solves the longstanding problem
of the calibration of the top-quark Monte Carlo mass mMC

t
and, in addition, allows for a consistent quantification of the
difference Δm ¼ mt −mMC

t for the particular MC tools
used in the analysis and within the uncertainties of the
measurement.
The extraction of mt is preferably performed in a

scheme, where the perturbative expansion of the theory
prediction for the respective cross section displays fast
apparent convergence. For the inclusive cross section, this
applies to short-distance masses and favors an experimental
determination of a running top-quark mass m̄t over the pole
mass mp

t . The extracted m̄t is more precise than mp
t

obtained at the same order of perturbation theory and
additional higher-order corrections result in smaller cor-
rections to m̄t than mp

t . The latter can always be obtained
up to four-loop accuracy in QCD.
With the current precision of the inclusive top-quark

cross section and mass measurements an uncertainty on Δm
of approximately 2 GeV can be achieved. Dedicated
analyses based on differential cross sections seem to be
a promising approach to further decrease this uncertainty
and to measure theoretically well-defined mass parameters
independently of the interpretation of the top-quark MC
mass to a high precision.

We would like to thank Olaf Behnke for useful
discussions.
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