Preliminary results on the production of b-jets and pairs of b-jets with associated jets at the CMS experiment at $\sqrt{s} = 13$ TeV

DPG annual meeting

Patrick L.S. Connor Paolo Gunnellini Hannes Jung

Deutsches Elektronen-Synchrotron

29 February 2016
Standard Model

- bottom or beauty quark
- heaviest quark that hadronises
- mostly in B-mesons

Meson Content

<table>
<thead>
<tr>
<th>Meson</th>
<th>Content</th>
<th>M [MeV c^{-2}]</th>
<th>τ [ps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^\pm</td>
<td>ub</td>
<td>5279.29 ± 0.15</td>
<td>1.638 ± 0.004</td>
</tr>
<tr>
<td>B^0</td>
<td>db</td>
<td>5279.61 ± 0.16</td>
<td>1.520 ± 0.004</td>
</tr>
<tr>
<td>(B_c^+)</td>
<td>cb</td>
<td>6275.1 ± 1.0</td>
<td>0.507 ± 0.009</td>
</tr>
<tr>
<td>(B_s^0)</td>
<td>sb</td>
<td>5366.79 ± 0.23</td>
<td>1.510 ± 0.005</td>
</tr>
</tbody>
</table>

$\Rightarrow \lambda \approx 2\text{ mm at CMS for heavily boosted } B$'s
Motivation

1. **background** in many (B)SM processes
 \[\rightarrow Hb\bar{b}, \ Zb\bar{b}, \ tt, \ \text{etc.} \]

2. **signal** where
 - \[m_b \gg \lambda_{\text{QCD}} \]
 \[\Rightarrow \] avoid non-perturbative effects
 - typical two-scale process
 \[\Rightarrow \] investigation of *Transverse-Momentum-Dependent* PDFs

\[p^2 = 25 \text{ GeV}^2 \quad x = 0.1 \]
b-inclusive production

As a function of p_\perp in bins of rapidity:

- ratio data/MC
- fraction of b-jets in the inclusive jet production

⇒ textbook measurements *par excellence*!
Leading and subleading b-jet production

⇒ start investigation of $b\bar{b}$ pairs
Particle reconstruction

- bunch crossing at LHC
- Pythia 8
- Geant 4

Reconstruction:
- hits + energy deposits

Jet clustering:
- anti-kt algorithm
 - jets

Jet calibration:
 - corrected jets

b-tagging:
 - CSV
 - b-jets
Introduction

Motivation

Goals of the analysis

Measurement

Event reconstruction

Jet reconstruction

b-tagging

Results

Conclusions

Machine acceptance

Rapidity

\[|y_{b-jet} | < 2.5 \]

Jet transverse momentum

<table>
<thead>
<tr>
<th>trigger threshold [GeV]</th>
<th>effective threshold [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>114</td>
</tr>
<tr>
<td>80</td>
<td>133</td>
</tr>
<tr>
<td>140</td>
<td>220</td>
</tr>
<tr>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>260</td>
<td>430</td>
</tr>
<tr>
<td>320</td>
<td>507</td>
</tr>
<tr>
<td>400</td>
<td>638</td>
</tr>
<tr>
<td>450</td>
<td>737</td>
</tr>
</tbody>
</table>

Trigger strategy

\[p_\perp > 114 \text{ GeV} \]
Jet clustering

anti-k_\perp algorithm ($R = 0.4$ at CMS)

\[d_{iB} = \frac{1}{k_{\perp i}} \]

\[d_{ij} = \min \left(\frac{1}{k_{\perp i}^2}, \frac{1}{k_{\perp j}^2} \right) \Delta R_{ij}^2 \frac{R^2}{\Delta R^2} \]

where \[\Delta R_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2 \]

\[\rightarrow \] any two particles and pseudojets i and j must satisfy $d_{ij} < d_{iB}$ to belong to the same jet
Jet Energy Correction

- (L1) event pile-up
- (L2-3) non-uniformities in the detector response
- Residuals (only for data): discrepancies between data and MC

Charged-Hadron Subtraction

- To a given jet is associated the vertex that mostly contributes to its p_\perp
- Hadrons from other vertices are removed from the jet.
Jet p_\perp spectrum

Work in progress

except in second bin, the agreement looks alright
Combined Secondary Vertex

Result of a MVA combining

1. **Track-Counting**: reject secondary vertices whose tracks are to close to the primary vertex

2. **Simple-Secondary-Vertex-Mass**: reject other meson candidates than \(B \)-mesons

3. **Soft-Lepton-Tag**: look for a non-isolated lepton in the jet

Work in progress

\[\Rightarrow \text{medium working point at } 0.679 \]
Application on the p_\perp spectrum

Work in progress

anti-k_\perp (R = 0.4)
CMS Data
Pythia 8

CMS Data
Pythia 8
mind the scale!
Early results

Selection

- $p_{\perp} > 114 \text{ GeV}$
- $|y| < 2.5$
- CSV > 0.679
- anti-k_{\perp} with $R = 0.4$

Caution

Results at detector level, without treatment of systematic and model uncertainties yet!
Ratio data over Monte Carlo

\[\text{anti-}k_\perp (R = 0.4) \quad \int L \, dt = 575 \text{ pb}^{-1}\]

\[\text{CSV} > 0.679\]

⇒ SF for \(b\)-jets to be applied, otherwise good agreement
Fraction of b-jets among jets

$$\text{anti-}k_\perp (R = 0.4) \quad \int \mathcal{L} \, dt = 575 \text{ pb}^{-1}$$

CMS Data

Pythia 8

$|y| < 0.5$

$0.5 < |y| < 1.0$

$1.0 < |y| < 1.5$

$1.5 < |y| < 2.0$

$2.0 < |y| < 2.5$

\Rightarrow same conclusion
Leading and subleading b-jets

\begin{align*}
\text{anti-}k_\perp \ (R = 0.4) & \quad \int L \ dt = 575 \ \text{pb}^{-1} \\
\text{CSV} > 0.679 & \quad \bullet \ b\text{-jets} \quad \triangle \ \text{jets}
\end{align*}

![Graph showing CMS Data / Pythia 8 comparison for leading and subleading b-jets.]

⇒ enough statistics for at least 2-b-jet studies
Conclusions

Summary

- b's can help study two-scale effects of the evolution.
- Previous measurements can already be reproduced at the TeV scale.
- The CMS experiment will soon provide enough luminosity to have a sufficient resolution to study two-scale effects.

Outline

- Improvement of the detector simulation in the MC (correction scale factors for b-jets).
- Correction of the detector effects on the data (unfolding).
- Improvement of the pile-up treatment using data-driven methods.
- Treatment of model and systematic uncertainties.
References

anti-k_\perp algorithm The anti-k_t jet clustering algorithm, Matteo Cacciari and Gavin P. Salam, [arXiv:0802.1189v2]

Jet calibration CMS Performance note CMS DP-2-1012/012

b-tagging Identification of b-quark jets with the CMS experiment, CMS Collaboration, [arXiv:1211.4462v2]

Performance of b-tagging algorithms at the CMS experiment with pp collision data at $\sqrt{s} = 8$ TeV [arXiv:1409.0251v1]

TMDs http://tmdplotter.desy.de