Precision QCD measurements at HERA

Daniel Britzger
for the H1 and ZEUS collaborations

Determination of the Fundamental Parameters in QCD Workshop
Mainz, Germany
08.03.2016
Deep-inelastic scattering

Kinematic variables
- virtuality of exchanged boson
 \[Q^2 = -q^2 = -(k - k')^2 \]
- Bjorken scaling variable
 \[x = \frac{Q^2}{2 \vec{p} \cdot q} \]

Neutral current scattering
\[ep \to e'X \]

Charged current scattering
\[ep \to \nu_e X \]

Factorization in ep collisions
\[\sigma_{ep \to eX} = \int_{p \to i} \otimes \hat{\sigma}_{ei \to eX} \]
\[xf_{p \to i} = \text{quark/gluon momentum density in proton:} \]
\[\text{Parton density functions (PDFs)} \]

PDFs are not observables – only structure functions are
Measuring these cross sections allows indirect access to the universal PDFs, which are also valid for pp collisions
Structure functions

\[
\frac{d\sigma_{NC}^\pm}{dx dQ^2} = \frac{2\pi\alpha^2}{x} \left[\frac{1}{Q^2} \right]^2 \left[Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3 - y^2 \tilde{F}_L \right]
\]

\[
\frac{d\sigma_{CC}^\pm}{dx dQ^2} = \frac{G_F^2}{4 \pi x} \left[\frac{M_w^2}{M_w^2 + Q^2} \right]^2 \left[Y_+ \tilde{W}_2^\pm \mp Y_- x \tilde{W}_3^\pm - y^2 \tilde{W}_L^\pm \right]
\]

\[Y_\pm = 1 \pm (1 - y)^2\]

DIS cross sections are expressed in terms of structure functions

Dominant contribution from F_2 structure function

\[\tilde{F}_2 \propto \sum (xq_i + x\bar{q}_i)\]

Relevant at high $Q^2 \sim M_Z^2$

\[x\tilde{F}_3 \propto \sum (xq_i - x\bar{q}_i)\]

Sensitive at low Q^2 and high y

\[\tilde{F}_L \propto \alpha_s \cdot x g(x, Q^2)\]

Measured cross sections are reduced cross sections

Measurement is a direct determination of the structure functions
HERA kinematic plane

HERA data cover a wide kinematic region of x, Q^2

NC measurements
- F_2 dominates most of Q^2 reach
- xF_3 contributes to EW regime
- F_L contributes only at highest y

CC measurements
- W_2 and xW_3 contribute equally
- W_L only at high y

LHC: largest mass states at large x
For central production \(x_1 = x_2 \)
- \(M = x^* \sqrt{s} \)
i.e. \(M > 1 \text{ TeV} \) probes \(x > 0.1 \)
High-x predictions rely on
- data (DIS / fixed target)
- sum rules
- behaviour of PDFs as \(x \to 1 \)
HERA operation

HERA-I operation 1993-2000
- $E_e = 27.6$ GeV
- $E_p = 820 / 920$ GeV
- $\sqrt{s} = 301 \& 318$ GeV
- int. Lumi. ~ 110 pb$^{-1}$ per experiment

HERA-II operation 2003-2007
- $E_e = 27.6$ GeV
- $E_p = 920$ GeV
- $\sqrt{s} = 318$ GeV
- int. Lumi. ~ 330 pb$^{-1}$ per experiment
- Longitudinally polarised leptons

Low-Energy Run 2007
- $E_e = 27.6$ GeV
- $E_p = 575 \& 460$ GeV
- $\sqrt{s} = 225 \& 251$ GeV
- Dedicated F_L measurement
H1 and ZEUS

Two multi-purpose collider experiments: H1 and ZEUS

High statistics
• Luminosity: approx. 0.5 fb\(^{-1}\) per experiment

Excellent control over experimental uncertainties
• Overconstrained system in DIS
• Electron measurement: 0.5 – 1\% scale uncertainty
• Jet energy scale: 1\%
• Trigger and normalization uncertainties: 1-2 \%
• Luminosity: 1.8 – 2.5\%
HERA structure function data

Data combination

- **H1 & ZEUS have published all datasets**
 - HERA-I
 - HERA-II at high Q^2
 - HERA-II at reduced centre-of-mass energies

Data points

- 41 datasets are combined
 - NC & CC cross sections
 - e^+p & e^-p scattering
 - 4 values of \sqrt{s}
- 2927 input data points
- 1307 combined points
- Data points are swum to common (x,Q^2)-grid points:

\[
\sigma(x_{\text{grid}}, Q^2_{\text{grid}}) = \frac{\sigma_{\text{model}}(x_{\text{grid}}, Q^2_{\text{grid}})}{\sigma_{\text{model}}(x_{\text{meas}}, Q^2_{\text{meas}})} \cdot \sigma_{\text{meas}}(x_{\text{meas}}, Q^2_{\text{meas}})
\]

The usage of different reconstruction techniques and the differences in the strengths of the detector components of the two experiments lead to a substantial reduction of the systematic uncertainties of the combined cross sections.
H1 & ZEUS data combination

Combination of all H1 and ZEUS datasets
- 2927 data points → 1307 combined points
- HERAverager package used
- Correlations of systematic uncertainties fully considered
- Minimisation procedure based on χ^2 definition

$$\chi^2_{\text{exp.,ds}}(m, b) = \sum_i \frac{\left[m^i - \sum_j \gamma_j^i m^i b_j - \mu^i \right]^2}{\delta_{i,\text{stat}}^2 \mu^i (m^i - \sum_j \gamma_j^i m^i b_j) + (\delta_{i,\text{uncor}} m^i)^2} + \sum_j b_j^2$$

Combination results
- χ^2 of combination: 1687 for 1620 degrees of freedom
- Pull values well distributed around zero with RMS \sim 1
- Great confirmation of consistency of datasets!

Procedural uncertainties
- Multiplicative vs. additive nature
- Correlation in photoproduction background
- Large pulls in corr. syst. uncert.
Combined NC DIS cross sections

Combined HERA data based on approx. 1fb⁻¹

- Only 6 and 4 selected x-bins shown here for \(\sqrt{s} = 318 \) GeV
- High precision reached over large kinematic range:
 Better than 1.3% for \(Q^2 < 400 \text{ GeV}^2 \)
CC DIS and low-Q^2 cross sections

Combined charged current DIS cross sections for $\sqrt{s} = 318$ GeV
- Large improvement in statistical limitations of individual datasets

Further kinematic regions
- Great improvements also for $\sqrt{s} = 225, 251$ and 301 GeV
- Very low-Q^2 and low-x data for $\sqrt{s} = 301$ and 318 GeV
 - $Q^2 > 0.045$ GeV2 and $x_{Bj} > 6 \times 10^{-7}$
 - Interesting for dipole and saturation models
PDF extraction from data: HERAPDF2.0

HERAPDF approach
- Final combined $e^\pm p$ NC and CC data are very precise, so to allow the extraction of the parton densities
- DGLAP Analysis based only on HERA data
- PDFs parameterised at arbitrary starting scale $Q^2_0 = 1.9 \text{ GeV}^2$

\[
xg(x) = A_g x^B_g (1 - x)^C_g - A'_g x^{B'_g} (1 - x)^{C'_g},
\]
\[
xu_v(x) = A_{u_v} x^{B_{u_v}} (1 - x)^{C_{u_v}} \left(1 + E_{u_v} x^2\right),
\]
\[
xd_v(x) = A_{d_v} x^{B_{d_v}} (1 - x)^{C_{d_v}},
\]
\[
x\bar{U}(x) = A_{\bar{U}} x^{B_{\bar{U}}} (1 - x)^{C_{\bar{U}}} (1 + D_{\bar{U}} x),
\]
\[
x\bar{D}(x) = A_{\bar{D}} x^{B_{\bar{D}}} (1 - x)^{C_{\bar{D}}}.
\]

Minimise χ^2 function with respect to PDF parameters
- Perturbative QCD evolution allows PDFs to be determined at any other scale Q^2
- Calculate theory cross section at given x,Q^2 of measurement
- Usage of momentum/counting sumrules help to constrain parameter space

The use of a single consistent data sample allows a more rigorous treatment of the experimental uncertainties
- No fixed target data, therefore no need for heavy-target/deuterium corrections
HERAPDF2.0 NLO and NNLO

Fits performed in LO, NLO and NNLO

- NLO: $\chi^2/\text{ndf} = 1357 / 1131$
- NNLO: $\chi^2/\text{ndf} = 1363 / 1131$

Differences between NLO and NNLO fit

- **gluon** ceases to raise at low-x
- **sea** at low-x somewhat steeper w.r.t. NLO
HERAPDF2.0 uncertainties

Experimental Uncertainties
Hessian method uses 14 eigenvector pairs
Standard definition $\Delta x^2 = 1$ for 68% CL error bands

Model Assumptions
Variation of charm and bottom quark masses M_c, M_b
Variation of Q^2 minimum cut used on input data Q^2_{min}
Variation of strange quark fraction f_s

Parameterisation Uncertainties
Variation of Q_0^2
Variation of fit using additional 15th parameter

<table>
<thead>
<tr>
<th>Variation</th>
<th>Standard Value</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q^2_{min} [GeV2]</td>
<td>3.5</td>
<td>2.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Q^2_{min} [GeV2] HiQ2</td>
<td>10.0</td>
<td>7.5</td>
<td>12.5</td>
</tr>
<tr>
<td>M_c (NLO) [GeV]</td>
<td>1.47</td>
<td>1.41</td>
<td>1.53</td>
</tr>
<tr>
<td>M_c (NNLO) [GeV]</td>
<td>1.43</td>
<td>1.37</td>
<td>1.49</td>
</tr>
<tr>
<td>M_b [GeV]</td>
<td>4.5</td>
<td>4.25</td>
<td>4.75</td>
</tr>
<tr>
<td>f_s</td>
<td>0.4</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>$\alpha_s(M_Z^2)$</td>
<td>0.118</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>μ_f [GeV]</td>
<td>1.9</td>
<td>1.6</td>
<td>2.2</td>
</tr>
</tbody>
</table>

$\alpha_s(M_Z^2)$ fixed but series of PDFs provided for large range: 0.110 to 0.130

Flavor breakdown of sea distribution
NC cross sections & HERAPDF2.0

Neutral Current $e^\pm p$

- HERA NC $e^- p$ 0.4 fb$^{-1}$
- HERA NC $e^+ p$ 0.5 fb$^{-1}$
- $\sqrt{s} = 318$ GeV
- Fixed Target
- HERAPDF2.0 $e^- p$ NLO
- HERAPDF2.0 $e^+ p$ NLO

Precision 1.3% for $Q^2 < 400$ GeV2
→ factor 2 reduction in error wrt HERA-I

Statistics limited at higher Q^2 and high x

Extended reach at high x compared to H1 preliminary data

This x region is the ‘sweet spot’
High precision with long Q^2 lever arm
x-range relevant for Higgs production

Combination of high Q^2 data
HERA-1 and HERA-II

Larger HERA-II luminosity
→ improved precision at high x / Q^2

HERAPDF2.0 provides good description
High Q^2 NC & CC Cross Sections

High Q^2, high-x cross sections
- Difference in NC at high-x for e^+ and e^- due to xF_3 and Z-boson exchange
- CC e^+p suppressed at high-x due to $(1-y)^2$ helicity suppression of quarks
- CC e^-p unaffected as helicity suppression applies to anti-quarks

Image Description
- **Neutral Current e^+p**
 - HERA $\sqrt{s} = 318$ GeV
 - HERAPDF2.0 NLO $\sqrt{s} = 318$ GeV
 - H x_1 = 0.02 (s575)
 - $x_H = 0.05$ (s270)
 - $x_H = 0.08$ (s170)
 - $x_H = 0.13$ (s6)
 - $x_H = 0.25$ (s2)
 - $x_H = 0.40$

- **Charged Current e^+p**
 - HERA $\sqrt{s} = 318$ GeV
 - HERAPDF2.0 NLO $\sqrt{s} = 318$ GeV
 - $x_H = 0.008$ (s15000)
 - $x_H = 0.013$ (s30000)
 - $x_H = 0.032$ (s700)
 - $x_H = 0.08$ (s170)
 - $x_H = 0.13$ (s20)
 - $x_H = 0.25$ (s2)
 - $x_H = 0.40$

Result
- HERAPDF2.0 describes high-x data well for both NC and CC channels
χ^2 and Q^2_{min} study and heavy flavors

Minimum value of Q^2 for data to ensure that pQCD is applicable
- HERAPDF2.0: $Q^2_{\text{min}} = 3.5$ GeV2
- Consider variation of this cut: χ^2 decreases with increase of Q^2

- NLO and NNLO behave similarly
- Low-Q^2 cuts also removes low-x region: Region where non-pert. effects, $\ln(1/x)$-resummation, saturation become important

- Fits for $Q^2_{\text{min}} = 10$ GeV2 also released as PDF tables

Heavy flavor scheme
- Treating F_L to $O(\alpha_S)$ (the same order as F_2) yields better χ^2 than treating F_L to $O(\alpha_S^2)$
- RT-Opt NNLO is marginally worse than NLO
- FONLL NNLO is worse than NLO
Jet production in DIS

Jet production in leading-order pQCD

Jet measurements are performed in Breit-frame
virtual boson collides head on with a parton from the proton

Inclusive jets
Count each jet of an event

Dijet and trijet
Count events with two/three jet event structure
Observable: average transverse momentum of two/three jets

Normalised jets
Normalise all jet data w.r.t. inclusive NC DIS cross section
Jet production in DIS

Normalised and non-normalised jet data
- Data well described by NLO theory (nlojet++)
- Data in general with smaller uncertainties than NLO from scale variations
- Differences between different PDF sets typically small

Data used to extract strong coupling constant
- χ^2 minimisation of α_s in coefficient function
- Dependencies of the PDF on α_s considered as uncertainties

\[
\alpha_s(M_Z)|_{k_T} = 0.1165 \ (8)_{\text{exp}} \ (5)_{\text{PDF}} \ (7)_{\text{PDF set}} \ (3)_{\text{PDF}(\alpha_s)} \ (8)_{\text{had}} \ (36)_{\mu_r} \ (5)_{\mu_f}
\]
\[
= 0.1165 \ (8)_{\text{exp}} \ (38)_{\text{pdf,tho}}
\]
Charm production in DIS

Charm production at HERA
- Charm is produced in virtual photon-gluon fusion
- Charm production directly sensitive to the gluon density $xg(x)$

Combined charm cross sections
- Wealth of HERA charm data combined into common charm cross sections

$$\frac{d^2\sigma^{c\bar{c}}}{dxdQ^2} = \frac{2\pi \alpha^2(Q^2)}{xQ^4} \left([1 + (1 - y)^2] F_2^{c\bar{c}}(x, Q^2) - y^2 F_L^{c\bar{c}}(x, Q^2) \right)$$
Extraction of charm mass running

Extraction of charm mass
- Simultaneous fit of combined charm data + inclusive HERA-I DIS data
- Different heavy-flavor schemes explored
- FFNS ABM scheme defines charm mass in MSbar scheme

\[m_c(m_c) = 1.26 \pm 0.05_{\text{exp}} \pm 0.03_{\text{mod}} \pm 0.02_{\text{par}} \pm 0.02_{\text{as}} \text{ GeV} \]

Charm mass running
- extract \(m_c(m_c) \) separately for 6 kinematic ranges in \(\mu^2 = Q^2 + 4m_c^2 \)
- use appropriate PDF set for each mass (from inclusive DIS data only)
- fit charm data + HERA-I incl. data
- Translate back to \(m_c(\mu) \) using LO formula consistent with NLO MS QCD fit (OpenQCDrad, Alekhin et al.)
Determination of beauty mass

Beauty cross sections
- Measured of HF jets using secondary vertices + lifetime tag
- Good description of data by massive NLO QCD predictions

Extraction of b-quark mass
- QCD fit (FFNS) of HERA-I incl. data + ZEUS beauty data
- m_b as free parameter

$$m_b(m_b) = 4.07 \pm 0.14 \text{ (fit)} \pm 0.07 \text{ (mod.)} \pm 0.05 \text{ (param.)} \pm 0.08 \text{ (theo.) GeV}$$
Charm and jet data in HERAPDF2.0

Charm and bottom data used in HERAPDF2.0 QCD analysis

- Charm and bottom data used to determine best quark-mass parameters
- Values of charm and bottom masses used DGLAP fits determined as χ^2 scan of NLO and NNLO fits

![Graphs showing χ^2 vs M_c and M_b](chart.png)
Charm and jet data in HERAPDF2.0

Additional datasets in QCD analysis
- Combined charm cross sections
- H1 norm. multijets at high Q^2 (HERA-II)
- H1 multijets at low Q^2 (HERA-I)
- H1 incl. jets at high Q^2 (HERA-I)
- ZEUS dijets at high Q^2 (HERA-II)
- ZEUS incl. jets at high Q^2 (HERA-I)
- Jet predictions available in NLO (nlojet++)
- Jet data significantly helps to disentangle gluon-α_s correlation

Determination of strong coupling
- α_s is additional free parameter in PDF fit
- Jet data constrain α_s

$$\alpha_s (m_Z) = 0.1183 \pm 0.0009^{\text{exp}}_{\text{mod}} \pm 0.0012^{\text{had}}_{\text{scale}}$$

- Value mostly constrained by H1 norm. multijet data
Usage of HERA 'combined' data

HERA combined data
- Limit on effective quark radius
- Consider finite radius through form-factor

\[
\frac{d\sigma}{dQ^2} = \frac{d\sigma_{\text{SM}}}{dQ^2} \left(1 - \frac{R_e^2}{6Q^2}\right)^2 \left(1 - \frac{R_q^2}{6Q^2}\right)^2
\]
- Fit PDFs and 'quark radius'
- 95% C.L. on quark radius

\[-(0.47 \cdot 10^{-16} \text{ cm})^2 < R^2_q < (0.43 \cdot 10^{-16} \text{ cm})^2\]

H1 and ZEUS data + ZEUS polarized HERA-II data
- Study Couplings of u- and d-quarks to Z-boson
- Use in additional ZEUS polarized data

\[
\tilde{F}_{2}^{\pm} = F_{2}^{\gamma} - (v_e \pm P_{e}a_e)\chi Z F_{2}^{\gamma Z} + (v_e^2 + a_e^2 \pm 2P_{e}v_ea_e)\chi Z F_{2}^{Z},
\]
- Simultaneous fit of PDFs and axial and vector-'quark couplings'
- Values consistent with SM expectations
- Sensitivity on u-quark higher than d-quark

![Graph showing data improvements](image)
Dijets in diffractive DIS (LRG)

(Inclusive) dijets in diffractive DIS

- Diffractive events identified by 'large rapidity gap' (LRG)
- $4 < Q^2 < 100 \text{ GeV}^2$, $p_{T,\text{jet}}^{1,2} > 5.5 \ (4.0) \text{ GeV}$
- Theory: nlojet++ & H1DPDF2006 FitB
- Data used to extract strong coupling constant
 -> Fit supports concept of pQCD calculations for diff. dijets
 -> Exp. precision overshoots theoretical one

\[
\alpha_s(M_Z) = 0.119 \pm 0.004 \ (\text{exp}) \pm 0.002 \ (\text{had}) \pm 0.005 \ (\text{DPDF}) \pm 0.010 \ (\mu_r) \pm 0.004 \ (\mu_f)
\]
\[
= 0.119 \pm 0.004 \ (\text{exp}) \pm 0.012 \ (\text{DPDF, theo})
\]
Diffr. Dijets in Photoprod. and DIS (VFPS)

History
- 'Factorisation breaking' observed in diffractive events at Tevatron
- Photoproduction provides similar testing ground
- Fact. breaking observed by H1 but not by ZEUS

Here: Simultaneous measurement of dijets in diffr. DIS and PHP
- Use VFPS 220m from interaction point
- Calculate double-ratios: PHP/DIS

Single differential cross sections
- DIS data well described by NLO
- PHP NLO overshoots data
- New data with complementary method consistent with previous H1 results
- 'Suppression' shows no dependence as function of x_γ or E_T^{jet}

![Graph showing ratio to NLO and Q^2 vs E_T^{jet} comparison](image)
Study diffractive models

Exclusive dijets in diffractive DIS

- Study (normalised) angle between jet-plane and lepton-plane
 \[
 \frac{1}{\sigma} \frac{d\sigma}{d\phi} \propto 1 + A \cos 2\phi
 \]
- Sensitive to nature of diff. exchange: Resolved pomeron vs. two-gluon exchange model
 \[
 \beta = \frac{x_{Bj}}{x_{IP}}
 \]
- Two-gluon model is more successful in describing data than resolved Pomeron model

Diffractive prompt isolated photons

- Analysis extends prompt photon analysis in non-diff. PHP
 - Reminder: NLO and k_T-factorization predictions give good descriptions
 - Prompt photon variables well described by Rapgap & H1PDF2006-FitB
 - Problems at \(z_{ip} \rightarrow 1 \), where H1PDF2006-FitB was not fitted

ZEUS

![Graph showing dijet production](image)
Exclusive vector-meson production

Exclusive electroproduction of vector meson

- Measure ratio of $\psi(2s)$ over $J/\psi(1s)$ as function of Q^2

 ![Diagram](image)

 - Identify VM in $\mu^+\mu^-$ decay channels
 - $30 < W < 210$ GeV, $|t| < 1$ GeV2
 - Compare against various models for
 - Generating cc-dipole in photon
 - cc-dipole scattering amplitude
 - Probability to form vector charmonium

All models perform reasonably well

- Ratio tend to be constant vs. W and $|t|$
- Spread indicate large theory uncertainty
Wealth of more QCD related measurements

New measurements, old measurements, and maybe forgotten ones...

- Search for QCD instantons to be published by H1
- Isolated photons in photoproduction
 PLB 730 C (2014) 293 & JHEP 08 (2014) 03
- Exclusive ρ^0 Meson Photoproduction with a Leading Neutron at HERA
- Elastic and Proton-Dissociative Photoproduction of J/psi Mesons at HERA
- Event shapes
- Numberous D* measurements
 JHEP 1509 (2015) 149, ...
- Carged particle production spectra
- ….
Conclusion

HERA inclusive DIS cross sections finalized
- One consistent dataset of all HERA structure function data
- HERAPDF2.0 as HERA-only PDF
- Baseline data for future PDF fits

Wealth of precision QCD measurements
Many topics not covered in this short talk
- Jet and photon cross sections
- Various searches and limits
- Strong diffractive DIS programme
- Many exclusive final states measured with full HERA-II statistics
- low-x and soft physics

HERA experiments still active
- Improved/new measurements can still be expected this year
Electroweak symmetry breaking

- H1 / ZEUS completed their final SF measurements
- New HERA-II data provide tighter constraints at high x / Q^2
- These data provide some of the most stringent constraints on PDFs
- Stress-test of QCD over 4 orders of mag. in Q^2
- DGLAP evolution works very well
- HERA data provide a self-consistent data set for complete flavour decomposition of the proton
- Final combination of HERA data completed
- HERAPDF2.0 QCD fit at NLO & NNLO
Valence quarks and xF_3

At high Q^2, xF_3 arises due to Z^0 effects enhanced e^- cross section wrt e^+
Difference is xF_3
Sensitive to valence PDFs

$$\tilde{xF}_3 = \frac{Y^+}{2Y^-} (\tilde{\sigma}_{NC}^- - \tilde{\sigma}_{NC}^+) \approx a_e \chi_Z xF_3^{\gamma Z}$$

$$xF_3 \propto \sum (xq_i - x\bar{q}_i)$$

Measure integral of $xF_3^{\gamma Z}$ - validate sumrule:

$$\int_{0.016}^{0.725} dx \ F_3^{\gamma Z}(x, Q^2 = 1500 \text{ GeV}^2) = 1.314 \pm 0.057(\text{stat}) \pm 0.057(\text{syst})$$

LO integral predicted to be $5/3 + \mathcal{O}(\alpha_s/\pi)$
'Swimming' of data points

Data are combined onto a common x,Q^2 grid
Two grids used:
 - inclusive measurements $\sqrt{s}=318$ GeV
 - fine x grid for $\sqrt{s}=251$ & 225 GeV

2927 data points \rightarrow 1307 combined measurements

Data are translated to nearest x,Q^2 grid point
Iterative process using NLO QCD fit to data
Use uncombined data in first iteration
Then combined data in later iterations
No changes after 3 iterations

$$\sigma(x_{grid}, Q^2_{grid}) = \frac{\sigma_{model}(x_{grid}, Q^2_{grid})}{\sigma_{model}(x_{meas}, Q^2_{meas})} \cdot \sigma_{meas}(x_{meas}, Q^2_{meas})$$

Data are also translated outside of region of DGLAP fit validity $Q^2 < 3.0$ GeV2
Use phenomenological “fractal” model and interpolate to DGLAP region
Other phenomenological fits tested \rightarrow negligible differences
H1 & ZEUS data combination II

Overall $\chi^2/\text{ndf} = 1685 / 1620 = 1.04$

Pulls defined for each measurement difference between measured & average values after applying sys shifts b_j in units of uncorrelated uncertainty

Pulls of the data points should be distributed as a unit Gaussian

Each measurement channel shows pull centred on zero & unit width

Pulls of the systematic sources b_j

$$p^{i,k} = \frac{\mu^{i,k} - \mu^{i,\text{ave}}(1 - \sum_j \gamma^{i,k}_j b_{j,\text{ave}})}{\sqrt{\Delta^2_{i,k} - \Delta^2_{i,\text{ave}}}}$$
PDF extraction from data: HERAPDF2.0

HERAPDF1.0 & 1.5
Combine NC and CC HERA-I data from H1 & ZEUS
Complete MSbar NLO fit
NLO: standard parameterisation with 10 parameters
NNLO HERAPDF 1.5 with 14p

HERAPDF2.0
Include additional NC and CC HERA-II combined data
Complete MSbar NLO and NNLO fit
NLO & NNLO fits require 15 parameters

\[x_f(x, Q_0^2) = A \cdot x^B \cdot (1 - x)^C \cdot (1 + Dx + Ex^2) \]

\[xg(x) = A_g x^{B_g} (1 - x)^{C_g} \]
\[xu_v(x) = A_{u_v} x^{B_{u_v}} (1 - x)^{C_{u_v}} (1 + E_{u_v} x^2) \]
\[xd_v(x) = A_{d_v} x^{B_{d_v}} (1 - x)^{C_{d_v}} \]
\[xU(x) = A_U x^{B_U} (1 - x)^{C_U} \]
\[xD(x) = A_D x^{B_D} (1 - x)^{C_D} \]

\[x\bar{S} = f_s x\bar{D} \text{ strange sea is a fixed fraction } f_s \text{ of } D \text{ at } Q_0^2 \]

Apply momentum/counting sum rules:
\[\int_0^1 dx \cdot (xu_v + xd_v + xU + xD + xg) = 1 \]
\[\int_0^1 dx \cdot u_v = 2 \quad \int_0^1 dx \cdot d_v = 1 \]
\[B_U = B_D \]
\[Sea = 2(U + \bar{D}) \]
\[A_U = A_D (1 - f_s) \]
\[\text{ensures } xU \rightarrow x\bar{D} \text{ as } x \rightarrow 0 \]
\[Q_0^2 = 1.9 \]
\[Q_{min}^2 = 3.5 \text{ or } 10 \text{ GeV}^2 \]
\[\alpha_s(M_Z^2) = 0.118 \]
\[2 \cdot 10^{-4} \leq x \leq 0.65 \]
High Q^2 charged current cross sections

Electron scattering

$$\frac{d^2\sigma_{CC}^-}{dx dQ^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2} \right)^2 \left[(u + c) + (1 - y)^2 (\bar{d} + \bar{s}) \right]$$

Positron scattering

$$\frac{d^2\sigma_{CC}^+}{dx dQ^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2} \right)^2 \left[(\bar{u} + \bar{c}) + (1 - y)^2 (d + s) \right]$$

Combination of high Q^2 CC data (HERA-I+II)

Improvement of total uncertainty

Dominated by statistical errors

Provide important flavour decomposition information

CC e^+ data provide strong d_ν constraint at high x

Precision limited by statistics: typically 3-7%

HERA-I precision of 10-15% for e^+p
Comparison of HERAPDF2.0 vs MMHT14, NNPDF3.0, CT10 (others use only HERA-1 combined data)

Differences at high x
- New HERA combined data improve precision at high x, Q^2
- HERAPDF uses proton target data only → no nucleon / deuterium data
- Softer gluon at high x
NC and CC measurements

Neutral current event selection:

- High P_T isolated scattered lepton
- Suppress huge photo-production background by imposing longitudinal energy-momentum conservation

Kinematics may be reconstructed in many ways:
- energy/angle of hadrons & scattered lepton provides excellent tools for sys cross checks

Removal of scattered lepton provides a
- high stats “pseudo-charged current sample”
- Excellent tool to cross check CC analysis

Final selection: $\sim 10^5$ events per sample at high Q^2
- $\sim 10^7$ events for $10 < Q^2 < 100 \text{ GeV}^2$

Charged current event selection:

- Large missing transverse momentum (neutrino)
- Suppress huge photo-production background
- Topological finders to remove cosmic muons
- Kinematics reconstructed from hadrons
- Final selection: $\sim 10^3$ events per sample

slide by E. Rizvi
Figure 20: The dependence of χ^2/d.o.f. on Q_{min}^2 for HERAPDF2.0 fits using a) the RTOPT [83], FONNL-B [90], ACOT [109] and fixed-flavour (FF) schemes at NLO and b) the RTOPT and FONNL-B/C [91] schemes at NLO and NNLO. The F_L contributions are calculated using matrix elements of the order of α_s indicated in the legend. The number of degrees of freedom drops from 1148 for $Q_{\text{min}}^2 = 2.7\,\text{GeV}^2$ to 1131 for the nominal $Q_{\text{min}}^2 = 3.5\,\text{GeV}^2$ and to 868 for $Q_{\text{min}}^2 = 25\,\text{GeV}^2$.
HERAPDF2.0 NLO vs. NNLO

$\mu_r^2 = 10$ GeV2

- HERAPDF2.0 NNLO
- uncertainties:
 - experimental
 - model
 - parameterisation
- HERAPDF2.0 AG NNLO

$xg \times 0.05$

$xS \times 0.05$
HERAPDF2.0 variants

The following variants of the HERAPDF2.0 PDFs have been released and will soon be available on LHAPDF (https://lhapdf.hepforge.org)

HERAPDF2.0 (NLO,NNLO, $Q^2_{\text{min}}=3.5 \text{ GeV}^2$) “Default PDF set”
- Data: combined HERA NC and CC inclusive cross sections
- HF Scheme: ROPT
- $\alpha_s(M_Z^2)=0.118$
- Grid with different $\alpha_s(M_Z^2)$ values (in the range [0.110-0.130] in steps of 0.01) are also released

HERAPDF2.0HiQ2 (NLO,NNLO) “High-Q^2 version”
- as HERAPDF2.0 but with $Q^2_{\text{min}}=10 \text{ GeV}^2$

HERAPDF2.0AG (LO,NLO,NNLO, $Q^2_{\text{min}}=3.5 \text{ GeV}^2$) “Alternative Gluon”
- Data: combined HERA NC and CC inclusive cross sections
- Use an alternative gluon parameterisation
- HF Scheme: ROPT
- $\alpha_s(M_Z^2)=0.130$ (LO) and $\alpha_s(M_Z^2)=0.118$ (NLO,NNLO)

HERAPDF2.0FF (NLO, $Q^2_{\text{min}}=3.5 \text{ GeV}^2$) “FF Schemes”
- Data: combined HERA NC and CC inclusive cross sections
- HF Schemes: Use two alternative (FF3A and FF3B) Fixed-Flavour schemes
- $\alpha_s(M_Z^2)^{N_f=3}=0.106573$ equivalent to $\alpha_s(M_Z^2)^{N_f=5}=0.118$ (FF3A) and $\alpha_s(M_Z^2)=0.118$ (FF3B)

HERAPDF2.0Jets (NLO, $Q^2_{\text{min}}=3.5 \text{ GeV}^2$) “Charm and Jets”
- Data: combined HERA NC and CC inclusive cross sections and selected HERA charm and jet production measurements
- HF Schemes: ROPT
- free $\alpha_s(M_Z^2)$ or $\alpha_s(M_Z^2)=0.118$