Precision Tests of the Standard Model in Rare B-Meson Decays

Ahmed Ali

DESY, Hamburg

Jan. 25-28, 2016

Memorial Meeting for Prof. Abdus Salam's 90th. Birthday NTU, Singapore

Ahmed Ali (DESY, Hamburg)

Professor Abdus Salam (circa 1965)

Ahmed Ali (DESY, Hamburg)

Ahmed Ali (DESY, Hamburg)

Pakistan Institute of Nuclear Science and Technology, Nilore

Ahmed Ali (DESY, Hamburg)

A Milestone in Pakistan's Nuclear Ambitions

Ahmed Ali (DESY, Hamburg)

Professors Abdus Salam and Riazuddin

Ahmed Ali (DESY, Hamburg)

Founding Fathers of the Standard Model

S. Weinberg

S. Glashow

A. Salam

Rare *B*-decays in the Standard Model

- The Standard Candle in Rare *B*-Decays: $B \rightarrow X_s \gamma$
- Electroweak Penguins: $\mathbf{B} \to X_s \ell^+ \ell^-$
- Exclusive Decays $\mathbf{B} \to (K, K^*, \pi) \ell^+ \ell^-$
- Current Frontier of Rare *B* Decays: B_s → µ⁺µ[−] & B_d → µ⁺µ[−]
- Summary and Outlook

The Standard Candle: $B \rightarrow X_s \gamma$

- Interest in the rare *B*-decay $B \rightarrow X_s \gamma$ transcends *B* Physics!
 - First measurements by CLEO (1995); well measured at the B-factories by Belle and BaBar; more precise measurements anticipated at KEK (Belle-II)
 - A monumental theoretical effort has gone in improving the perturbative precision $\implies B \rightarrow X_s \gamma$ in next-to-next-to leading order in α_s

• First estimate of $\mathcal{B}(B \to X_s \gamma)$: M. Misiak et al., Phys. Rev. Lett. 98:022002 (2007); T. Becher and M. Neubert, Phys. Rev. Lett. 98:022003 (2007)

- Updated in 2015: M. Misiak et al., Phys. Rev. Lett. 114 (2015) 22, 221801
- Non-perturbative effects calculated using Heavy Quark Effective Theory
- Sensitivite to virtual new physics effects; hence constrains parameters of the BSM models such as the 2HDMs and Supersymmetry

Examples of leading electroweak diagrams for $B \rightarrow X_s \gamma$

QCD logarithms $\alpha_s \ln \frac{M_W^2}{m_b^2}$ enhance BR($B \to X_s \gamma$) more than twice

 Effective field theory (obtained by integrating out heavy fields) used for resummation of such large logarithms

Ahmed Ali (DESY, Hamburg)

The effective Lagrangian for $B \to X_s \gamma$ and $B \to X_s \ell^+ \ell^-$

$$\mathcal{L} = \mathcal{L}_{QCD \times QED}(q, l) + \frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^{10} C_i(\mu) O_i$$

$$(q = u, d, s, c, b, l = e, \mu, \tau)$$

$$i = 1, 2, \quad |C_i(m_b)| \sim 1$$

$$(\bar{s}\Gamma_i b) \Sigma_q(\bar{q}\Gamma_i' q), \quad i = 3, 4, 5, 6, \quad |C_i(m_b)| < 0.07$$

$$\frac{em_b}{16\pi^2} \bar{s}_L \sigma^{\mu\nu} b_R F_{\mu\nu}, \quad i = 7, \quad C_7(m_b) \sim -0.3$$

$$\frac{gm_b}{16\pi^2} \bar{s}_L \sigma^{\mu\nu} T^a b_R G^a_{\mu\nu}, \quad i = 8, \quad C_8(m_b) \sim -0.15$$

$$\frac{e^2}{16\pi^2} (\bar{s}_L \gamma_\mu b_L) (\bar{l} \gamma^\mu (\gamma_5) l), \quad i = 9, (10) \quad |C_i(m_b)| \sim 4$$

Three steps of the calculation:

Matching: Evaluating $C_i(\mu_0)$ at $\mu_0 \sim M_W$ by requiring equality of the SM and the effective theory Green functions

Mixing: Deriving the effective theory RGE and evolving $C_i(\mu)$ from μ_0 to $\mu_b \sim m_b$

<u>Matrix elements</u>: Evaluating the on-shell amplitudes at $\mu_b \sim m_b$ Ahmed Ali (DESY, Hamburg) Precision Tests of the Standard Model in Rare The Cabibbo-Kobayashi-Maskawa Matrix $V_{CKM} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

Customary to use the handy Wolfenstein parametrization

$$V_{
m CKM} \simeq egin{pmatrix} 1-rac{1}{2}\lambda^2 & \lambda & A\lambda^3\left(
ho-i\eta
ight)\ -\lambda(1+iA^2\lambda^4\eta) & 1-rac{1}{2}\lambda^2 & A\lambda^2\ A\lambda^3\left(1-
ho-i\eta
ight) & -A\lambda^2\left(1+i\lambda^2\eta
ight) & 1 \end{pmatrix}$$

Four parameters: *A*, λ , ρ , η ; $\bar{\rho} = \rho(1 - \lambda^2/2)$, $\bar{\eta} = \eta(1 - \lambda^2/2)$ The CKM-Unitarity triangle [$\phi_1 = \beta$; $\phi_2 = \alpha$; $\phi_3 = \gamma$]

Wilson Coefficients in the SM

					1	
	$C_1(\mu_b)$	$C_2(\mu_b)$	$C_3(\mu_b)$	$C_4(\mu_b)$	$C_5(\mu_b)$	$C_6(\mu_b)$
LL	-0.257	1.112	0.012	-0.026	0.008	-0.033
NLL	-0.151	1.059	0.012	-0.034	0.010	-0.040

Wilson Coefficients of Four-Quark Operators

Wilson Coefficients of other Operators

	$C_7^{\rm eff}(\mu_b)$	$C_8^{\rm eff}(\mu_b)$	$C_9(\mu_b)$	$C_{10}(\mu_b)$
LL	-0.314	-0.149	2.007	0
NLL	-0.308	-0.169	4.154	-4.261
NNLL	-0.290		4.214	-4.312

Obtained for the following input:

 $\mu_b = 4.6 \text{ GeV}$ $\bar{m}_t(\bar{m}_t) = 167 \text{ GeV}$

$$M_W = 80.4 \,\text{GeV} \qquad \sin^2 \theta_W = 0.23$$

Ahmed Ali (DESY, Hamburg)

Precision Tests of the Standard Model in Rare

. . 1

Photon Energy Spectrum in $B \rightarrow X_s \gamma$

Spectator Model: Greub, AA; PLB 259, 182 (1991)

Ahmed Ali (DESY, Hamburg)

 $\mathcal{B}(B \to X_s \gamma)$: Experiment vs. SM & BSM Effects

[Misiak et al., PRL 114 (2015) 22, 221801

Expt.: CLEO, Belle, BaBar [HFAG 2014]: ($E_{\gamma} > 1.6$ GeV):

 $\mathcal{B}(B \to X_s \gamma) = (3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$

- SM [NNLO]: $\mathcal{B}(B \to X_s \gamma) = (3.36 \pm 0.23) \times 10^{-4}$
- Expt./SM = 1.02 ± 0.08
- Excellent agreement; restricts most NP models
- BSM effects can be parametrized as additive contributions to the Wilson Coeffs. of the dipole operators C₇ and C₈

 $\mathcal{B}(B \to X_s \gamma) imes 10^4 = (3.36 \pm 0.23) - 8.22 \Delta C_7 - 1.99 \Delta C_8$

In 2HDM, $\mathcal{B}(B \to X_s \gamma)$ puts strict bounds on M_{H^+}

- $B \rightarrow X_s \gamma$ in 2HDM
 - NNLO in 2HDM [Hermann, Misiak, Steinhauser; JHEP 1211 (2012) 036]; Updated [Misiak et al., Phys. Rev. Lett. 114 (2015) 22, 221801]

 $\mathcal{L}_{H^+} = (2\sqrt{2}G_F)^{1/2} \Sigma^3_{i,j=1} \bar{u}_i (A_u m_{u_i} V_{ij} P_L - A_d m_{d_j} V_{ij} P_R) d_j H^* + h.c.$

- 2HDM contributions to the Wilson coefficients are proportional to A_iA^{*}_j
 2HDM of type-I: A_u = A_d = 1/(tan β)
 - 2HDM of type-II: $A_u = -1/A_d = \frac{1}{\tan \beta}$

Ahmed Ali (DESY, Hamburg)

$B \rightarrow X_s \gamma$ in Type-II 2HDM

[Hermann, Misiak, Steinhauser JHEP 1211 (2012) 036]

- Updated NNLO [Misiak et al., Phys. Rev. Lett. 114 (2015) 22, 221801]
- $M_{H^+} > 480 \text{ GeV} (at 95\% \text{ C.L.})$
- $M_{H^+} > 358 \text{ GeV} (at 99\% \text{ C.L.})$
- Limits on 2HDM competitive to direct H^{\pm} searches at the LHC

Ahmed Ali (DESY, Hamburg)

The decay $b \rightarrow s\ell^+\ell^-$: Leading Feynman diagram

Diagrams in the full theory

Diagrams in the effective theory

Ahmed Ali (DESY, Hamburg)

 $B \rightarrow X_s l^+ l^-$

• There are two $b \rightarrow s$ semileptonic operators in SM:

$$O_{i} = \frac{e^{2}}{16\pi^{2}} (\bar{s}_{L} \gamma_{\mu} b_{L}) (\bar{l} \gamma^{\mu} (\gamma_{5}) l), \qquad i = 9, (10)$$

• Their Wilson Coefficients have the following perturbative expansion:

$$C_{9}(\mu) = \frac{4\pi}{\alpha_{s}(\mu)}C_{9}^{(-1)}(\mu) + C_{9}^{(0)}(\mu) + \frac{\alpha_{s}(\mu)}{4\pi}C_{9}^{(1)}(\mu) + \dots$$

$$C_{10} = C_{10}^{(0)} + \frac{\alpha_{s}(M_{W})}{4\pi}C_{10}^{(1)} + \dots$$
The term $C_{9}^{(-1)}(\mu)$ reproduces the electroweak logarithm hat originates from the photonic penguins with charm
$$\frac{4\pi}{\alpha_{s}(m_{b})}C_{9}^{(-1)}(m_{b}) = \frac{4}{9}\ln\frac{M_{W}^{2}}{m_{b}^{2}} + \mathcal{O}(\alpha_{s}) \simeq 2$$

$$C_{9}^{(0)}(m_{b}) \simeq 2.2; \text{ need to calculate NNLO for reliable estimates}$$

Dilepton invariant mass spectrum in $B \rightarrow X_s \ell^+ \ell^-$ [BaBar 2013]

Forward-Backward Asymmetry in $B \rightarrow X_s \ell^+ \ell^-$ [Belle 2014]

Ahmed Ali (DESY, Hamburg)

Exclusive Decays $B \to (K, K^*)\ell^+\ell^-$

■ $B \rightarrow K \& B \rightarrow K^*$ transitions involve the currents:

$$\Gamma^1_\mu=ar{s}\gamma_\mu(1-\gamma_5)b,~~\Gamma^2_\mu=ar{s}\sigma_{\mu
u}q^
u(1+\gamma_5)b$$

■ ⇒ 10 non-perturbative q^2 -dependent functions (Form factors) $\langle K|\Gamma^1_{\mu}|B\rangle \supset f_+(q^2), f_-(q^2)$

 $\langle K|\Gamma^2_{\mu}|B\rangle \supset f_T(q^2)$

 $\langle K^* | \Gamma^1_{\mu} | B \rangle \supset V(q^2), A_1(q^2), A_2(q^2), A_3(q^2)$

 $\langle K^*|\Gamma^2_{\mu}|B\rangle \supset T_1(q^2), T_2(q^2), T_3(q^2)$

Data on $B \to K^* \gamma$ provides normalization of $T_1(0) = T_2(0) \simeq 0.28$

■ HQET/SCET-approach allows to reduce the number of independent form factors from 10 to 3 in low- q^2 domain $(q^2/m_b^2 \ll 1)$

Ahmed Ali (DESY, Hamburg)

Experimental data vs. SM in $B \rightarrow (X_s, K, K^*)\ell^+\ell^-$ Decays

Branching ratios (in units of 10^{-6}) [HFAG: 2012]

SM: [A.A., Greub, Hiller, Lunghi PR D66 (2002) 034002]

Decay Mode	Expt. (BELLE & BABAR)	Theory (SM)
$B \to K \ell^+ \ell^-$	0.45 ± 0.04	0.35 ± 0.12
$B \to K^* e^+ e^-$	$1.19\substack{+0.17\\-0.16}$	1.58 ± 0.49
$B \to K^* \mu^+ \mu^-$	$1.15\substack{+0.16\\-0.15}$	1.19 ± 0.39
$B \to X_s \mu^+ \mu^-$	$2.23^{+0.97}_{-0.98}$	4.2 ± 0.7
$B \rightarrow X_s e^+ e^-$	$4.91^{+1.04}_{-1.06}$	4.2 ± 0.7
$B \to X_s \ell^+ \ell^-$	$3.66^{+0.76}_{-0.77}$	4.2 ± 0.7

Ahmed Ali (DESY, Hamburg)

Angular analysis in $B \rightarrow K^* \mu^+ \mu^-$

 $B^0 \!
ightarrow K^{st 0} (
ightarrow K^+ \pi^-) \mu^+ \mu^-$

- Decay is $P \to VV'$ (since $K^*(892)^0$ is $J^P = 1^-$).
- System fully described by q^2 and three angles $\vec{\Omega} = (\cos \theta_l, \cos \theta_K, \phi)$

Ahmed Ali (DESY, Hamburg)

Observables in
$$B \to K^* \mu^+ \mu^-$$

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \mathrm{d}\bar{\Omega}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K$$

$$+ \frac{1}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_l$$

$$- F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi$$

$$+ S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi$$

$$+ \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi$$

$$+ S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \Big].$$

Optimized variables with reduced FF uncertainties

$$P_1 = 2S_3/(1 - F_L); P_2 = 2A_{FB}/3(1 - F_L); P_3 = -S_9/(1 - F_L)$$
$$P_{4,5,6,8} = S_{4,5,6,8}/\sqrt{F_L(1 - F_L)}$$

Ahmed Ali (DESY, Hamburg)

Latest Update from the LHCb: LHCb-Paper-2015-051 SM Estimates: Altmannshofer & Straub, EPJC 75 (2015) 382

Ahmed Ali (DESY, Hamburg)

Analysis of the optimised angular variables: LHCb-Paper-2015-051 SM Estimates: Descotes-Genon, Hofer, Matias, Virto; JHEP 12 (2014) 125

Ahmed Ali (DESY, Hamburg)

Recent Updates: Pull on the SM [Altmannshofer, Straub (2015)]

W. Altmannshofer & D.M. Straub, EPJ C75 (2015) 8, 382

Decay	obs.	q^2 bin	SM pred.	measurer	nent	pull
$\bar{B}^0\to \bar{K}^{*0}\mu^+\mu^-$	$10^7 \frac{dBR}{dq^2}$	[2, 4.3]	0.44 ± 0.07	0.29 ± 0.05	LHCb	+1.8
$\bar{B}^0\to \bar{K}^{*0}\mu^+\mu^-$	$10^7 \frac{dBR}{dq^2}$	[16, 19.25]	0.47 ± 0.06	0.31 ± 0.07	CDF	+1.8
$\bar{B}^0\to \bar{K}^{*0}\mu^+\mu^-$	F_L	[2, 4.3]	0.81 ± 0.02	0.26 ± 0.19	ATLAS	+2.9
$\bar{B}^0\to \bar{K}^{*0}\mu^+\mu^-$	F_L	[4, 6]	0.74 ± 0.04	0.61 ± 0.06	LHCb	+1.9
$\bar{B}^0\to \bar{K}^{*0}\mu^+\mu^-$	S_5	[4, 6]	-0.33 ± 0.03	-0.15 ± 0.08	LHCb	-2.2
$B^- \to K^{*-} \mu^+ \mu^-$	$10^7 \frac{dBR}{dq^2}$	[4, 6]	0.54 ± 0.08	0.26 ± 0.10	LHCb	+2.1
$\bar{B}^0\to \bar{K}^0\mu^+\mu^-$	$10^8 \frac{dBR}{dq^2}$	[0.1, 2]	2.71 ± 0.50	1.26 ± 0.56	LHCb	+1.9
$\bar{B}^0\to \bar{K}^0\mu^+\mu^-$	$10^8 \frac{dBR}{dq^2}$	[16, 23]	0.93 ± 0.12	0.37 ± 0.22	CDF	+2.2
$B_s o \phi \mu^+ \mu^-$	$10^7 \frac{dBR}{dq^2}$	[1, 6]	0.48 ± 0.06	0.23 ± 0.05	LHCb	+ <mark>3</mark> .1
$B \to X_s e^+ e^-$	10^6 BR	[14.2, 25]	0.21 ± 0.07	0.57 ± 0.19	BaBar	- <mark>1.</mark> 8

Tension on the SM from $B \to K^* \mu^+ \mu^-$ measurements

- Perform χ^2 fit of the measured observables F_L , A_{FB} , S_3 , ..., S_9
- Float the generic vector coupling, i.e., $Re(C_9)$
- Best fit: $\Delta \text{Re}(C_9) = \text{Re}(C_9)^{\text{LHCb}} \text{Re}(C_9)^{\text{SM}} = -1.04 \pm 0.25$

Effective Weak $b \rightarrow d$ Hamiltonian

$$\begin{split} H_{\text{eff}}^{(b \to d)} &= -\frac{4G_F}{\sqrt{2}} \bigg[V_{tb}^* V_{td} \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu) \\ &+ V_{ub}^* V_{ud} \sum_{i=1}^2 C_i(\mu) \left(\mathcal{O}_i(\mu) - \mathcal{O}_i^{(u)}(\mu) \right) \bigg] + \text{h.c.} \end{split}$$

- *G_F* (Fermi constant), *C_i*(μ) (Wilson coefficients), and *O_i*(μ) (dimension-six operators) are the same (modulo *s* → *d*) as in *H*^(b→s)_{eff}
- CKM structure of the matrix elements more interesting in $H_{\text{eff}}^{(b \to d)}$, as $V_{tb}^* V_{td} \sim V_{ub}^* V_{ud} \sim \lambda^3$ are of the same order in $\lambda = \sin \theta_{12}$
- Anticipate sizable CP-violating asymmetries in b → dtransitions compared to b → s

Ahmed Ali (DESY, Hamburg)

Operator Basis

Tree operators

$$\mathcal{O}_{1} = \left(\bar{d}_{L}\gamma_{\mu}T^{A}c_{L}\right)\left(\bar{c}_{L}\gamma^{\mu}T^{A}b_{L}\right), \quad \mathcal{O}_{2} = \left(\bar{d}_{L}\gamma_{\mu}c_{L}\right)\left(\bar{c}_{L}\gamma^{\mu}b_{L}\right)$$
$$\mathcal{O}_{1}^{(u)} = \left(\bar{d}_{L}\gamma_{\mu}T^{A}u_{L}\right)\left(\bar{u}_{L}\gamma^{\mu}T^{A}b_{L}\right), \quad \mathcal{O}_{2}^{(u)} = \left(\bar{d}_{L}\gamma_{\mu}u_{L}\right)\left(\bar{u}_{L}\gamma^{\mu}b_{L}\right)$$

Dipole operators

$$\mathcal{O}_7 = \frac{e \, m_b}{g_{st}^2} \left(\bar{d}_L \sigma^{\mu\nu} b_R \right) F_{\mu\nu}, \quad \mathcal{O}_8 = \frac{m_b}{g_{st}} \left(\bar{d}_L \sigma^{\mu\nu} T^A b_R \right) G^A_{\mu\nu}$$

Semileptonic operators

$$\mathcal{O}_9 = \frac{e^2}{g_{\rm st}^2} \left(\bar{d}_L \gamma^\mu b_L \right) \sum_{\ell} \left(\bar{\ell} \gamma_\mu \ell \right), \quad \mathcal{O}_{10} = \frac{e^2}{g_{\rm st}^2} \left(\bar{d}_L \gamma^\mu b_L \right) \sum_{\ell} \left(\bar{\ell} \gamma_\mu \gamma_5 \ell \right)$$

Ahmed Ali (DESY, Hamburg)

$B \rightarrow \pi$ transition matrix elements

Momentum transfer:

 $q=p_B-p_\pi=p_{\ell^+}+p_{\ell^-}$

The Feynman diagram for the $B^+ \to \pi^+ \ell^+ \ell^-$ decay.

$$\langle \pi(p_{\pi})|\bar{b}\gamma^{\mu}d|B(p_{B})\rangle = f_{+}(q^{2})\left(p_{B}^{\mu}+p_{\pi}^{\mu}\right) + \left[f_{0}(q^{2})-f_{+}(q^{2})\right]\frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}}q^{\mu}$$

$$\langle \pi(p_{\pi})|\bar{b}\sigma^{\mu\nu}q_{\nu}d|B(p_{B})\rangle = \frac{if_{T}(q^{2})}{m_{B}+m_{\pi}}\left[\left(p_{B}^{\mu}+p_{\pi}^{\mu}\right)q^{2}-q^{\mu}\left(m_{B}^{2}-m_{\pi}^{2}\right)\right]$$

Dominant theoretical uncertainty is in the form factors $f_+(q^2)$, $f_0(q^2)$, $f_T(q^2)$; require non-perturbative techniques, such as Lattice QCD

Their determination is the main focus of the theory

$B \to \pi \ell^+ \nu_\ell \text{ decay}$ $\langle \pi | \bar{u} \gamma^\mu b | B \rangle = f_+(q^2) \left(p_B^\mu + p_\pi^\mu - \frac{m_B^2 - m_\pi^2}{q^2} q^\mu \right) + f_0(q^2) \frac{m_B^2 - m_\pi^2}{q^2} q^\mu$

- $f_0(q^2)$ contribution is suppressed by m_{ℓ}^2/m_B^2 for $\ell = e, \mu$
- Differential decay width

$$\frac{d\Gamma}{dq^2}(B^0 \to \pi^- \ell^+ \nu_\ell) = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 m_B^3} \lambda^{3/2} (q^2) |f_+(q^2)|^2$$
$$(q^2) = (m_B^2 + m_\pi^2 - q^2)^2 - 4m_B^2 m_\pi^2$$

- Assuming Isospin symmetry: $f_+(q^2)$ and $f_0(q^2)$ in charged current $B \to \pi \ell \nu_\ell$ and neutral current $B \to \pi \ell^+ \ell^-$ decays are equal
- Global fit of the CKM matrix element [PDG, 2012]

$$|V_{ub}| = (3.51^{+0.15}_{-0.14}) \times 10^{-3}$$

with λ

Fits of the data on $B \to \pi^+ \ell^- \nu_\ell$ yield $f_+(q^2)$

Heavy-Quark Symmetry (HQS) relations

Including symmetry-breaking corrections, Heavy Quark Symmetry relates $f_+(q^2)$, $f_0(q^2)$ and $f_T(q^2)$ (for $q^2/m_b^2 \ll 1$) [Beneke, Feldmann (2000)]

$$\begin{split} f_0(q^2) &= \left(\frac{m_B^2 + m_\pi^2 - q^2}{m_B^2}\right) \left[\left(1 + \frac{\alpha_s(\mu)C_F}{4\pi} \left(2 - 2L(q^2)\right)\right) f_+(q^2) \right. \\ &+ \frac{\alpha_s(\mu)C_F}{4\pi} \frac{m_B^2(q^2 - m_\pi^2)}{(m_B^2 + m_\pi^2 - q^2)^2} \Delta F_\pi \right], \\ f_T(q^2) &= \left(\frac{m_B + m_\pi}{m_B}\right) \left[\left(1 + \frac{\alpha_s(\mu)C_F}{4\pi} \left(\ln\frac{m_b^2}{\mu^2} + 2L(q^2)\right)\right) f_+(q^2) \right. \\ &\left. - \frac{\alpha_s(\mu)C_F}{4\pi} \frac{m_B^2}{m_B^2 + m_\pi^2 - q^2} \Delta F_\pi \right], \end{split}$$

$$L(q^{2}) = \left(1 + \frac{m_{B}^{2}}{m_{\pi}^{2} - q^{2}}\right) \ln\left(1 + \frac{m_{\pi}^{2} - q^{2}}{m_{B}^{2}}\right), \quad \Delta F_{\pi} = \frac{8\pi^{2}f_{B}f_{\pi}}{N_{c}m_{B}}\left\langle l_{+}^{-1}\right\rangle_{+}\left\langle \bar{u}^{-1}\right\rangle_{\pi}$$

 $B^{\pm} \rightarrow \pi^{\pm} \ell^{+} \ell^{-}$ at large hadronic recoil $(q^{2}/m_{h}^{2} \ll 1)$

[AA, A. Parkhomenko, A. Rusov; Phys. Rev. D89 (2014) 094021]

- Partially integrated branching fractions for $B^{\pm} \rightarrow \pi^{\pm} \ell^{+} \ell^{-}$ $BR_{SM}(B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}; 1 \text{ GeV}^{2} \le q^{2} \le 8 \text{ GeV}^{2}) = (0.57^{+0.07}_{-0.05}) \times 10^{-8}$
- Dimuon invariant mass spectrum at large hadronic recoil

Ahmed Ali (DESY, Hamburg)

Determination of $f_0^{B\pi}(q^2)$ and $f_T^{B\pi}(q^2)$ and comparison with Lattice QCD

- FFs are obtained by the *z*-expansion [Boyd, Grinstein, Lebed] and constraints from data in low-*q*²
- Lattice data (in high- q^2 are obtained by the HPQCD Collab. for $f_0^{B\pi}(q^2)$ from [arXiv:hep-lat/0601021] for $f_T^{B\pi}(q^2)$ from [arXiv:1310.3207]
- In almost the entire q^2 -domain, the form factors are now determined accurately. Recent Fermilab/MILC lattice results are in agreement

 $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ in the entire range of q^2

[AA, A. Parkhomenko, A. Rusov; Phys. Rev. D89 (2014) 094021]

Ahmed Ali (DESY, Hamburg)

Dimuon invariant mass spectrum in $B \rightarrow \pi \, \ell^+ \ell^-$

 In excellent agreement with the APR2013 predictions, as well as with the Lattice results

Ahmed Ali (DESY, Hamburg)

SM vs. experimental data

SM theoretical estimate of the total branching fraction [AA, A. Parkhomeno, A. Rusov; Phys. Rev. D89 (2014) 094021]:

$$\mathrm{BR}_{\mathrm{SM}}(B^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}) = \left(1.88^{+0.32}_{-0.21}\right) \times 10^{-8}$$

- Uncertainty from the form factors is now reduced greatly. Residual theoretical uncertainty is mainly from the scale dependence and the CKM matrix elements
- LHCb has measured the BR and dimuon invariant mass distribution in $B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$) based on 3 fb⁻¹ integrated luminosity [LHCb-PAPER-2015-035; arXiv:1509.00414] :

 $BR_{exp}(B^{\pm} \to \pi^{\pm}\mu^{+}\mu^{-}) = (1.83 \pm 0.24(stat) \pm 0.05(syst)) \times 10^{-8}$

Excellent agreement with SM-based APR2013-theory within errors, but significant improvement expected from the future analysis

Determination of Wilson Coeffs. from $B \rightarrow (\pi/K)\mu^+\mu^-$

[Fermilab/MILC, arxiv:1510.02349]

 $B_s \rightarrow \mu^+ \mu^-$ in the SM & BSM ■ Effective Hamiltonian

$$\mathcal{H}_{eff} = -\frac{G_{F}\alpha}{\sqrt{2}\pi} V_{ts}^* V_{tb} \sum_{i} \left[C_i(\mu) \mathcal{O}_i(\mu) + C'_i(\mu) \mathcal{O}'_i(\mu) \right]$$

• Operators: O_i (SM) & O'_i (BSM)

$$\begin{aligned} \mathcal{O}_{10} &= \left(\bar{s}_{\alpha}\gamma^{\mu}P_{L}b_{\alpha}\right)\left(\bar{l}\gamma_{\mu}\gamma_{5}l\right), & \mathcal{O}_{10}' &= \left(\bar{s}_{\alpha}\gamma^{\mu}P_{R}b_{\alpha}\right)\left(\bar{l}\gamma_{\mu}\gamma_{5}l\right) \\ \mathcal{O}_{S} &= m_{b}\left(\bar{s}_{\alpha}P_{R}b_{\alpha}\right)\left(\bar{l}l\right), & \mathcal{O}_{S}' &= m_{s}\left(\bar{s}_{\alpha}P_{L}b_{\alpha}\right)\left(\bar{l}l\right) \\ \mathcal{O}_{P} &= m_{b}\left(\bar{s}_{\alpha}P_{R}b_{\alpha}\right)\left(\bar{l}\gamma_{5}l\right), & \mathcal{O}_{P}' &= m_{s}\left(\bar{s}_{\alpha}P_{L}b_{\alpha}\right)\left(\bar{l}\gamma_{5}l\right) \end{aligned}$$

$$BR\left(\bar{B}_{s} \to \mu^{+}\mu^{-}\right) = \frac{G_{F}^{2}\alpha^{2}m_{B_{s}}^{2}f_{B_{s}}^{2}\tau_{B_{s}}}{64\pi^{3}}|V_{ts}^{*}V_{tb}|^{2}\sqrt{1-4\hat{m}_{\mu}^{2}} \\ \times \left[\left(1-4\hat{m}_{\mu}^{2}\right)|F_{S}|^{2}+|F_{P}+2\hat{m}_{\mu}^{2}F_{10}|^{2}\right]$$

$$F_{S,P} = m_{B_s} \left[\frac{C_{S,P} m_b - C'_{S,P} m_s}{m_b + m_s} \right], \quad F_{10} = C_{10} - C'_{10}, \ \hat{m}_{\mu} = m_{\mu}/m_{B_s}$$

BR $(\bar{B}_s \to \mu^+ \mu^-)_{\rm SM} = (3.23 \pm 0.27) \times 10^{-9}$ [Buras et al.; arxiv:1208.09344]

Ahmed Ali (DESY, Hamburg)

ł

Leading diagrams for $B_s \rightarrow \mu^+ \mu^-$ in SM, 2HDM & MSSM

Compatibility of the SM with $B^0_{(s)} \to \mu^+ \mu^-$ measurements

 $B^0_s o \mu^+ \mu^-$ Combined analysis with CMS

[Nature 522(2015)]

- ► First observation of $B_s^0 \rightarrow \mu^+ \mu^$ and evidence for $B^0 \rightarrow \mu^+ \mu^-$.
 - 6.2σ and 3.2σ respectively.
- Measurement of branching fractions and ratio of branching fractions.

$$\begin{split} \mathcal{B} \left[B_s^0 \to \mu^+ \mu^- \right] &= 2.8^{+0.7}_{-0.6} \times 10^{-9} \\ \mathcal{B} \left[B^0 \to \mu^+ \mu^- \right] &= 3.9^{+1.6}_{-1.4} \times 10^{-10} \end{split}$$

• Ratio found to be compatible with SM to 2.3σ .

Test of the SM in Semileptonic *B*-decays and $B_s \rightarrow \mu^+ \mu^-$

[Fermilab/MILC, arxiv:1510.02349]

Summary and outlook

- Lattice QCD, QCD sum rules, and heavy quark symmetry provide a controlled theoretical framework for *B*-meson physics
- Despite this impressive progress, some non-perturbative power corrections remain to be calculated quantitatively, limiting the current theoretical precision
- B-decays have been measured over 9 orders of magnitude and are found to be compatible with the SM, in general
- There is some tension on the SM in a number of rare *B* decays, typically $2 -3 \sigma$; whether this is due to New Physics or QCD remains to be seen
- FCNC processes remain potentially very promising to search for physics beyond the SM, and they complement direct searches of BSM physics
- We look forward to improved theory and even more precise measurements at the LHC and the Super-B factory at KEK