
Using the BFKL resummation to fit DIS data:
collinear and running coupling effects

Martin Hentschinski, Agustín Sabio Vera, Clara Salas

Instituto de Física Teórica UAM/CSIC, U. Autónoma de Madrid, E-28049 Madrid, Spain

DOI: http://dx.doi.org/10.3204/DESY-PROC-2012-02/97

The proton structure function F2 is studied in the low x regime using BFKL evolution.
The next to leading logarithmic (NLL) analysis requires the inclusion of running coupling
effects which lead to off-diagonal terms in the evolution kernel. An all-orders resummation
is used to improve the collinear behavior of the NLL BFKL result. We emphasize the
theoretical uncertainties that appear throughout the analysis and give a comparison to the
combined HERA data.

1 Introduction
In 2010 HERA made public the combined results [1] obtained by H1 [2] and ZEUS [3] Collabo-
rations for the proton structure function F2(x,Q2) at low values of the Bjorken x variable and
a quite broad range of values of the photon virtuality Q2. This observable became specially
convenient to test the region of applicability of the theory based on the high energy or Regge
limit, which corresponds to the center of mass energy of the system

√
s being asymptotically

larger than any other scale involved. In Deep Inelastic Scattering (DIS) a hard scale is provided
by the high virtuality of the photon. Since the x variable is given within very good approxi-
mation by the ratio between the photon virtuality and the center of mass energy squared, we
can refer to the Regge limit as the limit of low Bjorken x. In this regime large logarithms
of energy appear, dominating the scattering amplitude, and they need to be resummed to all
orders. Such a resummation is achieved by the so-called BFKL evolution equation [4–8].

The aim of the present study is to analyze the theoretical uncertainties encountered in the
determination of F2 at NLL accuracy using high energy factorization [9]. Care has to be taken
when introducing running coupling effects and it is also needed to resum to all orders the leading
collinear singularities which are numerically large in this kinematical region [10–14]. Concerning
the running of the coupling, we compare the results obtained using a running with a Landau
pole with a model which freezes in the infrared and is compatible with power corrections to jet
observables [15]. A numerical analysis of the gluon Green function in the kinematic region of
interest is provided. We conclude with a preliminary comparison of our theoretical calculation
for F2 with HERA data.
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2 Analyzing the proton structure function
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Figure 1

High energy factorization allows to write the proton structure func-
tion as a convolution in transverse momentum space of a nonpertur-
bative object describing the proton (proton impact factor Φp) with
the photon (photon impact factor Φγ), calculated using perturbation
theory, together with a gluon Green function f , linking both process-
dependent components and accounting for the BFKL evolution:

F2(x,Q2) =
Fc

(2π)4

∫
d2ka
k2
a

∫
d2k2

b

kb
Φγ(ka) f(x,ka,kb) Φp(kb) .

Fig. 1 shows the different parts involved. Although an analytic ex-
pression for the photon impact factor at next to leading order accu-
racy [16–18] has been recently calculated [19] we use for simplicity in
our analysis the leading order result as presented in [20]. The proton

impact factor needs to be modeled. Our results are based on a simple choice which introduces
just a few parameters to be determined by the experiment and it presents a Poissonian-like
distribution in transverse momentum space with its maximum around the confinement scale.
Finally, the gluon Green function is governed by the BFKL equation. Its LL solution is smooth
and convergent but not sufficient to explain the DIS data. The first attempt to have a good de-
scription of F2 would consist on studying the next order of accuracy. However it is known that
the NLL kernel is unstable in collinear regions. We have found that by introducing an all-orders
collinear resummation consistent with the NLL solution following the procedure given in [14]
we not only eliminate the collinear instabilities but also get a good preliminary description of
the data. Figs. 2 and 3 compare the LL gluon Green function to the collinearly improved one.
Since this formalism does not modify the NLL results but only gives higher order corrections
there is certain freedom in the way of performing the resummation. In the present analysis we
use an expression for the NLL eigenvalues which includes the action on the impact factors of
the differential operators breaking the scale invariance of the kernel.
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Figure 2: Action of the differential op-
erator. Upper curve: LL; mid curve:
asymmetric differential operator act-
ing on the photon; and lower curve:
symmetric choice.

At NLL accuracy one needs to account for the run-
ning of the coupling. This gives an analytical expres-
sion for the kernel which contains a differential operator
in the Mellin variable γ [21]. There is in principle no
theoretical restriction (other than having an hermitian
hamiltonian) on whether to act with this operator in
a symmetric way [22], i.e. on both proton and photon
impact factors or in an asymmetric way (only on one
of them). Nevertheless, it turns out that each option
produce very different results, as shown in fig. 2. The
reason for this is that each of them naturally leads to a
different scale for the running coupling due to the scale
of the logarithm accompanying the term in β0 of the
kernel, responsible for the running. This is, however,
an assumption about higher order terms again. We
could have decided to leave the logarithms without absorbing them into the expression for the
running coupling. We have also compared the results obtained for two different models of the
running, a perturbative one, with a Landau pole, and the one presented in [15] and described
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(a) Dependence on k2 for s0 = Q2 (solid lines) and
s0 = kq (dashed lines) at LL (upper set, green) and
NLL collinear improved (lower set, red) accuracy.
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(b) Dependence on the model for the running: the
solid lines correspond to the IR finite running and
the dotted ones to the perturbative one at LL (up-
per set, green) and NLL collinear improved (lower
set, red) accuracy.

Figure 3: Numerical analysis of the gluon Green function.

earlier in the introduction. However, as it can be seen in fig. 3b we are studying a region in
which these are minor effects, since we ask the transverse scale to be perturbative.

The last important point of discussion in this analysis is what to do with the choice of energy
scale s0 appearing in the gluon Green function:

f(s,k,q) =
1

2π2

∑
n

∫ ∞
−∞

dν

δ+i∞∫
δ−i∞

dω

2πi

ein(θq−θk)

ω −K(ᾱs, 1/2 + iν)

1

q2

(
q2

k2

)1/2+iν (
s

s0

)ω
.

It is known that any dependence of the cross section on this scale must cancel at NLL accuracy.
However, if we want to express f as a function of x a shift in ω is produced leading to a
remaining dependence on it that appear as higher order corrections. A natural choice in this
case would be the DIS scale, s0 = Q2, so that (s/s0)ω = x−ω. The symmetric choice as a
product of the internal scales s0 = kq was used to calculate the NLL BFKL solution [21]. As it
can be seen in fig. 3a there is a difference in the results obtained with each version.

Figure 4 shows one of the possible preliminary fits that can be done of F2 within this
theoretical framework. In particular, a symmetric version of the differential operator has been
used together with the symmetric energy scale s0 = kq, the perturbative running coupling and
proton impact factor given by

Φp(k
2) = A

(
k2/Q2

0

)δ
ek

2/Q2
0 .

The expression for the photon impact factor used can be found in [23].
A detailed analysis of the work here presented can be found in [24].

Acknowledgements
The European Comission (LHCPhenoNet PITN-GA-2010-264564) is acknowledged for funding
the expenses of the conference.

DIS 2012 3



1 ´ 10-4 2 ´ 10-4 5 ´ 10-4 0.001 0.002 0.005 0.010

0.6

0.8

1.0

1.2

1.4

1.6

x

F2
Hx

,Q
²L

Figure 4: Preliminary fit to F2 with δ = 1.246, Q2
0 = 0.368GeV2 and Ap = 0.07346.
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