Sub-300 fs, 0.5 mJ pulse at 1kHz from Ho:YLF amplifier and Kagome pulse compression

<u>K. Murari</u>^{1,2,3}, H. Cankaya^{1,2}, B. Debord⁵, P. Li¹, G. Cirmi^{1,2}, G. M. Rossi^{1,2}, S. Fang^{1,2}, O. D. Mücke^{1,2}, P. Kroetz^{2,3}, G. J. Stein⁴, A. Rühl¹, I. Hartl¹, F. Gérôme⁵, F. Benabid⁵ & F. X. Kärtner^{1,2,3,4}

¹Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany ²Centre for Free Electron Laser Science (CFEL), Hamburg, Germany ³University of Hamburg, Germany

⁴Department of EECS and RLE, Massachusetts Institute of Technology (MIT), Cambridge, USA

⁵ GPPMM Group, Xlim Research Institute, University of Limoges, France

CLEO:2015 San Jose, CA, USA

STu10.2

Krishna Murari | CLEO 2015 | STu1O.2

Motivation

> Development of driver for mid-IR Optical Parametric Amplifier (OPA)

Long wavelength 2 μm pump source

 \rightarrow High energy CPA scheme (\approx 2mJ, 3.4 ps @ 1kHz)

Sub-ps pulses for white light seed generation

Self compression for 3.4 ps, 0.5 mJ pulse in Kagome fibre

> High Harmonic Generation: $U_p \sim I_L \lambda^2$

THz generation

Previous Results

- A. Dergachev, et al. Proc. SPIE. 8599, 859908 (2013):
 First Ho:YLF Regenerative Amplifier (RA)
 - Seed source: Ho:YLF based oscillator $\tau \approx 250$ ps
 - RA + SPA: 7.2mJ, 1kHz, 300ps
- P. Malevich, et al. Opt Lett. 38, 2746 (2013)
 - Seed source: 2 stage OPA at 2.1 μ m. E \approx 0.7 μ J
 - Ho:YAG RA: Anti-gain narrowing filter: 3mJ uncompressed, 5kHz, 530fs
- M. Hemmer, et al. Opt. Lett. 40, 451 (2015)
 - Seed Source: Tm-Ho Amplifier seeded by frequency shifted Er oscillator
 - Ho:YLF RA + cryo cooled Ho:YLF amplifier: 39mJ, 100Hz, 10ps

This Work

Seeding of Ho:YLF regenerative amplifier with compact home built Ho: fibre

```
oscillator E_{seed} \approx 60 \text{ pJ} and E_{out} \approx 1.1 \text{ mJ},
```

- Amplified gain of 10⁷
- Shortest pulse duration achieved with Ho:YLF regen t \approx 3.4 ps
- Demonstration of pulse self compression of the output using Kagome fibres
- > Demonstration of self compression of 3.4 ps long pulses using 2 μ m pulses to sub-300 fs

Comparison of 2-µm gain media

- 4. P. Koopmann, *Conference. CLEO EURUPE*, 2009.
- 5. P. F. Karsten Scholle, Frontiers in Guided Wave Optics and Optoelectronics, Intech, 2010.
- 6. K Scholle, Laser Physics Letters, vol. 1, p. 285, 2004.
- 7. P. Koopmann, Appl Phys B, 102, 19 (2011)
- 8. B.M. Walsh, N.P. Barnes, B.D. Bartolo, J. Appl. Phys. 83, 2772 (1998)

Experimental Layout

Schematic of self-seeding two stages OPA

Results: Regen + SPA

Nonlinear Pulse Compression

- Spectral broadening in conventional fibres
- Spectral broadening in noble-gas filled hollow capillaries
- Hollow Core Photonic Crystal Fibres (HC-PCFs)
 - ➤ Kagome lattice HC-PCFs: Inhibited Coupling
 - > Extremely low core-clad power overlap
 - Low transmission loss
 - > Dominance of anomalous dispersion over large section of
 - transmission widow

Phillip Russell, MPL

Previous Results

SCIENCE

Kagome HC-PCF Compressor

Transmission Efficiency > 90 %

Ĩ.

SCIENCE

Results: 19-cell

Conclusion

Summary

- Simple and Compact seeding of Ho: YLF regenerative amplifier
- 1.1 mJ output from Ho: YLF amplifier + SPA seeded with Ho:fibre oscillator.
 Stretched and compressed using CVBG
- > Demonstration of self-compression 2 micron pulses using Kagome HC-PCFs
- 3.4 ps long pulses at 2050 nm was compressed to ~300 fs

Outlook

- Further optimization:
 - Gas pressure, fibre length and input pulse duration
- Pumping and seeding MIR-OPCPA

Thanks for your attention

