Towards an ytterbium based frequency synthesizer

<u>A.-L. Calendron</u>, H. Cankaya, L. E. Zapata, H. Lin, F. Reichert, M. Hemmer, G. Cirmi, G. M. Rossi, O. D. Mücke, F. X. Kärtner

DPG Frühjahrstagung

3rd March 2015

Motivation: Some applications

Requirements

- Broad spectral coverage: Visible to the IR
- High energy: ~mJ level
- CEP stability
- "Beam line": high stability and high reproducibility

How to realize it ?

Key ingredients of coherent sub-cycle waveform synthesis

- High-energy multi-color pulses (ultrabroad spectrum for each pulse)
- **Extremely precise dispersion control over the whole bandwidth**

- Relative timing should be locked to sub-cycle precision
- Each pulse should be CEP stable at the synthesis point

How to realize it ? Frequency synthesizer

Serial synthesis

Harth *et al.*, OE **20** (3), 3076 (2012) Huang *et al.*, Nat. Phot. **5**, 475 (2011) Manzoni *et al.*, LPR 201400181 (2015)

And for the CEP stability ?

Feng *et al.*, OE **21** (21), 25248 (2013) Brida *et al.*, JO **12**, 013001 (2010)

System overview

Regenerative amplifier design

Yb:KYW Regenerative amplifier

Calendron et al., OE 22 (20), 24752 (2015)

Yb:KYW Regenerative amplifier

Calendron et al., OE 22 (20), 24752 (2015)

Cryogenic Yb:YAG amplifier

Zapata *et al.*, ASSL 2013, talk AF3A.10 Zapata *et al.*, Opt. Lett. (submitted) Reichert *et al.*, submitted CLEO-Europe 2015

System overview

CEP stability

CEP stability

System overview

Amplification

- DOPA: IR (2 μm) 2 stages: 24 μJ
- NOPA: NIR (800 nm) 2 stages: 22 μJ

Broadband, CEP stable front-end

Broadband, CEP stable front-end

First 2 amplification stages

Broadband, CEP stable front-end

First 2 amplification stages

- Compression of the cryogenically cooled Yb:YAG amplifier
- Amplification to higher energies of the different channels
- Synthesis and compression of the amplified channels

Thank you for your attention

European Research Council

Established by the European Commission

Back-up slides

- Regenerative amplifier
 - Yb:KYW
 - Yb:CALGO
 - Yb:Lu₂O₃
- Cryogenically cooled amplifier
- Laser materials
- Thermal lensing
- Front-end
- White-light study (Meas., Cherenkov, Disp. YAG/Sap, ??)

- OPCPA
- Compression broadband pulses
- Stretcher / Compressor pump line

Thanks to...

- Prof. Franz X. Kärtner
- Huseyin Cankaya
- Max Lederer

- Giovanni Cirmi
- Damian N. Schimpf
- Jeff Moses

European Research Council

Established by the European Commission

• CFEL Engineering Teams

Bohman et al., OL 35, 1887 (2010): 5.0 mJ, 5.0 fs, 1kHz

Wirth et al., Science **334**, 195 (2011): 30 µJ, sub-cycle

Pump line: Amplifiers

SCIENCE

Front-end: White-light generation

Photo WL

Calendron *et al.*, submitted CLEO 2015 Calendron *et al.*, manuscript in preparation

Front-end

Compressibility

FROG measurement: 1750 nm after OPA

Calendron *et al.*, submitted CLEO 2015 Calendron *et al.*, manuscript in preparation

Pump line

Pump chain as OPCPA driver

- 100 mJ to to pump the OPCPA's, scalable to high energies
- Combination of different technologies, adapted to each stage
- λ = 1030nm

Home-made (Development with Luis and Hua)

Stretcher and compressor

Simulations: Pulse stretching and compression

• With split-step Fourier: Propagation in a fiber to simulate the stretcher

• Grating formula (Fork):

Grating equation

$$GVD \ \frac{d^2 \phi_g}{d\omega^2} = \frac{\lambda_L^3 l_g}{\pi c^2 d^2} \left(1 - \left(\frac{\lambda_L}{d} - \sin\gamma\right)^2\right)^{-3/2}$$

$$TOD \ \frac{d^3 \phi_g}{d\omega^3} = -\frac{d^2 \phi_g}{d\omega^2} \frac{6\pi\lambda_L}{c} * \frac{1 + \frac{\lambda_L}{d}\sin\gamma - \sin^2\gamma}{1 - \left(\frac{\lambda_L}{d} - \sin\gamma\right)^2}$$

Pulse after compression

1. Compressor: 1740l/mm, 60°, Lg=1.15m

Pump line: Regenerative amplifier

Goals

- Energy: 10 mJ
- Wavelength: 1030 nm (for seeding of the cryogenic Yb:YAG amplifier)
- Repetition rate: 100 Hz 1 kHz
- Pulse duration: <1 ps after compression

Simulations: Thermal lensing

- Insensitive cavity against thermal lens
 - Simulations with Paraxia
 - $-w_0$ constant for f_{th} between 280 mm and > 800mm
 - Possibility of CW and QCW pumping

K. Wentsch et al., Proc. SPIE 7193, Solid State Lasers XVIII, 719301 (2009).

Yb-doped materials

- Doping: ytterbium ion to match the required wavelength and bandwidth
- Comparison of hosts for ytterbium doping:

Host	Τ _L [μs]	σ _{abs} [10 ⁻²⁰ cm ²]	σ _{em} [10 ⁻²⁰ cm ²]	λ _P [nm]	λ _L [nm]	Δλ [nm]	K [W K ⁻¹ m ⁻¹]	dn/dT [10 ⁻⁶ K ⁻¹]
CALGO (1,2)	420	1	0.8	979	1030	50	6.3	?
KYW ⁽³⁾	320	1.33	3	981	1030	15	3.6	0.4
YAG ⁽⁴⁾	950	0.8	2.1	940	1029	8.5	11	10

References:

1. J. Petit et al., Optics Letters, 30, 1345 (2005)

2. S. Ricaud et al., Optics Letters, 36, 4134 (2011)

3. Eksma Website: <u>http://www.eksmaoptics.com/repository/catalogue/pdfai/NLOC/laser%20crystals/YBKGW.pdf</u>

4. Roditi Website: http://www.roditi.com/Laser/Yb_Yag.html

Simulations results: Franz-Nodvik

• Calculated for Yb:CALGO

SCIENCE

Pump line: Regenerative amplifier

KYW - Experimental results: CW

1 crystal, with 7.5% OC – P_{max} = 10.1W with M² = 1.1 2 crystals, with 15% OC – P_{max} = 20.4 W with M² = 1.1

Experimental results: CW KYW

Yb:KYW – Thermal lensing

- For cavity desjgn: 300 mm
- From experiment:
- According to:

$$\begin{split} D_{th,b} &= AP_{abs} (1 - \eta_P \eta_r \frac{\lambda_P}{\lambda_F}) \text{ before threshold} \\ D_{th,a} &= AP_{abs} (1 - \eta_P ((1 - \eta_l) \eta_r \frac{\lambda_P}{\lambda_F} + \eta_l \frac{\lambda_P}{\lambda_L})) \text{ after threshold, lasing} \\ D_{th,a} &= AP_{abs} (1 - \frac{\eta_P \eta_r}{\sigma_{em,L} \frac{I\lambda_L}{h_c} \eta_r \tau_{rad} + 1} (\frac{\lambda_P}{\lambda_F} + \sigma_{em,L} \frac{I\lambda_L}{h_c} \tau_{rad} \frac{\lambda_P}{\lambda_L})) \text{ after threshold, lasing} \end{split}$$

Experimental results: Cavity-dumped

Spectra and autocorrelation

Photos

Beam profile

• After regen: M² < 1.1 , circular

• After compressor: Elliptic

=> Cylindric lenses to compensate

Stability of the regen.

Long term measurement of the seeded regen @ 1kHz -

Cryo multi-pass amplifier

Extracted power

Cryo-CTD results vs calculations

Front end: General layout

55

3rd stage

ſ

