Terahertz time domain spectrometer to characterize nonlinear materials for efficient terahertz generation

<u>Frederike Ahr</u>^{1,2}, Sergio Carbajo^{1,2}, Giovanni Cirmi¹, Oliver D. Mücke¹, Xiaojun Wu¹, and Franz X. Kärtner^{1,2,3}

¹ Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestraße 85, 22607 Hamburg, Germany ²Department of Physics, University of Hamburg, 22761 Hamburg, Germany ³Department of Electrical and Computer Engineering, and Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

DPG-Frühjahrstagung 2015 in Bochum 3. März 2015

Motivation for Efficient High-Power THz Generation

SCIENCE

Highly Efficient THz Generation

- Mechanisms for generating highly efficient single-cycle THz radiation by using optical rectification
 - non collinear optical rectification
 - lithium niobate (LN), lithium tantalate (LT), GaAs
 - collinear optical rectification
 - ZnTe, GaP, organic crystals
- Goal:
 - highly efficient THz single-cycle pulse in the regime of 0.1 1 THz
 - characterization of the nonlinear optical materials in sub THz regime
 - Lithium niobate known as promising material
 - high susceptibility
 - non collinear phase matching

$$n_{THz} > n_{NIR}^{gr}$$

Pulse Front Tilting of the Intensity Front

• Phase matching in LiNbO₃ for OR

- Grating induces a pulse-front til
 - Image of grating in the crystal
 - Higher peak intensity on the crysta
- Enhancement of efficiency due cascading of pump pulse

Efficient THz Generation at 1.03µm

Extracted THz beam

- Conversion efficiency
 - 0.72% at room temperature
 - 2% at cryogenic temperature
- 68µJ THz energy

SCIENCE

- 0.2 GV/m THz field strength
- Nearly diffraction-limited Gaussian beams

- lower THz absorption
- longer propagation length

THz Time Domain Spectrometer

- Real pulse response via electro-optical sampling
 - THz emitter
 - ZnTe crystal
 - LT-GaAs antenna
 - Transmission, reflection and absorption spectra

THz Emitters – Temporal Waveforms

υн

SCIENCE

6.

Data in collaboration Peking University 7

THz Transmission Spectrum of Antenna

Temporal profile and spectrum of doped lithium niobate

THz Transmission Spectrum to Characterize Sample

 Temporal profile and spectra of reference and sample allows conclusion for

Preliminary Characterization of Lithium Niobate

THz-TDS at Peking University

amplified Ti:Sa with GaAs antenna

Preliminary characterization: FTIR

- Applying independent methods to verify refractive index and absorption coefficient
- Measurement of LN and LT
 - FTIR with Bolometer

Final Remarks

Efficient THz generation important for numerous applications

- Intensity pulse front tilting in lithium niobate
 - 2% extracted conversion efficiency

- Setup to characterize nonlinear optical materials at different temperatures in the sub THz regime
 - THz time domain spectrometer
 - Refractive index and absorption coefficient
- Understanding the material promise further improvement of efficient THz generation

Thank you for your attention

European Research Council Established by the European Commission

Ti:Sapphire oscillator

• Pump laser for THz-TDS

$$f_{\rm rep} = 85 \,{\rm MHz}$$

 $\lambda_c = 805 \,{\rm nm}$

$$P_{\rm out} = 350 \,\mathrm{mW}$$

 $\tau = 50 \,\mathrm{fs}$

