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We discuss a possibility that the domain wall problem in the next-to-minimal supersymmetric standard
model is alleviated without introducing a small explicit Z3 breaking term by analyzing the evolution of the
singlet scalar field within an inflationary paradigm. The singlet scalar field which explains the μ-term tracks
a time-varying minimum of the effective potential after inflation and slowly rolls down to its global
minimum if there exist sufficiently large negative Hubble-induced corrections on the effective potential for
the singlet field, which arise through supergravity. As a consequence, the whole Universe is confined within
a single domain during and after inflation, which prevents the formation of domain walls. This will further
constrain the history of the early Universe along with the Higgs-singlet coupling.
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I. INTRODUCTION

Supersymmetry (SUSY) is themost popular and plausible
paradigm to resolve the hierarchy problem in nature between
the grand unification scale and the electroweak scale; for a
review, see [1,2]. The SUSY is also highly attractive from
cosmological viewpoints [3]. It provides an appropriate
candidate for cold dark matter in terms of the lightest SUSY
particle (LSP) [4]. It is also useful to preserve the flatness of
the inflaton potential against radiative corrections. Indeed
one can find a number of candidates for the inflaton in
models with SUSY or supergravity (see, e.g., [5–7] for
reviews), making use of a gauge-singlet multiplet [8–10],
gauge invariant flat directions [11,12] (see also [13]), or
Higgs fields having a nonminimal scalar-curvature coupling
[14,15]. Finally, an efficient mechanism of baryogenesis has
been proposed in SUSY, making use of flat directions [16].
The minimal version of the SUSY standard model (SM),

also known as MSSM, contains one dimensionful param-
eter in the superpotential, namely, the μ-term, i.e., μHuHd,
where the SU(2) doubletsHu andHd yield masses to uplike
and downlike quarks as they acquire vacuum expectation
values (VEVs), respectively. It is desirable that the origin of
such a dimensionful parameter as well as its magnitude,
μ ∼OðTeVÞ, be explained by a more fundamental theory.
Along this line, it has been proposed to extend MSSM to
incorporate an additional singlet chiral superfield S, which
dynamically generates the μ-term [17,18]. This is also
known as next-to-MSSM (NMSSM); for a review, see [19].
Terms dependent on an absolute gauge singlet, S, in the

renormalizable superpotential for the NMSSM read

W ¼ λSHuHd þ
κ

3
S3 þWMSSM; ð1Þ

where WMSSM represents the usual Yukawa interactions
between Higgs doublets and quarks/leptons in the MSSM,
and λ and κ are dimensionless couplings. In this model,
typically a discrete Z3 symmetry is imposed under which
all chiral superfields Φ transform as Φ → e2πi=3Φ. Such a
symmetry guarantees the absence of terms like ∝ S and
∝ S2 as well as the μ-term in the MSSM.
The VEVof hSi, however, will spontaneously break the

Z3 symmetry, such that μ ¼ λhSi ∼Oð102-103Þ GeV in
order to explain the low-scale SUSY spectrum and the
observed Higgs mass. This symmetry breaking also poses
an intriguing problem and a challenge, which leads to the
formation of domain walls in the Universe. Although
domain walls with tiny energy scale may yield some
interesting cosmological consequences [20] including mild
acceleration of cosmic expansion [21], in the present case,
their energy scale is so high that if they persist in the late
Universe, they simply cause cosmological disasters over-
dominating the energy density of the Universe [22].
In the literature, in order to evade this problem, it is

usually assumed that the Z3 symmetry is an accidental
symmetry and there exists some explicit symmetry break-
ing term, which leads to the collapse of domain walls at late
times.1 The purpose of the present paper is to provide an

1For instance, the small explicitZ3 breaking termcanbeobtained
by imposing a discrete subgroupofUð1ÞR symmetry [23]. The large
explicit Z3 breaking term can also be generated in the context of
superconformal embedding of NMSSM into supergravity [15].
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alternative explanation to avoid the domain wall problem in
the context of inflationary cosmology rather than an
explicit symmetry breaking term employed so far in the
literature. We will see that the formation of domain walls
can be alleviated if there exist sufficiently large negative
supergravity corrections proportional to the Hubble param-
eter in the effective potential for the singlet scalar field
during and after inflation.2 Since the singlet field tracks a
time-varying minimum of the effective potential after
inflation, we call this scenario the tracking mechanism.
The outline of the paper is as follows: In Sec. II, we

discuss the domain wall formation in the inflationary
context. Then possible effects caused by supergravity
corrections are described in Sec. III. In Sec. IV, we analyze
the evolution of the singlet field with a negative Hubble-
induced mass and derive the conditions for the tracking
mechanism to work. Initial conditions for the singlet field
during inflation are also discussed in Sec. V. In Sec. VI, we
take account of finite temperature corrections for the
evolution of the singlet field after inflation and obtain some
conditions on the Higgs-singlet coupling and the reheating
temperature in order to avoid the domain wall formation.
The consequences for cosmology in the NMSSM are briefly
discussed in Sec. VII. Finally, Sec. VIII is devoted to the
conclusion and discussions.

II. NMSSM DOMAIN WALLS AND INFLATION

In order to address this issue, let us first note that from
μ ¼ λhSi ∼Oð102-103Þ GeV, we see that hSi can be much
larger than the weak scale if the coupling λ is sufficiently
small. In this case, the scalar potential can be written as

V ≃ κ2jSj4 þm2
SjSj2 þ

�
κ

3
AκS3 þ H:c:

�
;

where m2
S and Aκ are the soft SUSY breaking mass

parameters.3 From the above form of the potential, we
can estimate the VEV of S at the global minimum as

hSiglobal ≃ −
Aκ

4κ

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8m2
S

A2
κ

s !
: ð2Þ

Note that the magnitude of Aκ must be slightly larger than
that of mS in order to guarantee the existence of the global
minimum with hSi ≠ 0 [25]:

A2
κ=m2

S ≳Oð10Þ: ð3Þ

Furthermore, λ and κ cannot have a large hierarchy if the
magnitudes of all dimensionful parameters μ, mS, and Aκ

are close to the weak scale. In this paper, we assume λ≃ κ
for simplicity.
Before discussing the resolution of the problem, let us

describe how likely the formation of domain walls occurs
in the inflationary context. For simplicity, we assume that
inflation is driven by a potential energy of some scalar field,
called inflaton, and that the inflaton sector does not embody
the S superfield, or as a matter of fact other MSSM
superfields. A naive expectation is that the domain wall
formation is avoidable if the thermal corrections to the
effective potential of the singlet scalar remain irrelevant after
inflation such that theZ3 symmetry is never restored, but this
simple observation turns out to be insufficient when we
carefully consider the evolution of the singlet scalar during
and after inflation due to the reasons discussed below.
During inflation, quantum mechanically induced vac-

uum fluctuations significantly displace any light scalar field
whose effective mass is smaller than the Hubble parameter
Hinf because it obtains quantum fluctuations of order
Hinf=2π within each Hubble time [26–28]. After a suffi-
ciently large number of e-folds of inflation, a free real
scalar field ϕ with mass mϕ acquires long-wave fluctua-
tions with dispersion

hϕ2i ¼ 3H4
inf

8π2m2
ϕ

: ð4Þ

The dispersion of a scalar field with a more complicated
potential can be calculated by the stochastic inflation
method [29] but the typical field amplitude can be
estimated by simply requiring that the typical value of
its potential energy density takes a value OðH4

infÞ.
This fact implies that the VEV of the S field during

inflation is generically different from the value hSiglobal,
Eq. (2), at the global minimum of the low-energy effective
potential because the bare mass of S field is
mS ∼OðTeVÞ ≪ Hinf . After inflation, the S field starts
to oscillate, reducing its amplitude with time. It eventually
falls into one of the global minima, whose phase is related
by the Z3 transformation to that of other minima.
Note, however, that the final value of the phase of hSi can

differ at each spatial point because of the existence of the
field fluctuations δSðxÞ. These field variations originate
from quantum fluctuations during inflation, and they may
be enhanced once the S field starts to oscillate due to the
parametric resonance effect; see [30]. The enhancement
occurs both in the radial and angular direction of the

2A similar scenario was considered in Ref. [24], in which a
new gauge singlet field is introduced in addition to the NMSSM
field content and this new scalar field acquires a large Hubble-
induced mass. Instead of introducing such an extra symmetry
breaking field, in this paper we discuss a possibility that the
domain wall problem is avoided solely due to the dynamics of
the singlet scalar field S in NMSSM.

3In principle, superpotential terms such asW ⊂ Oð1ÞSn=Mn−3
Pl

would also appear, where n ¼ 6; 9; � � �, and MPl ≃ 2.4 ×
1018 GeV is the reduced Planck mass. In this paper we are
ignoring these higher order contributions to the superpotential
and the potential.
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complex scalar S, since the Aκ term mixes them. As a result,
different domains are created within the horizon scale, and
domain walls are formed around their boundary. The above
discussion suggests that the formation of domain walls is
almost inevitable unless the S field is stabilized at the
minimum of the effective potential during inflation.

III. SUPERGRAVITY CORRECTION AND THE
EVOLUTION OF S

In this paper, we shall argue that the resolution of this
problem is also achieved within the inflationary paradigm
(For a recent review of inflation, see, e.g., [31].) The key
ingredient is an effective mass of the form −cH2 for the S
field, where H is the Hubble parameter at a given time.
Such a mass term generically arises via a Planck-
suppressed interaction in the framework of supergravity
[32]; see also [3,5–7]. Since the value of the coefficient c
depends on the details of the Kähler terms [33], it is fair to
treat it as a free parameter to keep the discussion model
independent. According to its value, we may consider the
following three possibilities:

(i) If there exists no Hubble-induced mass (c ¼ 0): In
this case, S is expected to take a large value S ∼
Hinf=

ffiffiffi
κ

p
during inflation due to the accumulation of

long wave quantum fluctuations. It starts oscillation
as the Hubble parameter gets smaller than the
effective mass of S after inflation. Then even in
case a motion along the angular direction was
suppressed initially, as it crossed the origin, it would
start the angular motion and the phase of the scalar
field would have a scattered distribution due to the
Z3 symmetry of the potential. As a result, formation
of domain walls is inevitable.

(ii) If the Hubble-induced mass is positive (c < 0):
In this case, during inflation the S field is stabilized
at the origin. After inflation, it rolls down to the
global minimum from the origin when the
temperature of the Universe becomes sufficiently
low (i.e., the phase transition occurs), and again
domain walls are created through the Kibble
mechanism.

(iii) If the Hubble-induced mass is negative (c > 0): In
this case, during inflation the S field takes a value
larger than hSiglobal, very similar to our Fig. 1. As we
will see below, there is a possibility to avoid the
domain wall formation in this case. Indeed if S sits
on its potential minimum at each time and adiabati-
cally traces its time evolution until the field
relaxes to hSiglobal, we may avoid the domain wall
formation.

From here onwards, we will only consider the last case
with a negative Hubble-induced mass (c > 0) to see if the
above-mentioned tracking scenario works. We can write the
effective potential for the S field during inflation as

V ¼ −cH2
inf jSj2 −

�
κ

3
c0HinfS3 þ H:c:

�
þ κ2jSj4; ð5Þ

where terms dependent on Hinf are induced by the
inflaton’s potential through the supergravity effect. Here
we have ignored the soft SUSY breaking contributions,
since mS; Aκ ≪ Hinf , and the possible interaction terms
with two Higgses, since they are stabilized at the origin due
to the large field value of S. The cubic term of the form
κc0HS3=3 with c0 being another coefficient plays an
important role in stabilizing the phase of S to the minimum
of the potential.
Terms dependent on the Hubble parameter HðtÞ induced

by supergravity effects are present even in the field
oscillation regime after inflation:

VðSÞ ¼ −~cH2jSj2 −
�
κ

3
~c0HS3 þ H:c:

�
þ κ2jSj4: ð6Þ

Here the coefficients, ~c and ~c0, may take somewhat smaller
values than c and c0 during inflation, respectively, because
in this regime the kinetic energy is comparable to the
potential energy. Hereafter we assume that all these four
parameters are real and positive, and thatOðcÞ≃Oð~cÞ and
Oðc0Þ≃Oð ~c0Þ for simplicity. It should be noticed that (the
origins of) the phases of the A terms in Eqs. (5) and (6)
might not be identical if the Kähler structures responsible
for the A terms are changed. Since the Kähler structures
remain unchanged during inflation and inflaton oscillation
due to the energy dominance of the inflaton field, both
phases are expected to coincide. On the other hand, they
may change generally after the inflaton decays and radi-
ation dominates the energy density of the Universe. Here
we assume both phases coincide for simplicity.

FIG. 1. Sketch of the tracking mechanism. The red dotted lines
represent the form of the effective potential with the negative
mass term −~cH2jSj2 at early times, and the green solid line
represents that at the present time where the Hubble-induced term
becomes irrelevant. The location of the minimum varies with
time, which is indicated by blue circles.
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IV. TRACKING OF THE INSTANTANEOUS
MINIMUM FOR THE S FIELD

In order for the tracking scenario to work, we must
address the following two issues, apart from thermal effects
which will be discussed later. First, it must trace the time
evolution of the minimum adiabatically in the postinfla-
tionary Universe when the effective potential is given by
Eq. (6). Second, the initial fluctuations of the singlet field
generated during inflation are small enough not to create
different domains at a later time. In this section we discuss
the former issue.
In terms of S≡ seiθ=

ffiffiffi
2

p ðs ≥ 0Þ, Eq. (6) is expressed as

Vðs; θÞ ¼ −
~c
2
H2s2 −

κ ~c0

3
ffiffiffi
2

p Hs3 cos 3θ þ κ2

4
s4: ð7Þ

The angular direction has one of the minima at θ ¼ 0,
where the radial direction feels the potential

Vðs; 0Þ ¼ −
~c
2
H2s2 −

κ ~c0

3
ffiffiffi
2

p Hs3 þ κ2

4
s4; ð8Þ

which is minimized at

s ¼ 1

2
ffiffiffi
2

p
κ

�
~c0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~c02 þ 8~c

q �
HðtÞ≡ smðtÞ: ð9Þ

Neglecting the motion in the phase direction and fixing as
θ ¼ 0, we obtain the equation for the radial direction:

̈sþ 3H_s − ~cH2s −
1ffiffiffi
2

p κ ~c0Hs2 þ κ2s3 ¼ 0: ð10Þ

By introducing a new variable ξ ¼ s=sm, the above
equation can be rewritten as

ξ00 þFξ0 þ ðHtÞ2ξ

×

��
~cþ ξ

8

�
~c0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~c02þ8~c

q �
2
�
ðξ−1ÞþG

�
¼ 0; ð11Þ

where

F≡ ðHtÞ
�
2

_H
H2

þ 3

�
− 1;

G≡ Ḧ
H3

þ 3
_H
H2

; ð12Þ

and ξ0 ≡ dξ=d ln t ¼ t_ξ. The tracking scenario works only
if ξ≃ 1 holds throughout its evolution.
Note that for aðtÞ ∝ tp, where aðtÞ represents the scale

factor of the Universe at a given time, we have F ¼
3ðp − 1Þ and G ¼ ð2 − 3pÞ=p2. Just after inflation the
inflaton field oscillates around the minimum of its potential
behaving like a matter component, which leads to p ¼ 2=3

for the cosmic expansion. Then we have G ¼ 0, and ξ ¼ 1
becomes a solution of the field equation [Eq. (11)].
However, this solution is unstable since the damping is
negative, F ¼ −1 < 0. In other words, if there exists a
deviation from ξ ¼ 1 initially, it grows with time and spoils
the tracking mechanism when the deviation becomesOð1Þ.
The instability described above can be alleviated if the

coefficient ~c or ~c0 is sufficiently large. Note that just before
the end of inflation (j _Hj=H2 ≲ 1) the damping is positive
(F > 0), and the field variable ξ exponentially converges
into the value determined by setting the bracket in the left-
hand side of Eq. (11) to zero, which reads

ξ≃ 1 −
4G

ð ~c0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~c02 þ 8~c

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~c02 þ 8~c

p ð13Þ

for ~c; ~c0 ≫ 1. The effects of quantum fluctuations will be
discussed and shown to be negligible in the next section.
Since G ∼Oð1Þ just before the end of inflation, this fact
implies that at this epoch the value of ξ deviates from ξ ¼ 1
by the following quantity:

δξi ∼Oð~c−1; ~c0−2Þ: ð14Þ
After inflation, the initial deviation δξi starts to grow.

To see how it grows, let us substitute ξ ¼ 1þ δξ with
δξ ≪ 1 into Eq. (11). Assuming that F ¼ −1, G ¼ 0, and
Ht ¼ 2=3 during the inflaton-oscillation dominated phase,
we have

δξ00−δξ0 þ1

9

�
~c0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~c02þ8~c

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~c02þ8~c

q
δξ¼ 0; ð15Þ

where we neglected the terms of higher order in δξ. The
above equation implies that the deviation grows with time
as δξ ∝ t1=2 for ~c; ~c0 ≫ 1.
In order to guarantee that the deviation from the

minimum s ¼ sm remains small throughout its evolution,
we require the following condition:

jδξðtgÞj ¼
�
tg
ti

�1
2jδξij ¼

�
sm;inf

sm;global

�1
2jδξij ≪ 1; ð16Þ

where tg and ti represent the time at which the S field
reaches the global minimum and that at the end of inflation,
respectively. In the second equality of the above equation,
we used the fact that smðtÞ ∝ HðtÞ ∝ 1=t. Here sm;inf

corresponds to the value at the end of inflation,

sm;inf ≡ 1

2
ffiffiffi
2

p
κ
ðc0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c02 þ 8c

p
ÞHinf ; ð17Þ

and sm;global ≡
ffiffiffi
2

p hSiglobal corresponds to that at the global
minimum [see Eq. (2)]. The condition given by Eq. (16)
implies that
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c; ~c ≫ O
�
Hinf

jAκj
�2

3

or c0; ~c0 ≫ O
�
Hinf

jAκj
�1

3

: ð18Þ

We summarize some representative values for the coef-
ficients of the Hubble-induced correction terms in Table I.
According to the amplitude of the Hubble parameter during
inflation (and hence the energy scale of inflation), relatively
large coefficients are required. These required values might
be much larger than those derived in Ref. [34] in the context
of the cosmological moduli problem. This is because there
exist both positive and negative Hubble-induced terms in
the model considered in [34], in contrast to the scenario in
this paper where there exists the negative Hubble-induced
term only. In the latter case the dragging of the scalar field
is not so efficient as we expect in the former case. Likewise,
we expect that the dragging mechanism of Ref. [34] does
not relax the moduli problem if the effective potential
possesses the negative Hubble-induced term only.
We also note that at the time t≲ tg, the S field does not

rotate in the phase direction as long as the Aκ term satisfies
the condition given by Eq. (3). Then the transition from one
vacuum to others related by the Z3 transformations is
prohibited even after the negative Hubble-induced terms
become irrelevant.

V. INITIAL CONDITION FOR S FIELD
DURING INFLATION

Let us next study the field configuration during inflation,
keeping the above parameter values in mind. The potential
minimum is located at sm;inf ≫ Hinf=κ [see Eq. (17)], and
quantum fluctuations around it are estimated as

hðs− sm;infÞ2i≃ 3H4
inf

8π2m2
s
<

3

16π2c
H2

inf ≪ 10−3H2
inf ; ð19Þ

where

m2
s ≡ ∂2V

∂s2 ðsm;inf ; 0Þ

¼ 2cH2
inf þ

1

4

�
c02 þ c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c02 þ 8c

p �
H2

inf ; ð20Þ

and it is assumed that only the mass term is important.
Thus, fluctuations along the radial direction are much

smaller than the expectation value sm;inf , and we may
study fluctuations along the angular direction by set-
ting s ¼ sm;inf .
The potential for the angular scalar field defined by χ ≡

sm;infθ is given by

VðχÞ ¼ −
κc0

3
ffiffiffi
2

p Hinfs3m;inf cos

�
3

χ

sm;inf

�

¼ 3κc0

2
ffiffiffi
2

p Hinfsm;infχ
2 þ � � � ; ð21Þ

where the latter expression applies for small θ, and we can
read off the mass of χ as

m2
χ ¼

3c0

4

�
c0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c02 þ 8c

p �
H2

inf : ð22Þ

Let us estimate the number of domains where fluctuation
along the angular direction exceeds jθj ¼ π=3 to make a
domain wall somewhere within our observable Universe
using the approximated potential [Eq. (21)] based on the
peak theory of random Gaussian fields (Ref. [35]). The
desired quantity can be calculated from the correlation
function

Cðjz − z0jÞ≡ hχðzÞχðz0Þi ¼ 3H4
inf

8π2m2
χ
ðHinf jz − z0jÞ−

2m2
χ

3H2
inf ;

ð23Þ

and its derivatives at zero lag, such as

σ20 ≡ hχ2ð0Þi ¼ Cð0Þ ¼ 3H4
inf

8π2m2
χ
; ð24Þ

σ21≡3

	 ∂χ
∂zx ðzÞ

∂χ
∂z0x ðz

0Þ


¼−3

C0ðrÞ
r

����
r→H−1

inf

¼ 3H4
inf

4π2
; ð25Þ

σ22 ≡ 15

	∂2χ

∂z2x ðzÞ
∂2χ

∂z02y ðz
0Þ



¼ 15

�
C00ðrÞ
r2

−
C0ðrÞ
r3

�����
r→H−1

inf

¼ 5H4
inf

2π2
ðm2

χ þ 3H2
infÞ: ð26Þ

Note that Eq. (23) is applicable for r≳H−1
inf, but it also

reproduces the variance with zero lag, taking r ¼ H−1
inf .

Hence, we take r → H−1
inf when we consider the zero-lag

limit in stochastic inflation (Ref. [29]).
Then according to Ref. [35], the number density of the

νσ peak is calculated as

TABLE I. Lower bounds on the coefficients of the Hubble-
induced corrections given by Eq. (18) for some choices of the
energy scale of inflation V1=4

inf . Here we use the relation H2
inf ¼

V inf=3M2
Pl and the value for the soft parameter jAκj ¼ 1 TeV.

V1=4
inf

2 × 1012 GeV 2 × 1015 GeV
Hinf 106 GeV 1012 GeV

c, ~c ≳100 ≳106
c0, ~c0 ≳10 ≳103
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npðνÞdν ¼
e−

ν2

2

ð2πÞ2R3�
Gðγ; γνÞdν≡ e−fðνÞdν; ð27Þ

where Gðγ; wÞ is a function whose approximate form can
be found in Eq. (4.4) of Ref. [35]. Here γ and R� are,
respectively, given by

γ ¼
�

6m2
χ

10m2
χ þ 30H2

inf

�1
2

; R� ¼
3

ð10m2
χ þ 30H2

infÞ1=2
:

ð28Þ

Assuming that the number of e-folds of inflation required
to solve the horizon problem is equal to 60, the number of
domains with jθj > π=3 in the observable Universe today is
given by [36]

2Nð> νdÞ ¼ 2e180H−3
inf

Z
∞

νd

npðνÞdν≃ 2e180−fðνdÞ

H3
inff

0ðνdÞ
;

≃ e180−ν
2
d=2

2π2νd

�
10m2

χ þ 30H2
inf

9H2
inf

�3
2

Gðγ; γνdÞ; ð29Þ

where νd ≡ πsm;inf=ð3
ffiffiffiffiffiffiffiffiffiffi
Cð0Þp Þ. Requiring that the above

expression should be smaller than unity, we find only a mild
constraint on κ. This can be easily seen from the exponent
−ν2d=2 ¼ −π4c0ðc0 þ ðc02 þ 8cÞ1=2Þ3=72κ2, which gives a
huge negative contribution for κ ≪ c02.
Therefore to summarize, as long as the condition for the

tracking behavior is satisfied, quantum fluctuations during
inflation are suppressed both along radial and angular
directions, so that the domain wall formation is always
avoided.

VI. THERMAL EFFECTS ON S AFTER
INFLATION AND CONSTRAINTS

Finally we consider possible thermal effects on the S
field after inflation. As the amplitude jSj decreases with
time, interactions with light fields in the thermal bath
gradually come into play, which can destroy the S field
condensate to produce domain walls. In particular, we must
ensure the following two conditions:
(1) Thermal corrections of the form∼λ2T2jSj2 should be

small enough to satisfy λ2T2 ≪ ~cH2 in order not to
affect the tracking evolution of the S field.

(2) The amplitude of thermal fluctuation δSðxÞ ∼ T of
the S field should be well below that of the back-
ground field sm; otherwise they may cause transi-
tions into different domains to create domain walls.

Since sm ∼
ffiffiffi
~c

p
H=κ and λ≃ κ, we see that these two

requirements lead to the identical condition on the model
parameters, which is solely determined by the dynamics of
later times, since H decreases faster than T after inflation.
Hence, we have only to consider the constraint at the time

when S has almost reached the global minimum, i.e.,
~cH2 ∼m2

S. Therefore, we may impose the following con-
dition to avoid destruction of the condensate4:

λTffiffiffi
~c

p
H

< 0.1 at ~cH2 ¼ m2
S: ð30Þ

Let us quantify Eq. (30) more explicitly by considering the
evolution of the Universe after inflation. Just after inflation,
the inflaton starts to oscillate around the minimum of its
own potential, and it eventually decays into the (MS)SM
degrees of freedom to reheat the Universe. There are two
distinct possibilities: (1) the S field reaches its global
minimum during the inflaton-oscillation dominated phase
before reheating is completed, and (2) the S field reaches its
global minimum in the radiation dominated epoch after
reheating.
In the first scenario, the temperature of the thermal bath

is given by T ≃ ðHT2
RMPlÞ1=4 [37], where TR is the

reheating temperature. At the relevant epoch we find
T ≃ ~c−1=8ðmST2

RMPlÞ1=4, and Eq. (30) leads to the follow-
ing bound:

TR < 2 × 103 GeV~c
1
4

�
λ

10−5

�
−2
�

mS

1 TeV

�3
2

: ð31Þ

Since T ≃ ~c−1=8ðmST2
RMPlÞ1=4 > TR by assumption, we

obtain an upper bound on TR:

TR < 5 × 1010 GeV~c−
1
4

�
mS

1 TeV

�1
2

: ð32Þ

If the condition given by Eq. (32) is not satisfied, the S
field reaches its global minimum in the radiation dominated
epoch after reheating. From the relation H ∼ T2=MPl, we
have T ≃ ~c−1=4ðmSMPlÞ1=2 at ~cH2 ¼ m2

S, and by using
Eq. (30), we obtain

λ < 2 × 10−9 ~c
1
4

�
mS

1 TeV

�1
2

: ð33Þ

Note that the above condition makes sense only if there
exists a large negative Hubble-induced mass term−~cH2jSj2
and A terms −ðκ ~c0HS3 þ H:c:Þ even after the reheating is
completed. The existence of the negative Hubble-induced
mass term is foreseeable due to the SUSY breaking

4To confirm this observation, we have numerically solved
the field equation S̈þ 3H _Sþ ∂V=∂S ¼ 0with the potential given
by V ≃ −~cH2jSj2 þ κ2jSj4 þm2

SjSj2 þ ðκAκS3=3 − κ ~c0HS3=3
þH:c:Þ, which gives a good approximation around ~cH2 ≳m2

S.
We have confirmed that for reasonable values of the model
parameters the S field does not move to other minima if the
deviation from sm=

ffiffiffi
2

p
is less than Oð10Þ%, which we use as the

criterion shown in Eq. (30).
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contributions from the thermal bath [38,39]. The phase

of the coefficient ~c0 of the Hubble-induced A term can
change after reheating since the Kähler structures might
change at that epoch, which induces a rotation of the S field
in the angular direction. This fact does not spoil the
tracking mechanism as long as the magnitudes of the
coefficients remain sufficiently large. The reason may be
understood as follows: the angular motion induced by the
change of the Kähler structures proceeds adiabatically with
a Hubble time scale, since the transition to the radiation
dominated phase happens smoothly at that epoch. For
such a smooth transition, the deviation from the minimum
of the effective potential induced by the angular motion is
at most Oð~c−1; ~c0−2Þ, which remains negligible for large
coefficients.
Figure 2 summarizes our analyses. Combining two cases

described above, we show the allowed parameter range for
TR and λð≃κÞ. From the plot we see that the resolution of
the domain wall problem requires a small value for the
Higgs-singlet coupling besides the large enough Hubble-
induced mass.

VII. COSMOLOGICAL CONSEQUENCES FOR
ELECTROWEAK BARYOGENESIS AND

DARK MATTER

The results obtained in this paper lead to several
consequences for cosmology in the NMSSM. First, for
sufficiently small couplings the singlet sector would
decouple from the thermal bath. A dominant interaction

process between the singlet fields and the MSSM fields is
the 2 → 2 interaction involving Higgsinos and weak
bosons (and their SUSY partners), whose rate is roughly
estimated as Γ ∼ αλ2T, where α is the weak coupling
strength. Since this interaction rate is exponentially sup-
pressed after the temperature of the thermal bath becomes
less than mS ∼OðTeVÞ, and the Hubble parameter H ∝ T2

decays faster than Γ, we expect that the fields in the singlet
sector would never thermalize if the condition Γ < H is
satisfied at T ∼mS. This occurs if the value of the coupling
satisfies

λ < α−
1
2

�
mS

MPl

�1
2

∼Oð10−7 − 10−6Þ: ð34Þ

For such a small coupling the singlino state cannot be
produced from the thermal bath, and it would not contribute
to the dark matter abundance. Finally, the S field falls in
the global minimum much earlier than the epoch of the
electroweak phase transition T ∼Oð100Þ GeV, if the
tracking mechanism works. Therefore, the first order phase
transition is not likely to be realized in this case. These facts
would have an important consequence for the electroweak
baryogenesis within NMSSM and the mass range for the
dark matter, which would now primarily contain the
Higgsino component [40].

VIII. CONCLUSION AND DISCUSSIONS

In this paper, we have shown that the domain wall
problem of the NMSSM can be resolved via the tracking
mechanism if the following conditions are satisfied:
(1) There exist negative Hubble-induced corrections with
sufficiently large coefficients [see Eq. (18)] in the effective
potential for the S field during and after inflation. (2) The
Aκ term is slightly larger than the soft massmS [see Eq. (3)]
in order to prevent the S field from rotating in the phase
direction at later times. (3) The thermal effects must remain
irrelevant; see Eq. (30). This requirement leads to the
constraints on the coupling strength and the reheating
temperature as shown in Fig. 2. Our study has many
important phenomenological consequences for LHC and
dark matter creation and detection within NMSSM.
Let us briefly mention a particular relevance for the

future experimental studies of NMSSM. Typically, in
NMSSM the Higgs sector is enlarged due to the presence
of a singlet, and for reasonably large couplings, i.e.,
λ; κ ∼ 0.1, Higgs-to-Higgs decays can possibly be observed
in the forthcoming LHC experiment [41]. According to
Fig. 2, such a discovery at a large coupling regime λ ∼
Oð0.1Þ indicates the formation of domain walls; then we
must seriously take into account their cosmological evo-
lution [42,43].
Another important LHC signature would be obtained in

the small coupling regime, where the singlet states decou-
ple from the MSSM sector. In this case, we would expect to

No domain wall formation

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-2 100 102 104 106 108 1010 1012

FIG. 2. Conditions to avoid the domain wall formation on the
parameter space of ðTR; λÞ. Domain walls are not produced in the
region below the blue line corresponding to Eqs. (31) and (33).
The region to the right side of the blue dotted line corresponding
to Eq. (32) also leads to the domain wall formation if the large
negative Hubble-induced mass is absent in the radiation domi-
nated epoch after inflation. We also plot the values of the VEVhSi
at the global minimum [Eq. (2)] as purple chain lines. Here we fix
the values of other parameters as ~c ¼ 100, mS ¼ 1 TeV and
jAκj ¼ 4 TeV.

POSSIBLE RESOLUTION OF THE DOMAIN WALL … PHYSICAL REVIEW D 93, 025002 (2016)

025002-7



observe displaced vertices from the long-lived next-to-LSP
[44], which can also be helpful to falsify our scenario.
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