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We present a factorization formula for the dependence of light hadron masses and low energy hadronic
scales on the mass M of a heavy quark: apart from an overall mass-independent factor Q, ratios such as
r0ðMÞ=r0ð0Þ are computable in perturbation theory at large M. The perturbation theory part is stable
concerning different loop orders. Our nonperturbative Monte Carlo results obtained in a model calculation,
where a doublet of heavy quarks is decoupled, match quantitatively to the perturbative prediction. Upon
taking ratios of different hadronic scales at the same mass, the perturbative function drops out and the ratios
are given by the decoupled theory up toM−2 corrections. We verify—in the continuum limit—that the sea
quark effects of quarks with masses around the charm mass are very small in such ratios.
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Introduction.—One usually presumes that the low
energy dynamics of QCD, such as the hadron mass
spectrum, is rather insensitive to the physics of heavy
quarks. One can then work with QCD with just the three or
four light quarks in order to understand it [1]. While large
Nc (color) arguments suggest a general suppression of
quark loop effects, and then a particular one for heavy
quarks, so far there has not been any nonperturbative
investigation determining the typical magnitude of these
effects. This is understandable, since lattice gauge theory
with heavy quarks generically has enhanced discretization
errors and it is a nontrivial task to separate the physical
effects from those unwanted errors. It is thus of high
interest for the lattice community to understand whether it
is already time to include a charm sea quark in the
simulations. Note that one has to be precise about the
meaning of the decoupling of heavy quarks [2,3]. They do
leave traces through renormalization, which we discuss
below.
The theoretical tool to understand these questions is the

low energy effective theory [3,4] describing the physics
with one or more heavy quarks decoupled. We denote this
theory by decQCD. The leading order effective theory is
just QCD with one or more quark flavors less. The gauge
coupling ḡdec and quark masses of decQCD are adjusted
such that decQCD (approximately) reproduces the physics
of the (more) fundamental theory at an energy sufficiently
below the mass of the decoupled quark [5]. This adjustment
is referred to as matching.
We consider the situation with Nl light quarks and Nq

quarks in total. Indicating the flavor content Nf of the
theory by a subscript, the fundamental theory is QCDNq

.

The theory with only the light quarks is QCDNl
. Hadronic

quantities, the couplings, and the Λ parameters in these
theories are distinguished by subscripts q and l.
In this Letter we briefly present the effective theory from

the nonperturbative point of view, discuss the perturbative
matching of its parameters in terms of renormalization group
invariants (RGI) and point out the factorization formula

mhad
q ðMÞ

mhad
q ð0Þ ¼ Qhad

l;q × Pl;qðM=ΛqÞ þO(ðΛq=MÞ2): ð1Þ

It gives the mass dependence of hadron masses or hadronic
scales such as r0 [6] or t0; w0 [7,8] in terms of two factors.
The first factor, Qhad

l;q , depends on the hadron mass or
hadronic scale and involves only information from the
theories with Nq and Nl massless quark flavors [9]. The
second factor, Pl;qðM=ΛqÞ, gives the relation of the Λ
parameters of these two theories, determined such that the
low energy physics of the fundamental theory, QCDNq

with
Nq − Nl quarks of RGI mass M, is the same as the one of
QCDNl

up to power corrections OððΛq=MÞ2Þ. Throughout
this Letter we take the Λ parameters to be defined in the MS
scheme, but this choice is irrelevant; namely, Q;P have a
trivial scheme dependence in regular schemes [10].
Interestingly, the asymptotics of Pl;qðM=ΛqÞ for large mass
M, is computable in perturbation theory. The formula thus
provides a factorization into a nonperturbative pieceQ, and a
“perturbative” one. In particular, the mass dependence is
perturbative. We here use quotation marks since the precise
meaning is that the asymptotics is perturbative.
We further report on our investigation of the numerical

precision of perturbation theory for P and then compare
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Eq. (1) to a first nonperturbative investigation for
Nq ¼ 2; Nl ¼ 0, which we expect to be a quite realistic
model for real QCD. In this case, the lowest order effective
theory is the Yang-Mills theory, as long as we look at the
gluonic sector only, which we do here. Finally, we argue
through our numerical simulations that the effects of a
charm quark, which aremissed by simulating just QCDwith
Nl quarks, are very small in typical ratios of hadronic scales.
The effective theory: decQCD.—The leading order low

energy effective theory is QCDNl
. Next-to-leading order

(NLO) correction terms in the local effective Lagrangian
are gauge-, Euclidean-, and chiral-invariant local fields.
These invariances allow only for fields ΦiðxÞ of at least
dimension six [11]. The Lagrangian may then be written as

Ldec ¼ LQCDNl
þ 1

M2

X
i

ωiΦi þOðM−4Þ; ð2Þ

with dimensionless couplings ωi which depend logarithmi-
cally on the mass M.
At the lowest order in 1=M, a single coupling [12] ḡdec is

adjusted such that the low energy physics of QCDNl
and

QCDNq
match for energiesE ≪ M. It then suffices to require

one physical low-energy observable to match, e.g., a
physical coupling. Discussing the issue in perturbation
theory [5], Bernreuther andWetzel chose theMOMcoupling
as a physical coupling and worked out the matching of the
MS coupling. Meanwhile, the matching of the latter is
known to high-perturbative order. We use this informa-
tion below.
For now, we remain with the lowest order theory; i.e., all

terms OðE2=M2Þ are neglected and the Lagrangian is
Ldec ¼ LQCDNl

. We just make use of the fact that there
is a single coupling, the gauge coupling ḡdec. Specifying a
renormalization scheme, its β function is fixed and the
coupling is a unique function ḡdec ¼ ḡlðμ=ΛlÞ, where μ is
the renormalization scale. Therefore, the matching con-
dition between ḡdec and ḡq is equivalent to a relation
between the Λ parameters. Considering only RGIs, the
only additional parameter is the quark mass M of the
fundamental theory. Therefore, we have to set

Λl ¼ ΛdecðM;ΛqÞ ð3Þ

in order to match the two theories. For dimensional reasons
the unknown function Λdec can be written as

ΛdecðM;ΛqÞ ¼ Pl;qðM=ΛqÞΛq: ð4Þ

In general the Λ parameter of an asymptotically free theory
is a free, dimensionful, constant, which is to be fixed from
outside, usually by matching the theory to experiment. In
the present case, experiment for QCDNl

is replaced by
QCDNq

, where the overall energy scale Λq remains free as
before.

The factorization Eq. (1) is a simple consequence of
Eq. (4): consider low energy scales of the theory, in
particular, hadron masses mhad. After matching (and
neglecting terms of order Λ2

q=M2) they are equal in the
fundamental and in the effective theory, mhad

l ¼ mhad
q . We

note further, that in QCDNl
there are no mass parameters,

the only scale is Λl and hence hadron masses are mhad
l ¼

ρhadΛl with pure numbers ρhad. Thus mhad
l =Λl is indepen-

dent of M. In the fundamental theory mhad
q ðMÞ=Λq does of

course depend onM, but Λq is by definition independent of
M. Together these facts entail the relation Eq. (1) with

Qhad
l;q ¼ mhad

l =Λl

mhad
q ð0Þ=Λq

ð5Þ

defined entirely through the two massless theories.
Even though the physics of the two theories is matched

at energy scales far below the mass, the perturbative
matching of the couplings is in fact best done with a
renormalization scale μ of the order of the mass [3,5].
Higher order perturbative corrections then vanish asymp-
totically as M → ∞ and the matching of the couplings is
indeed perturbative. This entails that Pl;q can be computed
in perturbation theory when the mass is large.
The Bernreuther-Wetzel relation between the MS

couplings ḡdec ¼ ḡlðm�=ΛlÞ and ḡq ≡ ḡqðm�=ΛqÞ is mean-
while known to four loops [13,14],

ḡ2dec ¼ ḡ2q × ½1þ c2ḡ4q þ c3ḡ6q þ � � ��; ð6Þ

where c2 ¼ðNq−NlÞ1172ð4π2Þ−2, and c3¼ ½572437
62208

− 84185
13824

ζ3−
2633
15552

Nl�ð4π2Þ−3 for Nq−Nl ¼ 2, and c3¼ ½564731
124416

− 82043
27648

ζ3−
2633
31104

Nl�ð4π2Þ−3 for Nq − Nl ¼ 1. In this relation, the c1ḡ2q
term in the brackets is missing since c1 vanishes for our
choice of renormalization scale, μ ¼ m�, wherem� satisfies
mMSðm�=ΛqÞ ¼ m� with mMS the quark mass in the MS
scheme.
From now on we suppress indices l; q on Λ and ḡ, since

the effective theory only appears implicitly through the
previously defined quantities Q;P. We define a renormal-
ization group invariant mass scaling function by the
logarithmic derivative [P0ðxÞ ¼ ðd=dxÞPðxÞ]

ηMðMÞ≡M
P

∂P
∂M

����
Λ
¼ M

Λ
P0

P
∼M→∞

η0 þ ηM1 ḡ
2 þ � � � ð7Þ

with respect to the RGI mass M. Just like M itself, ηMðMÞ
is independent of the scheme. Residual dependences only
result when it is evaluated approximately, e.g., at a finite
order of perturbation theory. We worked out its perturbative
expansion [15], using Eq. (6) and the known expansions of
the QCD β function and the mass anomalous dimension in
the MS scheme up to 4-loop [16–19]. Here we only report
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η0 ¼ 1 −
b0ðNqÞ
b0ðNlÞ

> 0; ð8Þ

ηM1 ¼ −
b0ðNqÞ
b0ðNlÞ

�
b1ðNqÞ
b0ðNqÞ

−
b1ðNlÞ
b0ðNlÞ

�
−

η0
2π2

; ð9Þ

with b0ðnÞ¼ ð11−2n=3Þ=ð4πÞ2, b1ðnÞ¼ ð102−38n=3Þ=
ð4πÞ4, and refer the reader to [15] for the general expres-
sions and details of the perturbation theory. Integrating
Eq. (7) gives an asymptotic expression [τ ¼ logðM=ΛÞ]

P ¼ 1

k
expðη0τÞτηM1 =2b0ðNqÞ ×

�
1þ O

�
log τ
τ

��
; ð10Þ

where the constant k is fixed by our conventions
for the Λ parameter and the RGI mass M [20] to
logk¼fb1ðNqÞ=2½b0ðNqÞ�2g log2−fb1ðNlÞ=2½b0ðNlÞ�2g×
log½2b0ðNqÞ=b0ðNlÞ�. It turns out that in the MS scheme
the higher order corrections to ηM as well as the function P
are very small as far as they are known, namely, up to an
impressive 4-loop level, ηM3 g

6. We discuss an example
below.
We now turn to a nonperturbative investigation of the

question of how well the mass dependence at intermediate
masses M matches onto the asymptotic perturbative pre-
diction. For this purpose we simulate a model, namely,
QCD with two heavy, mass-degenerate quarks. The effec-
tive theory, decQCD, then is the Yang-Mills theory up to
1=M2 corrections (Nq ¼ 2, Nl ¼ 0).
In Monte Carlo simulations of QCD with Nf ¼ 2 mass-

degenerate OðaÞ improved Wilson fermions [21] we
compute hadronic scales, e.g., r0ðMÞ=a, at three values
of the lattice spacing a ¼ 0.066, 0.049, and 0.034 fm.
The RGI mass M is obtained along the lines of [22]. For
details about the numerical computations, performed with
MP-HMC [23], OPENQCD [24], the package MESONS [25],
and the methods applied see Refs. [15,26].
For the hadronic scale r0 [6], Eq. (1) takes the form

r0ð0Þ=r0ðMÞ ¼ Q × PðM=ΛÞ þO(ðΛ=MÞ2) with Q ¼
½Λr0ð0Þ�Nf¼2=½Λr0�Nf¼0. The ratios r0ðMÞ=r0ð0Þ for Nf ¼
2 are plotted in Fig. 1 as a function of Λ=ðΛþMÞ. The
value r0ð0Þ=a in the chiral limit is taken from [22] for
a ¼ 0.066 and 0.049 fm, and we estimate it to 13.06(42)
at 0.034 fm.
The red curve in Fig. 1 shows the mass dependence close

to the chiral limit as fitted in [22] with the dashed red lines
representing the error of the fit. At large M=Λ the blue
curve in Fig. 1 is drawn using the 2-loop perturbative
formula for P in Eq. (10) andQ ¼ 0.789ð52Þ=0.602ð48Þ ¼
1.30ð14Þ known from previous work [20,22]. The dashed
blue lines represent the uncertainty of Q. The dotted black
curve is drawn using the 4-loop value of P and shows that
higher perturbative orders are very small. They are negli-
gible in comparison to the uncertainty of Q. As our present

nonperturbative results, we take the values at the smallest
lattice spacing (a ¼ 0.034 fm). For M=Λ ¼ 2.50 or M ≈
0.8 GeV, a rather modest value of the mass, these are
consistent with the (upper error bar of the) factorization
curve. Thus within our precision, the perturbative predic-
tion is verified.
By discretizing the derivative in Eq. (7) as ηM ≈

log½r0ðM2Þ=r0ðM1Þ�= logðM2=M1Þ we obtain from our
simulations numerical estimates of ηM. Their values are
between 0.12 and 0.17 and are very close to perturbation
theory η0 ≈ 0.12. A more precise statement needs a careful
continuum limit, both for ηM and in Fig. 1. The lattice
community should address this issue in the near future.
Power corrections OðΛ2=M2Þ.—So far we have dis-

cussed a comparison of the full theory to the prediction of
the factorization formula resulting from the lowest order
effective theory. When we take ratios of different hadron
masses or different hadronic scales, the function PðM=ΛÞ
drops out and we have access to the OðΛ2=M2Þ power
corrections without any perturbative uncertainties. We
consider ratios

R ¼ ffiffiffiffi
t0

p
=w0; r1=r0; r0=

ffiffiffiffi
t0

p
;

ffiffiffiffiffiffiffiffiffiffi
tc=t0

p
; ð11Þ

where the scale tc is defined through the smoothed action
density [7] EðtÞ via t2chEðtcÞi ¼ c with c ¼ 0.2. It is a
shorter distance cousin of t0 [7].
We target the mass values M=Λ ¼ 0.63, 1.28, 2.50,

which correspond approximately to 0.2, 0.4, 0.8 GeV. For
comparison the RGI charm mass Mc ≈ 1.6 GeV [27].
We correct the ratios R for small differences between
the targeted and the simulated values of the masses. In the
corrections we neglect the error on M=Λ since it mainly
comes from Λ and is therefore common to all points.
Our continuum extrapolations are performed by global

fits,

FIG. 1 (color online). The mass dependence of r0ðMÞ=r0ð0Þ in
the Nf ¼ 2 theory. Monte Carlo data (symbols) are compared
with the perturbative predictions for 1=ðQPÞ at large M. A fit to
data close to the chiral limit is also shown.
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RLat ¼ RðMÞ þ s
a2

8t0

�
1þ k1

M
Λ

þ k2
M2

Λ2

�
; ð12Þ

to all the data. Where it is known, we fix the slope s (which
describes the mass independent cutoff effects) from its
value determined at M ¼ 0, cf. [28]. As a representative
case, we show in Fig. 2 (left) the global fit for R ¼ ffiffiffiffiffiffiffiffiffiffi

tc=t0
p

.
The slope s ¼ 0.295 has been determined from a con-
tinuum extrapolation of

ffiffiffiffiffiffiffiffiffiffi
tc=t0

p
in the chiral limit (cyan

upward-facing triangles). Our fits yield k2 compatible with
zero. We drop it for our preferred continuum extrapolation,
which then gives k1 ¼ −0.19ð6Þ and an excellent quality of
the fit. The continuum limit values are very precise and
allow us to determine the size of the mass effects in the ratio
R. For comparison, the magenta downward-facing triangles
in Fig. 2 are the results for Nf ¼ 0, which according to
Eq. (1) is recovered in the limit M=Λ → ∞.
In Fig. 2 (right) we plot the values RðMÞ (red circles)

together with Rð∞Þ in the Nf ¼ 0 Yang-Mills theory
(magenta downward-facing triangle). While the effective
theory expectation is a roughly quadratic behavior in Λ=M,
the full theory results are approximately linear in that
variable. The natural explanation—since we do not have
any doubt about the validity of the effective theory
description—is that the masses of our simulations are

not yet large enough to be described by NLO decQCD
(Yang-Mills plus 1=M2 corrections). Taking the largest
mass and the Nf ¼ 0 value we can obtain by simple linear
interpolation in 1=M (black line) and 1=M2 (red dashed
line) two estimates of the mass effects at the charm mass
marked by the blue vertical dashed line.
The dynamical fermion effects of these heavy quarks are

very small and it is hence expected that they are strongly
dominated by the contribution of a single fermion-loop (but
nonperturbative in ḡ and after renormalization). As a result
one expects a rather linear dependence on Nf. Since the
relevant effect for physics is the contribution of a single
heavy quark, we rescale the relative mass effect as (Nf ¼ 2)

1

Nf

RðMÞ − Rð∞Þ
Rð∞Þ : ð13Þ

These numbers are listed in Table I for the ratios in Eq. (11).
Conclusions.—In conclusion, we pointed out the factori-

zation formula Eq. (1) for the dominating dependence of low
energydimensionful quantities such as hadronmasses on the
mass of a heavy (dynamical) quark. In perturbation theory,
the power law P ∼ ðM=ΛÞη0 is a very good approximation
and we find that the nonperturbative dependence is also
rather close to that law for quarkmasses around 1

2
Mc…

1
4
Mc.

The knowledge of this mass dependence is expected to
provide valuable information for tuning heavy quarkmasses
to the correct point in future lattice QCD computations. We
emphasize that our results are entirely sufficient to get the
qualitative picture. At the quantitative level, they are limited
to an accuracy of around 10%, both because of the limited
precision in themassless theory and becausewe have not yet
taken a true continuum limit for the finite mass points in
Fig. 1. At least the latter should be improved soon. In
principle, one also has to worry about power corrections to
the factorization formula, but Table I shows that these are
irrelevant at the present level of precision.
The dominating effect in Fig. 1 originates from the mass

dependence of the gauge coupling in the effective theory.
It therefore disappears in dimensionless ratios of low
energy scales at fixed mass M and only leaves residual
power law effects. The effective theory analysis predicts
those to be of the form M−2 for large M. Our investigation
of these power corrections has been restricted toM ≤ 1

2
Mc.

FIG. 2 (color online). Left: The continuum extrapolation of the
ratio

ffiffiffiffiffiffiffiffiffiffi
tc=t0

p
(c ¼ 0.2) at mass values (from top to bottom)

M=Λ ¼ ∞, 2.5, 1.28, 0.63, 0. Right: Its mass dependence
including a linear and quadratic interpolation in Λ=M between
the largest mass and Nf ¼ 0 (M=Λ ¼ ∞).

TABLE I. Relative effects Eq. (13) for the ratios in Eq. (11). At Mc we quote the results from interpolations in 1=M and 1=M2;
see Fig. 2.

M=Λ → Mc=Λ

R 1=M scaled 1=M2 scaled 2.50 1.28 0.63 0ffiffiffiffi
t0

p
=w0 0.34(5)% 0.16(2)% 0.72(11)% 1.26(12)% 2.62(14)% 5.4%ffiffiffiffiffiffiffiffiffiffi

tc=t0
p

0.28(3)% 0.13(1)% 0.59(6)% 1.06(3)% 1.74(3)% 3.2%
r1=r0 0.45(13)% 0.21(6)% 1.0(3)% 1.8(5)% 2.6(6)% ≈4.0%
r0=

ffiffiffiffi
t0

p
0.05(28)% 0.02(12)% 0.1(6)% 0.7(5)% 1.7(5)% 3.0%
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Larger masses require smaller lattice spacings, larger
lattices and (due to critical slowing down) larger statistics.
However, in the accessible region we have precise results.
Phenomenologically they are described by an approximate
M−1 law. We therefore interpolated between the largest
simulated mass and the Yang-Mills theory to the charm
mass as M−n with both n ¼ 1 and n ¼ 2. It seems safe to
assume that the true results will be in between. In any case,
the thus interpolated effects are very small, between 1 and 6
permille (Table I). This provides a message for today’s
dynamical fermion simulations. Dynamical charm effects
are relevant only when one has very good precision, a very
small lattice spacing and/or physical observables sensitive
to higher energy scales.
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