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1. Introduction5

For precision spectroscopical measurements of narrow states in a storage ring6

such as HESR [1] in the FAIR facility at GSI [2] the absolute energy of the stored7

beam needs to be known to a relative accuracy in the 10−5 range. The prime exper-8

iment in the HESR is the PANDA [3] detector with an extensive physics program9

with Hadron spectroscopy as one of its main topics. PANDA will search for gluonic10

excitations such as glueballs or hybrids as well as well as perform detailed scans of11

the spectrum of charmonium systems. A third activity will address the spectrum12

and decay width of the recently discovered D-mesons. For these experiments the13

ring will operate close to the production threshold of the mesons which therefore14

requires precise knowledge of the absolute value of the beam energy. When op-15

erating in an energy range where an electron cooler is available, this accuracy is16

given by the precision to which the acceleration voltage and therefore the velocity17

of the electrons is known. When operating at higher energies, exceeding the en-18

ergy range of the cooler, one has to rely on a precise knowledge of the frequency of19

the radio-frequency (RF) system for the revolution time and the knowledge of the20

circumference of the storage ring to determine the velocity and thereby the energy21

of the stored ion beam. At first sight the circumference appears to be a trivially22

well-known quantity, but when requiring accuracies in the 10−5 range, which means23

5 mm for a 500 m ring, this is not entirely self-evident. In fact, production measure-24

ments of mesons at threshold in CELSIUS revealed a discrepancy of 47 mm in the25

82 m circumference of CELSIUS [4] as designed and as determined by the experi-26

mental group [5]. The memory of this discrepancy triggered our investigation even27

though CELSIUS is long dismantled.28

The origins of the lack of knowledge about the circumference lie in the finite29

precision of the surveying procedure that is used to place magnets at their design30

positions. The primary source are the dipoles which define the reference orbit, but31

also transversely misaligned quadrupoles which will cause horizontal oscillations of32
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the closed orbit. If the closed orbit lies further towards the outside in a dipole33

magnet, the length of the orbit is increased. Note that the dominant source of34

orbit length variation happens in the bending plane which is normally horizon-35

tal. A related source are other vertical magnetic stray fields that cause horizontal36

oscillations, similar to those caused by misaligned quadrupoles. Of course, these37

oscillations are corrected by the orbit correction system, which will add more ver-38

tical fields, which cause more horizontal oscillations, that are intended to minimize39

the orbit offset on the beam-position monitors (BPM). The BPMs have a finite40

resolution which means that the excitations to the orbit correction dipoles has a41

finite variance which causes the length of the orbit to vary.42

We observe that the presence of RF complicates the dynamics further. If magnet43

misalignments change the length of the orbit, the beam must adjust its energy in44

order to maintain the revolution time as dictated by the RF system. A change45

of momentum ∆p/p and orbit length ∆s causes a change of revolution time ∆T46

according to47

∆T

T
=

(
α− 1

γ2

)
∆p

p
+

∆s

C
(1)

where C is the circumference, T the revolution time, α is the momentum compaction48

factor, and γ the beam energy in units of the particle rest mass. Note that the first49

term on the right hand side describes the commonly used definition of the phase50

slip factor α− 1/γ2 where the α describes the change of the orbit length and 1/γ251

the change of velocity due to the momentum variation. The second term ∆s/C52

describes the change of the orbit length and consequently the revolution time due53

to other independent sources, such as the average bending magnet field strength or54

an excited steering magnet, an effect we discuss in the next section.55

If RF is present the revolution frequency must remain constant and after chang-56

ing the orbit length by ∆s and the beam thus responds by assuming a different57

momentum ∆p/p given by58

∆p

p
= − ∆s(

α− 1
γ2

)
C

(2)

which shows that a change in orbit length causes a different energy. It is obvious59

that the sensitivity of the energy on the orbit length becomes increasingly significant60

the closer transition is approached.61

In the remainder of this report we will assume that all effects that affect the orbit62

length have a random Gaussian distribution, typically with a RMS of 0.1 mm, which63

is a typical accuracy achievable by the surveyors. We first discuss the variation of the64

circumference due to transverse quadrupole misalignment and due to longitudinal65
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positioning accuracy of dipoles. We then include the effect of an orbit correction66

system and assume finite BPM resolution.67

2. Orbit length change from a dipole kick68

In this section we calculate the change in the length of the closed orbit due to69

a horizontal dipole kick. We start by considering the dispersion η0 at a location s070

which is given by [6]71

η0 =

∮ √
β(s)β0

2 sinπν
cos(φ0 − φ(s)− πν)

ds

ρ(s)
(3)

where the integral extends over the entire ring, ν is the tune, ρ is the radius of72

curvature of the dipoles, and β0 and φ0 are the betatron function and phase at73

position s0, respectively. By changing the integration variable from s to s′ = s−C74

where C is the circumference of the ring and use that ρ(s) and β(s) are periodic75

functions, but φ(s′) becomes φ(s)− 2πν. We then arrive at76

η0 =

∮ √
β(s′)β0

2 sinπν
cos(φ0 − φ(s′) + πν)

ds′

ρ(s′)
. (4)

We now turn to the effect of a horizontal dipole kick with angle θ0 at location s077

on the length of the closed orbit. The position at any location s due to the kick is78

given by the well-known expression [6]79

x(s) =

√
β(s)β0

2 sinπν
cos(φ(s)− φ0 − πν)θ0 (5)

If the orbit lies further out in bending dipole magnets around the ring we can80

calculate the change in orbit in a similar fashion how the momentum compaction81

factor is derived, namely82

∆s =

∮
x(s)

ρ(s)
ds . (6)

Inserting x(s) from Eq. 5 we obtain83

∆s = θ0

∮ √
β(s)β0

2 sinπν
cos(φ(s)− φ0 − πν)

ds

ρ(s)
. (7)

After using cos(x) = cos(−x) we find that the integral equals the expression for the84

dispersion shown in Eq. 4 and we finally arrive at85

∆s = η0θ0 (8)

which shows that the change of orbit length ∆s of a dipole kick of magnitude θ0 at86

a location with dispersion η0.87
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If there is more than one kick θ in the ring the total orbit length variation is88

given as a sum over terms such as that shown in Eq. 8 and we have to sum over all89

sources of dipole kicks90

∆s =
∑
j

ηjθj (9)

where θj are the kick angles and ηj the dispersion at the location labeled j where91

the kick occurs.92

The dipole kick of magnitude θ from a dipole error labeled j will cause the beam93

position on a BPM labeled i to change by the response coefficient Cij such that we94

have xi = Cijθj . The specific form of the response coefficients in terms of transfer95

matrices is given in the appendix.96

3. Misalignments97

The primary source of errors are transversely displaced quadrupoles. If they98

have a focal length 1/f = k1l and are transversely displaced by an amount δx̃ the99

kick they apply to the beam is given by θ = δx̃/f which causes an orbit length100

variation ∆sq = η̃δx̃/f where η̃ is the dispersion at the location of the displaced101

quadrupole. If we consider all misaligned quadrupoles we simply sum over the102

contributions of all quadrupoles103

∆sq =
∑
k

η̃k
δx̃k
fk

(10)

where the index k labels all quadrupoles. The same displacement will also be104

visible on BPMs around the ring and is given by the response coefficients Cij12 of105

angle perturbation (subscript 2) at location j and position change (subscript 1) at106

location i through107

xi =
∑
k

C̃ik12
δx̃k
fk

(11)

where xi denotes the change of reading on BPM number i due to the displacement108

δx̃k of quadrupole number k. In the following we will omit the subscripts to make the109

notation less cluttered. Note that the response coefficients C̃ik above are treated for110

thin lens quadrupoles and that we use quantities with a tilde to indicate association111

with the location of quadrupoles.112

A second source of errors are longitudinal displaced dipoles which are equivalent113

to a small kick of magnitude δẑ/ρ at one end and an opposite kick at the other114

end [7]. The corresponding variation of the orbit length ∆sd is then given by115

∆sd = (η̂outd − η̂ind )
δẑ

ρ
=
η̂out − η̂in

L
φdδẑ (12)
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where L, ρ, φd = L/ρ are the length, bending radius, and the bending angle of116

the dipole and η̂d is the dispersion at either end of the dipole. Summing over all117

displaced dipoles allows us to write118

∆sd =
∑
l

η̂outl − η̂inl
L

φlδẑl (13)

where the index l labels the dipole magnets. Note that in the case that the dipoles119

are very short the quantity (η̂outl − η̂inl )/L approximately equals the derivative of120

the dispersion η̂′l in the dipole.121

The displaced dipoles will also affect the transverse position xi of the beam122

visible on the BPM123

xi =

(
Ĉil,out12

δẑl
ρ
− Ĉil,in12

δẑl
ρ

)
=
Ĉil,out12 − Ĉil,in12

L
φlδẑl = Ĉijφlδẑl (14)

where Ĉ
il,out/in
12 is the response coefficient from the exit and entrance of dipole124

labeled l to BPM labeled i. We introduce the short-hand notation Ĉil = (Cil,out12 −125

Cil,in12 )/L to simplify the notation. Note that if the dipole bends only weakly, the126

net effect is a transverse displacement of magnitude −Lδẑ/ρ = −φdδẑ after the127

dipole and we have that Ĉil = −Ĉil11. Here and in the following we use quantities128

with a hat to indicate association with the location of dipoles.129

The effect of all error sources on the orbit length ∆s can thus be written as130

∆s = ∆sq + ∆sd =
∑
k

η̃k
δx̃k
fk

+
∑
l

η̂outl − η̂inl
L

φlδẑl (15)

for transverse quadrupole displacement δx̃ and longitudinal dipole displacement δẑ.131

Other errors such as excitation errors of the dipole magnets can be included in a132

similar fashion. Normally these alignment errors lead to a visible orbit distortion,133

that is corrected with the orbit correction system. The orbit distortion at the BPMs134

is given by135

xi =
∑
k

C̃ik12
δx̃k
fk

+
∑
l

Ĉilφlδẑl (16)

and the correction of that orbit we address in the next section.136

4. Orbit Correction137

The dipole errors discussed so far come from unavoidable imperfections in the138

construction of the ring which predominantly lead to transverse orbit variations139

that are visible on BPMs and the BPM readings are subsequently used to calculate140

excitations for correction steering magnets in order to minimize the observed orbit141

displacement on the BPMs. Apart from correcting the transverse offset at the142
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BPMs the correctors used will also affect the orbit length by virtue of eq. 8. In143

this report we use a simple least squares orbit correction system and assume that144

there are sufficient BPMs available in order to render the orbit correction system145

non-degenerate. In this case the corrector excitations are determined by146

xi =
∑
j

Cij12θj (17)

where xi is the reading of BPM labeled i and θj is the excitation of corrector labeled147

j. The response coefficients Cij12 between corrector j and BPM i are discussed in148

the appendix and the sum extends over all corrector magnets. Eq. 17 describes149

a linear system of equations that can be solved in the least-squares sense by the150

pseudo-inverse [9]151

θj =
∑
i

[
(CtC)−1Ct

]
ji
xi (18)

where we denote the matrix Cij12 simply by C and Ct denotes the transpose of C.152

The square bracket contains the pseudo-inverse matrix that can be regularized using153

singular value decomposition, if the inverse should be degenerate or near degenerate.154

The final effect we consider is the finite resolution of the BPMs which will cause155

the orbit correction system to excite the steering magnets with ’wrong’ values. The156

BPM uncertainties from mechanical misalignment, electrical noise or imbalance of157

the separate channels of a BPM we denote by δxi.158

We now combine the different effects to investigate their respective severity. In159

order to properly take the orbit correction system into account we write down the160

effect of all transverse perturbations and the orbit correctors on the BPMs161

xi = δxi +
∑
k

C̃ik
δx̃k
fk

+
∑
l

Ĉilφlδẑl +
∑
j

Cijθj (19)

where δxi are the BPM uncertainties, C̃ and Ĉ are the response matrices of BPM162

position to quadrupole offset and longitudinal dipole offset, respectively. C is the163

response matrix of BPM position to kick angle of the steering correctors.164

Orbit correction now works by minimizing the left hand side in the least squares165

sense with the result166

θj = −
∑
i

[
(CtC)−1Ct]

]
ji

(
δxi +

∑
k

C̃ik
δx̃k
fk

+
∑
l

Ĉilφlδẑl

)
(20)

and the contribution to the orbit length variation from all corrector magnets is167

∆sc =
∑
j ηjθj as already discussed above.168

The cumulative effect of misaligned magnets from the previous section and the169
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orbit correction on the orbit length is assembled to170

∆s =
∑
k

η̃k
δx̃k
fk

+
∑
l

η̂′lφlδẑl

−
∑
j

ηj
∑
i

[
(CtC)−1Ct

]
ji

(
δxi +

∑
k

C̃ik
δx̃k
fk

+
∑
l

Ĉilφlδẑl

)
= −

∑
j

ηj
∑
i

[
(CtC)−1Ct

]
ji
δxi

+
∑
k

η̃k −∑
j

ηj

[
(CtC)−1CtC̃

]
jk

 δx̃k
fk

(21)

+
∑
l

η̂′l −∑
j

ηj

[
(CtC)−1CtĈ

]
jl

φlδẑl .
This equation has a straightforward interpretation. The first term, proportional to171

δxi contains the BPM errors δxi that causes the steering correctors to assume a172

non-zero excitation, which causes the orbit length to change. The second term with173

the sum over the quadrupole index k contains the single term η̃k which is the direct174

increase of the orbit length due to the misaligned quadrupole. The second term175

with (CtC)−1CtC̃ describes the effect of the quadrupole misalignment on the BPM176

position through C̃ and then uses the orbit correction matrix (CtC)−1Ct to calculate177

the steering magnet excitation needed to correct the orbit, which also contributes to178

the orbit length. The term proportional δẑl has the same interpretation. First the179

direct orbit length change and second, the corrective effect of the orbit correction180

system. In short, the factors in the square brackets are the amplification factors of181

a displacement or BPM errors on the orbit length.182

5. Random Misalignment183

In order to estimate the magnitude of the effect we assume that the misalign-184

ments δx̃k and δẑl as well as the BPM error δxi are randomly distributed according185

to Gaussian distributions with mean zero and rms σQ, σD, and σB for quadrupole,186

dipole and BPM, respectively. In the following we assume that the errors of the dif-187

ferent elements are uncorrelated which allows us to consider the BPMs, quadrupoles188

and dipoles separately.189

We start with the BPM resolution and will assume that the BPM errors of190

different BPMs is uncorrelated and has rms amplitude σB which means 〈δxiδxj〉 =191

σ2
Bδij where the angle brackets denote ensemble averaging over the BPM error192

distribution, and δij is the Kronecker delta which is unity if i = j and zero else.193
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Calculating the ensemble average of the orbit length 〈∆s2B〉 we find that194

〈∆s2B〉 = σ2
B

∑
j

∑
k

ηjηk
(
CtC

)−1
jk

= α2
Bσ

2
B (22)

where we define the sensitivity of orbit length on the BPM errors as αB . Note that195

the previous expression is the expectation value of the covariance matrix in the state196

vector of the dispersion at the corrector locations, that can be intuitively written as197

α2
B = 〈~η| (CtC)

−1 |~η〉 where we borrow liberally from quantum mechanics for the198

notation.199

For the effect on the orbit length due to quadrupole misalignment we proceed in200

a similar way and assume that all displacements are uncorrelated. If several magnets201

are located on the same girder this is not strictly true and can be accounted for202

by introducing a covariance matrix for the misalignments instead of the Kronecker203

delta we use by assuming that the ensemble average over different realizations of204

the misalignments is given by 〈δx̃iδx̃j〉 = σ2
Qδij . Evaluating the square of the orbit205

length variation 〈∆s2Q〉 we find206

〈∆s2Q〉 =
∑
k

σ2
Q

f2k

η̃k −∑
j

ηjFjk

[η̃k −∑
m

ηmFmk

]
= α2

Qσ
2
Q (23)

where we defined the matrix F = (CtC)−1CtC̃ to simplify the equation and intro-207

duced αQ, the sensitivity of the orbit length to quadrupole misalignment errors.208

For the longitudinal displacement of the dipoles we can do the same analysis,209

where we first introduce the ensemble average of the longitudinal displacements210

〈δziδzj〉 = σ2
Dδij and for the corresponding orbit length variation 〈∆s2D〉 we get211

〈∆s2D〉 =
∑
l

φ2l σ
2
D

η̂′l −∑
j

ηjGjl

[η̂′l −∑
m

ηmGml

]
= α2

Dσ
2
D (24)

where we introduce the abbreviation G = (CtC)−1CtĈ and the orbit length sensi-212

tivity αD in a similar way as before for the BPM and quadrupoles.213

6. FODO214

We tested the method outlined in the previous sections with a ring consist-215

ing of 36 FODO cells with an approximate phase advance per cell of 60, 72, 90,216

and 120 degrees betatron phase advance per cell in both transverse planes and217

one (sector-) dipole magnet per cell with a deflection angle of 10 degrees. The218

quadrupole excitations are slightly increased such that the fractional part of the219

tune for the entire ring was adjusted to νx = 0.28 and νy = 0.31 in order to to220
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Figure 1: The amplification factors for misalignment of BPM αB as a function of the phase advance
per FODO cell. The lower trace is valid at low energies with γ → 0.
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Figure 2: The amplification factors for misalignment of quadrupoles αQ as a function of the phase
advance per FODO cell. The upper trace shows the uncorrected factor and the lower traces with
correction at low and high energies, respectively.
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Figure 3: The amplification factors for misalignment of dipoles αD as a function of the phase
advance per FODO cell. The upper trace shows the uncorrected factor and the lower traces with
correction at low and high energies, respectively.
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Phase advance per cell 60◦ 72◦ 90◦ 120◦

Momentum compaction α 0.026 0.019 0.012 0.007
BPM αB (low energy) 0.89 0.87 0.85 0.83
(high energy) 4.91 3.61 2.19 1.27
Quadrupoles αQ 2.71 2.44 2.09 1.79
with orbit corr. (low) 0.33 0.35 0.38 0.41
with orbit corr. (high) 0.60 0.46 0.26 0.10
Dipoles αD 0.16 0.15 0.12 0.10
with orbit corr. (low) 0.03 0.03 0.03 0.03
with orbit corr. (high) 0.17 0.12 0.07 0.04

Table 1: The amplification factors for rings with 36 FODO cells and slightly increased quadrupole
excitation to set the fractional tunes to νx = 0.28 and νy = 0.31.

avoid integer tunes. The geometry of the cell is a 2.5 m long drift space, a thin lens221

horizontally focusing quadrupole with adjacent BPM and corrector magnet, a drift222

space of 2, a 1 m long sector dipole, another 2 m long drift space, the defocusing223

quadrupole and the final 2.5 m long drift section. The circumference of the ring224

is 360 m and the momentum compaction factor, which is important for the orbit225

correction matrix C, as can be seen from eq. A.4, is given in table 1. The response226

coefficients depend on the beam energy through the kinematic factor γ in the de-227

nominator of the term with the dispersion in eq. A.4 and in the table we display the228

extreme cases with γ → 1 and γ → ∞. The two cases correspond to a low-energy229

ion accelerator and an electron accelerator, respectively. Near transition where the230

denominator becomes singular the response matrix is dominated by the dispersion231

term and since it is given as the tensor product of the vector containing the disper-232

sion at the correctors and a corresponding vector of the dispersion at the BPM its233

determinant vanishes and the response matrix is singular. This needs special care234

and is outside the scope of this report.235

We observe in the first row that the momentum compaction factor α decreases236

with increasing phase advance per cell. The orbit length amplification factor αB237

for the low-energy rings is below 0.9 and varies only weakly with phase advance as238

shown in the lower trace on Fig. 1. On the other hand, for the high energy ring,239

where the dispersion term in the response coefficients is larger, αB is significantly240

larger as shown in the upper trace in Fig. 1. The situation is worse for lower phase241

advance rings (αB = 4.91 versus 1.27). This behavior can be understood from the242

fact that the detrimental factor in the response coefficient is proportional to η2/α243

and α is itself proportional to the dispersion such that the extra term in the response244

matrix is proportional to η which gets smaller with increased phase advance per cell.245

The upper trace on Fig. 2 shows the quadrupole amplification factor αQ without246
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Configuration HESR at 3 GeV at 8 GeV at 15 GeV
BPM αB 0.52 0.64 1.41 3.61
Quadrupoles αQ 8.68
with orbit corr. 2.18 2.62 5.29 12.30
Dipoles αD 0.78
with orbit corr. 0.06 0.07 0.16 0.37

Table 2: The amplification factors for the HESR. The column labeled HESR shows the values
ignoring the dispersion term in the response coefficients.

orbit correction varies between 2.71 and 1.79. The lower trace shows that for the247

low-energy ring the orbit correction reduces the factor to around 0.4 and for the248

high energy ring in the same order. Fig. 3 shows that the dipole amplification factor249

αD is below 0.2 for all configurations.250

We summarize that all random amplification factors are of order unity where the251

BPM amplification factors αB for the high energy ring are largest. This implies that252

the absolute BPM alignment is the most critical in order to guarantee the correct253

circumference of a ring. But even here the accuracy for the orbit length is given254

by a few times the absolute BPM positioning accuracy. The other amplification255

factors for quadrupoles αQ and dipoles αD are smaller to start with and can be256

reduced below unity by the orbit correction system, such that they will contribute257

very little to the uncertainty of the FODO rings.258

7. HESR259

The HESR [1] has the shape of a racetrack with a circumference of 574 m. The260

bending magnets in the arcs with a FODO lattice admit beams with a rigidity of261

up to 50 Tm; for protons the momentum range is 1.5 GeV/c to 15 GeV/c. One of262

the long straight sections between the arcs with a FODO structure is occupied by263

injection elements, the RF system, and the PANDA detector with a Pellet target [8]264

integrated into the detector. The other long straight section houses an electron265

cooler and the kickers for the stochastic cooling system.266

We performed the orbit length analysis [10] for an early version of the HESR267

storage ring [11] in the FAIR facility at GSI in Darmstadt, Germany. In that optics268

the momentum compaction factor was -0.024. For the random orbit length amplifi-269

cation factors we found the values shown in the leftmost column in table 2 labeled270

’HESR’. In these simulations we did not take into account the last term with the271

dispersion in all response matrices. The amplification factors for this configuration272

without orbit correction are between 0.52 and 8.68 and a rms misalignment toler-273

ance of 0.1 mm will result in an orbit length uncertainty on the order of 1 mm for274
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the ring with a circumference of 574 m. This amounts to an relative uncertainty275

of 2 10−6. The situation is improved by the orbit correction system where the276

quadrupole amplification factor is improved by a factor four and the dipole factor277

even more.278

Later we expanded the analysis and included the dispersion term in the response279

coefficients and repeated the analysis at three different beam energies of 3 GeV,280

8 GeV and 15 GeV. The corresponding orbit amplification factors are reported in281

the correspondingly labeled columns in table 2. For the BPM amplification factor282

αB we find that it increases with increasing beam energy, mostly due to the de-283

nominator of the dispersion term in the response coefficient, which is largest for284

small energies which is a behavior we already found for the FODO rings in the285

previous section. The less important the dispersion term is, the better behaved286

the response matrix is. Even the other orbit amplification factors αQ and αD in-287

crease with increasing energies, approximately in the same proportion as the BPM288

factor αB . It is noteworthy that for the 15 GeV case the orbit correction system289

makes the quadrupole amplification factor with 12.3 larger than for the uncorrected290

case, where it is 8.68. Here the orbit correction actually improves the situation for291

quadrupoles, but the steering magnets themselves affect the orbit length to a larger292

extent.293

We summarize that the orbit amplification factors are on the order of 10 or294

below and will lead to an orbit length uncertainty of about 1 mm.295

8. Conclusions296

We analyzed the effect of transverse quadrupole misalignment errors, longitu-297

dinal dipole positioning errors, and BPM readout errors on the orbit length and298

quantified the effect by amplification factors of those errors, which we assumed to299

be randomly distributed and uncorrelated. We considered the case where the effect300

is uncorrected or corrected by an orbit correction system. We applied the method301

to a simple ring consisting of FODO cells with phase advance of 60, 72, 90, and302

120◦ and on an early version of the HESR storage ring.303

We found that the amplification factors were consistently below about 10 and304

could be improved by a factor 3 to 10 using the orbit correction system, such that305

random misalignments of quadrupoles, dipoles and BPMs of 0.1 mm will result in306

orbit uncertainties of about 1 mm or below which is the answer to the question307

posed in the title of this report. Under most circumstances this implies that the308

relative orbit uncertainty of the orbit length ∆L/L is on the order of 10−6 or below309
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which should be sufficient under most circumstances.310

It is noteworthy that the orbit correction system and its dependence on the en-311

ergy through the dispersion term plays a significant role. When writing the orbit312

response matrix for the orbit correction system the contribution from the dispersion313

term can be expressed as a tensor product of the vector of the dispersion at the314

BPM ηi and the vector of the dispersion at the corrector magnet ηj . By construc-315

tion such a matrix is always degenerate, because for example the first column is316

proportional to ηiηj=1 and the second column to ηiηj=2. Thus the second column317

is ηj=2/ηj=1 times the first column. This holds for any two columns with non-zero318

ηj and for ηj = 0 the degeneracy is directly obvious. We therefore see that the319

dispersion contribution of the orbit response matrix is always degenerate and the320

more important it becomes, for example by a small phase shift factor α− 1/γ2 the321

more degenerate the full orbit response matrix becomes. This behavior lies behind322

the increasing orbit amplification factors for larger energies. On the other hand,323

the dispersion term is minimum for storage rings operating at low energies, such a324

low-energy ion rings, where γ is close to unity and the term α− 1/γ2 ≈ −1.325
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Appendix A. Response Coefficients349

The effect of a single dipole kick at location labeled j in a storage ring will cause350

an orbit displacement xj immediately after the kick, that is described by351

~xj = Rjj~xj + ~θj (A.1)

where we denote the 4 × 4 position vector (x.x′, y, y′) by ~x, and Rjj is the 4 × 4352

transfer matrix for a full turn starting immediately after the kick. The kick ~θ is the353

vectorized form of the kick vector (0, θ, 0, 0) where only the horizontal angle x′ is354

changed. Solving the previous equation yields the closed orbit change as355

~xj =
(
1−Rjj

)−1 ~θj (A.2)

and the orbit change at the BPM labeled i is given by356

~xi = Rij~xj = Rij
(
1−Rjj

)−1 ~θj (A.3)

where Rij is the transfer matrix from the dipole kick at location labeled j to the357

BPM at location labeled i.358

We need, however, also consider that the dipole kick changes the orbit length by359

an amount ηjθ according to eq. 8. The discussion so far did not consider that the360

revolution frequency is maintained fixed due to the presence of a RF system. This361

constraint causes the beam to move to a different RF phase in order to change its362

energy to maintain the revolution frequency constant, despite the lengthened orbit.363

This change of beam momentum is given by ∆p/p = −ηjθ/(α− 1/γ2)C from eq. 2.364

For a single steering magnet this will cause the transverse beam position, visible365

on the BPMs, to change by an additional amount ηi∆p/p, thus we get for the full366

response coefficient367

Cij12 =
[
Rij

(
1−Rjj

)−1]
12
− ηiηj

(α− 1/γ2)C
(A.4)

where the first term is due to the normal position change and the second term due368

to the adapting energy to maintain a constant revolution frequency.369
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