Simultaneous Operation of Three Laser Systems at the FLASH Photoinjector

FLASH – The Free-Electron Laser at DESY, Hamburg, Germany flash.desy.de

S. Schreiber, J. Rönsch-Schulenburg, B. Steffen, C. Grün, K. Klose, DESY

FLASH features

- Photon wavelength range from EUV to soft X-rays >
- Uses superconducting TESLA accelerating technology >
- Operates in a burst mode with high duty cycle (0.8 ms bursts with 10 Hz) >
- > Runs two undulator beamlines simultaneously

Fuise energy UV	50 µ5	50 µJ	ιμJ
Average power (IR)	2 W		10 W
Arrival time jitter	60 fs rms		
Long. shape	Gaussian		
Pulse duration (sigma)	4.5 ps	6.5 ps	0.8 - 1.6 ps
Transverse profile	Flat, truncated Gaussian		
Spot size on cathode	1.2 mm diam.(**)		0.8 mm
Charge stability	<0.5 % rms		1 % rms
(*) to be adjusted according to the desired bunch or bunch train properties:			
1 MHz, 500, 250, 200, 100, 50, or 40 kHz; 3MHz optional.			

(**) Various spot sizes are possible and are adjusted according to the desired bunch charge.

Beamline and combiners

- > All 3 lasers are merged to one beamline using thin Brewster angle polarization plates
- > Transverse shaping with a hard edge aperture (BSA) imaged to cathode
- Diagnostic beamline incl. streak camera (FESCA 200)

Detail of the oscillator with gain medium Nd:YLF and 1.3 GHz EO-Modulator

BSA: Beam Shaping Aperture (plate with 15 pinholes of various sizes); $\lambda/2 =$ half wave plate; PD: Photodiode

- > Passive mode-locked cw oscillator (54) MHz Origami 10 from OneFive)
- > 2 stage Innoslab amplifier (Amphos)
- > Yb:YAG, 10 W, 1 MHz, 600 fs

Laser Pulse Train Burst of 0.8 ms

- Laser 3 AOM picker, frequency conversion, and pulse stretcher layout
- > All lasers use pulse pickers to reduce to 1 MHz before amplification
- > A second pulse picker realizes the specific bunch pattern as requested for beam or SASE operation
- It also serves as a machine safety fast beam switch off (within 3 µs)

Simultaneous operation FLASH1 and FLASH2

- > The bunch train is divided into two parts: one for FL1, one for FL2
- > A septum-kicker system kicks the 1st part to FL2, 2nd goes straight to FL1

with a 1 MHz pulse train

- > Transverse shaping (truncated Gaussian)
- > No longitudinal shaping is applied
- > Pulse length of lasers 1 and 2 are fixed: σ = 4.5 ± 0.1 ps and σ = 6.5 ± 0.1 ps resp.
- > Laser 3 special feature: adjustable pulse length from σ = 0.8 to 1.6 ps

- > In order to be flexible for the experiments, the train pattern of FL1 and FL2 may differ: in bunch distance, in number of bunches, in charge
- > Usually laser 1 runs for FLASH2 and laser 2 for FLASH1
- > Laser 3 is used for specific experiments
- > Any laser can be launched into any beamline
- > A pulse kicker in the UV based on an AOM has been developed and is being tested
- > It can pick an arbitrary pulse pattern from a 1 MHz train

AOM based kicker is used as a UV pulse picker (M. Gross at al, FEL2012, Nara, p.189)

TUP041

