Implementation of a Diagnostic Pulse for **Beam Optics Stability Measurements at FLASH.**

Frank Mayet, Ralph Assmann, Siegfried Schreiber, Mathias Vogt (DESY, Hamburg, Germany)

- FLASH is a user facility \rightarrow long-term stability is crucial for all connected user experiments
- FLASH1, FLASH2 and sFLASH demand high > beam optics stability
- Proposal of a simple procedure to monitor the > beam optics routinely and minimally invasive
- Goal: Additional tool for the operators to judge the overall machine stability
- First test measurements have been conducted > and presented in [4]

Implementation @ FLASH

Planned to be deployed during beamtime in the second half of 2015

Software (Backend) Implementation Schemes

>

>

>

>

Server / client approach

Rich DOOCS [5] middle layer server

Results / History

Control / Measure

Two possible schemes

Fast kicker scheme >

- Single bunch kickers >
- Can run in background > (minimally invasive)
- - Disturbs user operation >

- - >
 - Only y-plane

Laser Seeding 5 MeV 1250 MeV 150 MeV 450 MeV Beam Dump **FEL Experiments**

315 m

Schematic overview of FLASH with its two beamlines FLASH1 and FLASH2. The beam direction Figure 1: is from left to right. The schematic is not to scale.

Measurement results

- Records long-term history of data and extracted quantities
- Save data for N pre-defined machine > regions

Prerequisites

- In order to be able to calculate beam optics > related physical quantities from the BPM data it is necessary to induce the oscillations at two different positions along the linac. The distance in phase advance should be close to $\pi/2$
- This way R-matrix elements can be calculated >

Zero-crossing method

>

>

Another way to obtain the betatron phase advance is to fit the positions of the zero-crossings of the betatron oscillations. This method allows the fast evaluation of the data in steps of π

Software (Operation)

Server / client approach

- Easy to use jDDD [6] panel
- One button measurement (Steerer Scheme) >
 - Long-term history relies on operator > compliance
- Control of background operation (Fast Kicker Scheme)

) 😑 🜑	DiagPulse.xml	
	Diagnotic Pulse	Server Status
Mode Steerer 💌	Orbit Reference Mode Model 👻	Steerer Auto Select
Energy: 685 MeV	Define Sections	Steerer Pair Hor.

Simulation

The four FLASH linac sections that were chosen for Figure 4: the test case simulations. **S1**: end of first bunch compressor, S2: start of 2nd accelerating module, S3: start of 4th accelerating module, S4: end of linac. The color coding corresponds to the one used in figures 5 and 6.

ELEGANT based test case simulations

- Simulation of the method using virtual FLASH >
 - Simulated long-term measurement using >

>	
Mode	Steerer Orbit Reference Mode Model Steerer Auto Select
nforma	tion from history data

History
 History - 1 History - 2 History - 3 History - 4

Conclusion / Outlook

- Two implementation schemes of the diagnostic > pulse method
- Possible implementation at FLASH >
- Software implementation (Server/Client) >
- Easy to use additional machine stability > monitoring tool
- Best case: Non-invasive operation > in the background
- Even from limited data useful information about > the machine stability can be extracted
- Further investigations concerning data analysis (pattern recognition) are on-going
- Actual implementation at FLASH planned for the > second half of 2015

References

[1]

[2]

[6]

120

- M.Vogt et al., Proc. IPAC 2014, (TUOCA02)
- K. Honkavaara et al., Proc. FEL 2013, (WEPSO26)
- [3] S. Schreiber et al., Proc. FEL 2012, (MOPD01)
 - F.Mayet et al., Proc. IPAC 2014, (THPME116)
- [4] [5] http://doocs.desy.de
 - E.Sombrowski et al., "jddd: A Tool for Operators and Experts to design Control System Panels", Proc. ICALEPCS 2013
- M. Borland, *elegant: A Flexible SDDS-Compliant Code for* [7] Accelerator Simulation, Advanced Photon Source LS-287, September 2000.

HELMHOLTZ GEMEINSCHAFT