ILC-HiGrade cavities as a tool of quality control for the EXFEL and further SRF R&D

- Motivation and goal
- European EXFEL/ILC-HiGrade program
- Results of cold RF test of the EXFEL/ILC-HiGrade cavities
- Quality control tools and actual results

Aliaksandr Navitski *aliaksandr.navitski@desy.de

Bundesministe für Bildung und Forschung

Alexander von Humboldt

Stiftung/Foundation

Motivation for high gradient superconducting (SC) cavities:

The International Linear Collider ILC [1]

- Centre-of-mass energy 500 GeV, 31 km long, TDR 12 June 2013
- 16,000 1.3 GHz 9-cell Nb cavities, gradient E_{acc} at least 35 MV/m
- Average E_{acc} in the cryomodule: 31.5 MV/m @ quality factor $Q_0 > 10^{10}$

European ILC-HiGrade programme

- > <u>24 cavities</u> are added to the EXFEL order:
 - Initially, serve as <u>quality control (QC)</u> sample for the <u>EXFEL</u>
 - extracted regularly, ~one cavity/month
 - after the normal acceptance test are taken out of the production flow --> R&D
 - > Delivered with <u>full treatment</u> but <u>no helium tank</u>

-> maximize the data output from the test

Cold RF results of EXFEL & ILC-HiGrade cavities

Usable gradient:

- E_{acc} of quench or
- E_{acc} at $Q_0 \le 1x10^{10}$ or
- E_{acc} at excess of X-ray radiation:
 - >0.01 (0.12) mGy/min for upper(lower) detector
- *D. Reschke, TTC Meeting KEK, Dec 2-5, 2014

Aliaksandr Navitski, ILC-HiGrade SRF R&D

DPG Tagung, AKBP 6: Resonators

- Main limitation is FE

Wuppertal 10.03.2015

some achieve >40 MV/m

Cold RF results of EXFEL & ILC-HiGrade cavities

Usable gradient:

- E_{acc} of quench or
- E_{acc} at $Q_0 \le 1x10^{10}$ or
- E_{acc} at excess of X-ray radiation:
 - >0.01 (0.12) mGy/min for upper(lower) detector
- *D. Reschke, TTC Meeting KEK, Dec 2-5, 2014

Aliaksandr Navitski, ILC-HiGrade SRF R&D

DPG Tagung, AKBP 6: Resonators

(<u>34.9±4.7 MV/m</u> after <u>retreatment</u>) some achieve >40 MV/m

Wuppertal 10.03.2015

Goal

Clear identification of the limiting factors:

-> suspicious EXFEL cavities (mainly with usable $E_{acc} \leq 20 \text{ MV/m}$)

-> all ILC-HiGrade cavities

Additional techniques used:

- Cold RF tests in different "passband modes" for localization of <u>limiting cells</u> *see more talk R. Laasch
- "2nd sound" and "T-mapping"

for localization of thermal breakdowns (quenches)

- Optical (OBACHT) and replica <u>surface</u> inspection

Elaboration of further treatments:

(providing e.g. $E_{acc} \ge 35 \text{ MV/m} \otimes 90\%$ yield as the ILC goal)

- additional High Pressure ultrapure water Rinsing (HPR)
- additional chemical polishing (BCP) or electropolishing (EP)
- Centrifugal Barrel Polishing (CBP)
- Local grinding repair
- *see more talk Y. Tamashevich Further improve <u>quality control</u> to reduce the retreatment rate

<u>OBACHT</u> – Optical <u>Bench</u> for <u>Automated</u> <u>Cavity</u> Inspection with High Resolution on Short Time Scales

Optical inspection tool for cavity inner surface (mainly welding seams)

- <u>Semi-automated</u> (LabView) tool based on "Kyoto camera" (Y. Iwashita, PRST AB, 11, 093501 (2008)):
 - -~10 µm resolution
 - special distributed illumination
- Automatic positioning, illumination, and image recording at predefined positions
- \Rightarrow Quality control and failures clarification

⇒ **Reduce significantly re-tests/re-treatments** by earlier failures detection

11.5 x 25 mm² viewing window

Aliaksandr Navitski, ILC-HiGrade SRF R&D

DPG Tagung, AKBP 6: Resonators

Approaching to 100 OBACHT tests

of EXFEL series and HiGrades

Wuppertal 10.03.2015

"Replica" surface profilometry

"<u>Replica</u>" is used for <u>non-destructive</u> profilometry studies of inner surface: conspicuous surface features or defects

"Replica" tool with camera

Replica" tool in the cavity

4000.000

* Keyence 3D Laser scanning microscope

~1 µm resolution (3D topography) has been achieved

- no cavity degradation (no residues) if done correctly (at least after HPR)

Aliaksandr Navitski, ILC-HiGrade SRF R&D

DPG Tagung, AKBP 6: Resonators

Wuppertal 10.03.2015

2000.000

Typical surface defects (EXFEL and ILC-HiGrade cavities)

Scratches

=> Handling failures:

 Strong x-ray radiation
 Complicated repair required (tank removal, mechanical polishing inside cavities, and 2nd whole surface prepare pass)
 Some failures identified and fixed

Pits or inclusions

=> Foreign material inclusions: Low field quenches Influence polishing process Complicated repair required

"Etching pits"

=> Etching effect (H₂ bubbles):
 No influence in high magnetic field regions (equators)
 Might lead to radiation in high electric field regions (irises)

Aliaksandr Navitski, ILC-HiGrade SRF R&D

Typical surface defects (EXFEL and ILC-HiGrade cavities)

=> Wrong welding parameters: Lead to low field quenches

Complicated repair required Pressure issue

Ruled out by electron-beam welding optimization

"Spatters"

"Spatters"

 > Welding failures due to sparks or presence of dust
 Low field quenches
 Mechanical polishing inside cavities required

"Very rough polishing"

=> Wrong etching parameters

 \bigcirc Lead to low Q_0 and low field quenches

Ruled out by better parameters optimization and control

"Cat eyes"

 Voids in the surface
 Seems to be harmless
 No performance degradation observed

Aliaksandr Navitski, ILC-HiGrade SRF R&D

DPG Tagung, AKBP 6: Resonators

Wuppertal 10.03.2015

15

Typical surface defects: scratches

E_{acc,max} = 23 MV/m, limited by quench with strong radiation, E_{acc,usable} = 16 MV/m

- Retreatment by add. HPR and 10 µm BCP did not improve the performance, made even worse
- Several mm-wide protrusions with at least 100 µm height found on almost all irises at the same angle
- Error: scratched by bent EP electrode

Typical surface defects: foreign inclusions

Aliaksandr Navitski, ILC-HiGrade SRF R&D

Typical surface defects: foreign inclusions

RMSE quench

E_{acc,max} = 16 MV/m, limited by quench

- Etching defect due to contamination during welding
- Repair under discussion

Cold RF tests vs. surface quality

CAV00532:

quench at 22 MV/m, no FE

CAV00518:

-> Nice RF result despite of "pits" and "cat-eyes" on the surface

-> OBACHT indicates defective welding as a possible quench reason

 \rightarrow "2nd Sound" & "T-mapping" is applied for the quench localization and further studies

Welding errors: 2nd sound vs. T-mapping

"2nd Sound "map" 8 Test 5 σ 2σ ised: 350 O sec 30 60 sec E2 z along surface, mm 250 25 E1, 270° Ē 150 E1 15 50 10 11 180 210 240 270 300 330 angle, deg

BACHT: E1, 270°

- \Rightarrow Quench at 24MV/m, localized on the E1, 270°
- \Rightarrow Good agreement between T- and 2nd-sound mapping
- ⇒ OBACHT indicates defective welding as a possible quench reason

Typical surface defects: welding spatters

Endoscopes & **OBACHT** (shown here) inspections discover some **"spatters"** occasional occurring during the welding:

After final polishing:

→ max E_{acc} = 30.5 MV/m
→ no FE

 \rightarrow **reasons**: - blasts due to contamination

- sparks due to defective high voltage regulation of the electron beam welding machine
- → an additional grinding/repair is required
- \rightarrow repair procedure using local grinder has been commission (manual one shown here)

Replica: defects investigation

Acknowledgements:

- FLA/ILC, MPL, MKS 1, MKS 3, and MHF-sl groups

- all DESY and INFN colleagues involved in the XFEL cavity fabrication, treatment and tests
- **KEK colleagues** and especially to Takayuki Saeki and Shigeki Kato for help with the fabrication of the coupon cavity
- **FNAL colleagues** and especially A. Romanenko, A. Grassellino, and C. Cooper for valuable discussions

*aliaksandr.navitski@desy.de

Aliaksandr Navitski, ILC-HiGrade SRF R&D