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A discussion of the three-quark light-cone distribution amplitudes (LCDAs) for the ground
state heavy baryons with the spin-parities JP = 1/2+ and JP = 3/2+ in QCD in the heavy-
quark limit is presented. Simple models for the bottom-baryon distribution amplitudes are
analyzed with account of their scale dependence.

1 Introduction

The B-meson factories at SLAC and KEK, after approximately a decade of their operation, have
made a great impact on a clarification of CP -violation origin in the quark sector of the Standard
Model (SM). Study of heavy-light hadrons, in particular mesons and baryons containing the
b-quark, at the LHC can serve as an additional test of the Kobayashi-Maskawa mechanism.
Specific processes with bottom baryons, such as rare decays involving flavor-changing neutral
currents (FCNC) transitions, are potential sources of new physics beyond the SM. In a difference
to B-mesons, a non-zero spin of baryons allows also an experimental study of spin correlations.
The spectrum of heavy bottom baryons have been enlarged substantially thanks to the effort
done by the CDF and D0 Collaborations at the Tevatron collider and is presented in Table 1.
During the LHC Run I, the majority of the bottom-baryon states has been confirmed and
several new ones were observed. Unlike these progress, study of the FCNC motivated decays
of bottom baryons remains to be statistically limited. A grater effort is expected during the
next LHC run where heavy baryons will be copiously produced, and their weak decays may be
measured precisely enough to provide important clues on physics beyond the Standard Model.

The theory of bottom baryon decays into light hadrons is more complicated compared to
the B-meson decays and, hence, was receiving less attention. Calculations of heavy-baryon
decays into light particles based on the heavy quark expansion, see e. g. [1], or using sum
rules of the type proposed in [2, 3, 4] require the primary non-perturbative objects — the
distribution amplitudes of heavy baryons. For a long period, the only existed models of heavy-
baryon distribution amplitudes [5, 6] have been motivated by quark models and not consistent
with QCD constraints. In the paper [7], the complete classification of three-quark light-cone
distribution amplitudes (LCDAs) of the Λb-baryon in QCD in the heavy quark limit was given
and the scale-dependence of the leading-twist LCDA is discussed. In addition, simple models
of the LCDAs were suggested and their parameters were fixed based on estimates of the first
few moments by the QCD sum rules method. The analysis of [7] has been extended on all
the ground state b-baryons with the spin-parity both JP = 1/2+ and JP = 3/2+. The basic
steps and main results of such an analysis are summarized in this lecture and all the details are
presented in our papers [8, 9].
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Baryon I(JP ) jp Experiment HQET Lattice QCD

Λb 0(1/2+) 0+ 5619.4± 0.7 5637+68
−56 5641± 21+15

−33

Σ+
b

1(1/2+) 1+ 5811.3± 1.9 5809+82
−76 5795± 16+17

−26

Σ−

b
1(1/2+) 1+ 5815.5± 1.8 5809+82

−76 5795± 16+17
−26

Σ∗+
b

1(3/2+) 1+ 5832.1± 1.9 5835+82
−77 5842± 26+20

−18

Σ∗−

b
1(3/2+) 1+ 5835.1± 1.9 5835+82

−77 5842± 26+20
−18

Ξ−

b
1/2(1/2+) 0+ 5791.1± 2.2 5780+73

−68 5781± 17+17
−16

Ξ0
b

1/2(1/2+) 0+ 5788± 5 5903+81
−79 5903± 12+18

−19

Ξ′

b
1/2(1/2+) 1+ 5903+81

−79 5903± 12+18
−19

Ξ′∗0
b

1/2(3/2+) 1+ 5945.0± 2.8 5903+81
−79 5950± 21+19

−21

Ω−

b
0(1/2+) 1+ 6071± 40 6036± 81 6006± 10+20

−19

Ω∗

b
0(3/2+) 1+ 6063+83

−82 6044± 18+20
−21

Table 1: Experimental measurements [10] and theoretical predictions based on HQET [11]
and Lattice QCD [12] for masses of ground-state bottom baryons (in units of MeV). The
mass of the Ξ′∗0b -baryon was measured by the CMS Collaboration recently [13]. The LHCb
Collaboration [14] have measured the masses of the Λb-, Ξ−b -, and Ω−b -baryons in agreement
with the SM expectations.

2 Light-Cone Distribution Amplitudes

Light-cone distribution amplitudes (LCDAs) of heavy baryons are the transition matrix ele-
ments from the baryonic state to vacuum of non-local light-ray operators built off an effective
heavy quark and two light quarks. The content of such operators supports a similarity in the
construction of the heavy-baryon LCDAs to both the B-meson (within the HQET) [15, 16] and
the nucleon (within QCD) [17, 18] LCDAs descriptions. An important simplifying feature of the
operators containing one or more heavy quarks is an existence of the Heavy Quark Symmetry
(HQS) which results into the decoupling of the heavy-quark spin from the system dynamics in
the limit mQ → ∞, where mQ is the heavy-quark mass. So, to understand the properties of
heavy baryons in this limit, it is enough to switch off the heavy-quark spin and to introduce a
total set of two-particle LCDAs corresponding to the light-quark system, called diquark, which
quantum numbers completely determine a number of LCDAs and their asymptotic behavior.

In this simplified picture, there are the SU(3)F antitriplet of “scalar baryons” with the
JP = 0+ spin-parity determined by the diquark spin-parity jp = 0+ and the SU(3)F sextet
of “axial-vector baryons” with the JP = 1+ spin-parity which follows from the diquark spin-
parity jp = 1+. It is reasonable to start with the description of the “scalar baryons” and
then to generalize the procedure on the “axial-vector baryons”. The changes originated by an
account of the heavy-quark spin can be done after the total sets of the non-local operators
and corresponding LCDAs are introduced in the decoupling limit. All these steps are discussed
briefly in this section.
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2.1 “Scalar Baryons”

The “scalar baryons” are combined into the SU(3)F antitriplet with JP = 0+ in which the
light diquark states are also the scalar states with jp = 0+.

The set of the LCDAs is determined by the matrix elements between the baryonic state and
vacuum of the four independent non-local light-ray operators [7, 8, 9]:

ǫabc〈0|
(
qa
1 (t1n)Cγ5/nq

b
2(t2n)

)
hc

v(0)|H(v)〉 = f
(2)
H Ψ2(t1, t2) (1)

ǫabc〈0|
(
qa
1 (t1n)Cγ5q

b
2(t2n)

)
hc

v(0)|H(v)〉 = f
(1)
H Ψs

3(t1, t2)

ǫabc〈0|
(
qa
1 (t1n)Cγ5iσn̄nq

b
2(t2n)

)
hc

v(0)|H(v)〉 = 2f
(1)
H Ψσ

3 (t1, t2)

ǫabc〈0|
(
qa
1 (t1n)Cγ5/̄nq

b
2(t2n)

)
hc

v(0)|H(v)〉 = f
(2)
H Ψ4(t1, t2)

where qi(x) = u(x), d(x), s(x) are the light-quark fields, hv(0) is the static heavy-quark field
situated at the origin of the position-space frame, C is the charge conjugation matrix, nµ

and n̄µ are two light-like vectors normalized by the condition (nn̄) = 2. In addition, the
frame is adopted where the heavy-meson velocity is related to the light-like vectors as follows:
vµ = (nµ + n̄µ) /2. The light-quark fields on the light cone are assumed to be multiplied by the
Wilson lines:

q(tn) = [0, tn] q(tn) = P exp

{
−igstt

∫ 1

0

dαnµAµ(αtn)

}
q(tn) =

∞∑

N=0

tN

N !
(nµDµ)

N
q(0),

where the following definition of the covariant derivative Dµ = ∂µ − igstAµ is accepted. The
similar definition can be used for the gluonic field: Gµν(tn) = [0, tn]Gµν(tn), where the Wilson
line is determined in the adjoint representation of the color SU(3)-group.

The static heavy-quark field living on the light cone also includes the Wilson line but of the
other type with the time-like link [19]:

hv(0) = P exp

{
igst

∫ 0

−∞

dαvµAµ(αv)

}
φ(−∞),

with which it is connected with the sterile field φ(−∞).

The couplings f
(i)
H introduced in Eqs. (1) to make the LCDAs dimensionless are defined by

local operators [20, 21, 22, 23]:

ǫabc〈0|
(
qa
1 (0)Cγ5q

b
2(0)

)
hc

v(0)|H(v)〉 = f
(1)
H

ǫabc〈0|
(
qa
1 (0)Cγ5/vq

b
2(0)

)
hc

v(0)|H(v)〉 = f
(2)
H

The scale dependences of these couplings are governed by the anomalous dimensions γ(i) of
local operators as follows:

d ln f
(i)
H (µ)

d lnµ
≡ −γ(i) = −

∑

k

γ
(i)
k ak(µ), a(µ) ≡

αMS
s (µ)

4π
,

where the strong coupling is determined in the MS-scheme. This equation can be solved order
by order in the a(µ)-power expansion and in the NLO order, one can use the following relations:

f
(i)
H (µ) = f

(i)
H (µ0)

(
αs(µ)

αs(µ0)

)γ
(i)
1 /β0

[
1−

αs(µ0)− αs(µ)

4π

γ
(i)
1

β0

(
γ

(i)
2

γ
(i)
1

−
β1

β0

)]
,
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Figure 1: The complete set of the one-gluon-exchange diagrams necessary for the scale-
dependence calculation of the heavy-baryon LCDAs. The normal and thick solid lines cor-
responds to the light and heavy quarks while dotted and wavy lines denote the Wilson lines
and virtual gluons, respectively.

where β0,1 are the first two coefficient in the perturbative expansion of the β-function. As the
evolution to the required scale can be easily done now, one needs to know numerical values of the

couplings f
(i)
H (µ) at some representative scale µ0, say µ0 = 1 GeV. As this scale is rather low

to use the perturbation theory, non-perturbative techniques are necessary to calculate these
quantities. In particular, the QCD sum rules method in NLO for the Λb-baryon results the
values [23]:

f
(1)
Λb

(µ0 = 1 GeV) ≃ f
(2)
Λb

(µ0 = 1 GeV) ≃ 0.030± 0.005 GeV3.

Non-relativistic constituent-quark picture of heavy baryons H suggests that f
(2)
H ≃ f

(1)
H at

low scales of order 1 GeV, and this expectation is supported by numerous QCD sum rule

calculations [21, 20, 22, 23]. These couplings f
(i)
H (µ) cannot coincide at all scales because of

different anomalous dimensions γ(i) of local operators.

Similar to the couplings f
(i)
H (µ), the LCDAs Ψi(t1, t2) introduced in Eq. (1) are also scale-

dependent functions. To find their scale evolution, it is convenient to make their Fourier
transform to the momentum space:

Ψ(t1, t2) =

∫ ∞

0

dω1

∫ ∞

0

dω2 e
−it1ω1−it2ω2ψ(ω1, ω2) =

∫ ∞

0

ω dω

∫ 1

0

du e−iω(t1u+t2ū) ψ̃(ω, u)

where ū = 1 − u. In the first representation ω1 = uω and ω2 = (1− u)ω = ūω are the
energies of the light quarks q1 and q2. The leading-order evolution equation for the ψ2(ω1, ω2;µ)
can be derived by identifying the ultra-violet singularities of the one-gluon-exchange diagrams
presented in Fig. 1.

The evolution equation in the leading order is expressed in terms of two-particle kernels:

µ
d

dµ
ψ2(ω1, ω2;µ) = −

αs(µ)

2π

4

3

{∫ ∞

0

dω′1 γ
LN(ω′1, ω1;µ)ψ2(ω

′
1, ω2;µ)

+

∫ ∞

0

dω′2 γ
LN(ω′2, ω2;µ)ψ2(ω1, ω

′
2;µ)−

∫ 1

0

dv V (u, v)ψ2(vω, v̄ω;µ) +
3

2
ψ2(ω1, ω2;µ)

}
,
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where the kernel γLN(ω′, ω;µ) controls the evolution of the B-meson LCDA [24] and V (u, v) is
the Efremov-Radyushkin-Brodsky-Lepage (ER-BL) kernel [25, 26]. The term 3ψ2(ω1, ω2;µ)/2

results from the one-loop f
(2)
H renormalization subtraction. The evolution equation above can

be solved either numerically or semi-analytically [7, 9]

2.2 “Axial-Vector Baryons”

The “axial-vector baryons” are components of the SU(3)F sextet with JP = 1+ in which the
light diquark states are the axial-vector states with jp = 1+. In a difference to the “scalar
baryons” case, one needs to consider the baryons with the longitudinal and transverse polar-
izations separately.

The set of the longitudinal LCDAs is determined by the matrix elements between the bary-
onic state with the appropriate polarization and vacuum of the four independent non-local
light-ray operators [8, 9]:

ǫabc〈0|
(
qa
1 (t1)C /nq

b
2(t2)

)
hc

v(0)|H(v, ε)〉 = (v̄ε) f
(2)
H Ψ

‖
2(t1, t2)

ǫabc〈0|
(
qa
1 (t1)C q

b
2(t2)

)
hc

v(0)|H(v, ε)〉 = (v̄ε) f
(1)
H Ψ

‖s
3 (t1, t2)

ǫabc〈0|
(
qa
1 (t1)C iσn̄nq

b
2(t2)

)
hc

v(0)|H(v, ε)〉 = 2 (v̄ε) f
(1)
H Ψ

‖a
3 (t1, t2)

ǫabc〈0|
(
qa
1 (t1)C /̄nq

b
2(t2)

)
hc

v(0)|H(v, ε)〉 = − (v̄ε) f
(2)
H Ψ

‖
4(t1, t2)

where σn̄n = i (/̄n/n− /n/̄n) /2, v̄µ = (n̄µ − nµ) /2 is the four-vector orthogonal to the four-velocity
(vv̄) = 0 and normalized by (v̄v̄) = −1. In the LCDA definitions above, the baryonic state is
assumed to have a pure longitudinal polarization εµ

‖ = v̄µ and the prefactor on the r.h.s. is

simply (v̄ε) = −1.
The similar set of the transverse LCDAs is determined as follows [8, 9]:

ǫabc〈0|
(
qa
1 (t1)C γ

µ
⊥/nq

b
2(t2)

)
hc

v(0)|H(v, ε)〉 = f
(2)
H Ψ⊥

2 (t1, t2) ε
µ
⊥

ǫabc〈0|
(
qa
1 (t1)C γ

µ
⊥q

b
2(t2)

)
hc

v(0)|H(v, ε)〉 = f
(1)
H Ψ⊥s

3 (t1, t2) ε
µ
⊥

ǫabc〈0|
(
qa
1 (t1)C γ

µ
⊥iσn̄nq

b
2(t2)

)
hc

v(0)|H(v, ε)〉 = 2f
(1)
H Ψ⊥a

3 (t1, t2) ε
µ
⊥

ǫabc〈0|
(
qa
1 (t1)C γ

µ
⊥/̄nq

b
2(t2)

)
hc

v(0)|H(v, ε)〉 = f
(2)
H Ψ⊥

4 (t1, t2) ε
µ
⊥

where γµ
⊥ = γµ − (/̄n/n+ /n/̄n) /2 and εµ

⊥ = εµ − εµ
‖ is the transverse polarization of the baryon.

2.3 Real Baryons

As far as all the sets of the LCDAs are determined, it necessary to generalize their definitions to
real baryons which simply means that the spin of the heavy quark should be included into the
baryon wave function. In other words, the r. h. s. of matrix elements of all non-local operators
must be multiplied on the Dirac spinor U(v) of the heavy quark hv, satisfying the conditions:
/v U(v) = U(v) and U(v)U(v) = 1. After these modifications, the “scalar baryons” transform to
the baryons with the spin-parity JP = 1/2+ and the heavy-quark Dirac spinor U(v) is nothing
else but the heavy-baryon spinor H(v), i. e. the spin of the heavy quark completely determines
the spin structure of the heavy-baryon wave function. The case of “axial-vector baryons” is a
little bit more complicated. It is well-known from quantum mechanics that the direct product
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Figure 2: The two-point correlator of the local and light-ray operators in the QCD background.

of two angular momenta j1 = 1/2 and j2 = 1 is decomposed into two irreducible representation
with the momenta J1 = 1/2 and J2 = 3/2. That is exactly the situation after the heavy-quark
spin is switched on in the heavy baryon with the diquark in the axial-vector state jp = 1+:

εµ U(v) =

[
εµ U(v)−

1

3
(γµ + vµ) /εU(v)

]
+

1

3
(γµ + vµ) /εU(v) ≡ R3/2

µ (v) +
1

3
(γµ + vµ)H(v).

As the result, there are two states with the spin-parities JP = 1/2+ and JP = 3/2+. The former
one is described by the Dirac spinor H(v) and for the JP = 3/2+ state the Rarita-Schwinger

vector-spinor R
3/2
µ (v), which satisfies the relations /v R

3/2
µ (v) = R

3/2
µ (v), vµR

3/2
µ (v) = 0, and

γµR
3/2
µ (v) = 0, can be used.

3 QCD Sum Rules

In applications to a calculation of amplitudes with heavy baryons, one needs to know realistic
models for LCDAs. Such models can be obtained by matching several few moments of LCDA
models and the corresponding ones calculated by some non-perturbative methods, say by the
QCD sum rules. The later method requires a calculation of a two-point correlator which involve
the non-local light-ray operator and a suitable local current JΓ′

(x), as it is shown in Fig. 2.
The general structure of the heavy-baryon local currents can be chosen as follows:

J̄Γ′

(x) = ǫabc
(
q̄a
2 (x) [A+B /v] Γ′CT q̄b

1(x)
)
h̄c

v(x),

where A and B are two constants with the constraint A + B = 1 which accounts for an
arbitrariness in the choice of local currents. The variation in A ∈ [0, 1] is adopted as a systematic
error of numerical estimations. Note that the central value A = B = 1/2 corresponds to the a
constituent quark model picture [7]. The Dirac matrix Γ′ is a suitable structure determined by
the spin-parity of the baryon, in particular, Γ′ = γ5 for baryons from the SU(3)F antitriplet
(jp = 0+) and Γ′ = γ‖, γ⊥ for the SU(3)F -sextet baryons with jp = 1+.

In calculations of the correlation functions, one tacitly assumes that baryons are bound
states of quarks which are not free particles inside but couple by virtue of the gluonic field. So,
light quark propagators S̃q(x), being very sensitive to the influence of the background gluonic
field, should be modified accordingly while for the heavy quark this effect is sub-dominant and
to leading order in the heavy-quark mass mQ expansion can be neglected. To take effects of the
QCD background inside baryons into account, the method of non-local condensates [28, 29, 30]
is used. In this approach the light-quark propagator can be decomposed into two parts: the
perturbative Sq(x) and non-perturbative Cq(x) ones,
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and the later accumulates an information about the background inside the baryon in terms of

non-local quark condensate 〈q̄(x)q(0)〉:

Sq(x) =
i/x

2π2x4
−

m

4π2x2
Cq(x) =

1

12
〈q̄(x)q(0)〉

where color and spin indices are omitted. In both expressions the color structure is given by
the identity. The factor 1/12 in Cq(x) is chosen in a way that the expression is normalized by
taking the trace of color and spin, i. e. Tr[1spin] = 4 and Tr[1color] = 3.

The general parametrization of the non-local condensates was suggested in Refs. [28, 29]:

Cq(x) = 〈q̄q〉

∫ ∞

0

dν eνx2/4 f(ν),

where 〈q̄q〉 is local quark condensate and the shape of the distribution is determined by the
function f(ν). Among the shape models suggested, the choice have been done in favor of the
following one [31, 16]:

f(ν) =
λa−2

Γ(a− 2)
ν1−a e−λ/ν , a = 3 +

4λ

m2
0

, (2)

where λ = 〈q̄D2q〉 is the correlation length and m2
0 = 〈q̄gsG

µνσµνq〉/〈q̄q〉 is the ratio of the local
mixed quark-gluon and quark condensates. If one assumes that virtualities of quarks inside
the baryon are small and quarks are on the mass shell, the mixed quark-gluon condensate
and the correlation length can be related (this is the usual procedure) but the smallness of
such virtualities is not proven and, in general, the correlation length and the ration m2

0 are
independent.

To obtain the QCD sum rules, it is convenient to make the double Fourier transform of the
correlation function:

ΠΓΓ′(ω1, ω2;E) = i

∫ ∞

−∞

dt1 dt2
(2π)2

ei(ω1t1+ω2t2)

∫
d4x e−iE(vx) 〈0|OΓ(t1, t2) J̄

Γ′

(x)|0〉

In the momentum space, the correlation function reads diagrammatically as follows:

Π(ω, u;E) = .

As it is well-known from the QCD-SR analysis within the HQET, the heavy-quark condensate
term is suppressed by 1/mQ and absent in the Heavy-Quark Symmetry limit. So, the QCD Sum
Rules can be read off after the phenomenological and perturbatively calculated considerations
of the correlation function are equated based on the idea of the quark-hadron duality [27]:

|fH |
2 ψΓ(ω, u) e−Λ̄H/τ = B[Π](ω, u; τ, s0),
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where symbol B means the Borel-transform, Λ̄H = mH −mQ is the effective baryon mass in
the HQET, and s0 is the momentum cutoff resulting from applying the quark-hadron duality.
The explicit QCD-SRs for all the baryonic non-local operators can be found in Ref. [9] and we
illustrate them here by the one written for the leading-twist (twist-2) transverse LCDA:

f
(2)
H

[
Af

(1)
H +B f

(2)
H

]
ψ̃SR

2 (ω, u) e−Λ̄/τ =

3τ4

2π4

[
Bω̂2 uū+A ω̂ (m̂2u+ m̂1ū)

]
E1(2ŝω)e−ω̂

−
〈q̄1q1〉τ

3

π2
[Aω̂ū+Bm̂2] f(2τωu)E2−a(2ŝκ) e−ω̂

−
〈q̄2q2〉τ

3

π2
[Aω̂u+Bm̂1] f(2τωū)E2−a(2ŝκ̄) e−ω̂.

To simplify the presentation, the following auxiliary function was introduced:

Ea(x) =
1

Γ(a+ 1)

∫ x

0

dt tae−t = 1−
Γ(a+ 1, x)

Γ(a+ 1)

where Γ(a+1, x) =
∫∞

x
dt tae−t is the incomplete Γ-function. The other quantities are Λ̄ = mH−

mb, sω = s0−ω/2, κ = λ/(2uωτ), κ̄ = λ/(2ūωτ), ω̂ = ω/(2τ), ŝω = sω/(2τ), m̂1,2 = m1,2/(2τ),
ŝκ = ŝω − κ/2, ŝκ̄ = ŝω − κ̄/2. The normalizations of the symmetric LCDAs (t = 2, 3s, 4) can
be fixed by the relation: ∫ 2s0

0

ωdω

∫ 1

0

du ψ̃SR
t (ω, u) ≡ 1,

while the normalization of the antisymmetric LCDAs with t = 3σ is different and can be fixed
by the condition: ∫ 2s0

0

ωdω

∫ 1

0

duC
1/2
1 (2u− 1) ψ̃SR

t (ω, u) ≡ 1,

where Cm
n (x) are the Gegenbauer polynomials [32].

These QCD sum rules are not directly applicable for getting the LCDA shapes but can be
used to constrain certain moments which are calculated based on the following definition:

〈f(ω, u)〉k ≡

∫ 2s0

0

ωdω

∫ 1

0

du f(ω, u) ψ̃SR
t (ω, u)

where t = 2, 3s, 3σ, 4.

4 Numerical analysis

Numerical values of first several moments of the bottom-baryon LCDAs estimated by the QCD-
SRs can be found in Ref. [9]. These moments should be matched to the corresponding moments
of the model functions for the LCDAs. The general presentation of the model functions for the
b-baryon LCDAs is governed by their scale evolution and can be composed of the exponential
part corresponding to the heavy-light interaction and the Gegenbauer polynomials to the light-
light interaction. The order of the polynomials is determined by the twist of the diquark system.
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Figure 3: The general representation of the model functions for the heavy-baryon LCDAs
with the ω-dependence specific for the B-meson LCDAs and the u-dependence in terms of an
expansion in the Gegenbauer polynomials similar to the ones for the light mesons.

Motivated by the analysis done for the Λb-baryon [7], the following simple models for the LCDAs
have proposed [8, 9]:
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The qualitative behavior of the twist-2 LCDAs is presented in Fig. 3. The estimates of the
parameters entering the theoretical models for the heavy-baryon LCDAs at the scale µ0 = 1 GeV
can be found in Refs. [8, 9]. The dependence of the twist-2 LCDAs on the scaled energy u of
the lightest quark and the diquark energy ω at the energy scales µ0 = 1 GeV are shown on the
left and right plots in Fig. 4, respectively. The SU(3)F -symmetry breaking in LCDAs based
on taking into account the s-quark difference from the u- and d-quarks is clearly seen on these
plots. The effect of the symmetry breaking is estimated to be approximately 15%.

5 Renormalization of higher twist operators

The renormalization of the heavy-light light-ray operators up to twist-three was performed in
Ref. [33]. Here. both the 2 → 2 and 2 → 3 kernels were considered and the problem of the
operator mixing under the renormalization has been discussed. To work out the evolution,
the spinor formalism applied to QCD appears to be the most convenient. In addition, one-
loop counterterms of the non-local operators were analyzed on an existence of the conformal
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Figure 4: Twist-2 LCDAs of Σ (blue), Ξ (red) and Ω (cyan) baryons in dependence on the
scaled energy u of the lightest quark (the left plot) and the diquark energy ω (the right plot)
at the scale µ0 = 1 GeV estimated within the range for the most conservative error A ∈ [0, 1].

symmetry and the main finding is that the ultra-violet renormalization of a cusp of two Wilson
lines results the break down of this symmetry. As a technical output of this analysis, evolution
equations for the twist-three operators were written explicitly.

The other step in working out solutions of the heavy-baryon evolution equations analytically
was undertaken recently in Ref. [34]. In particular, the eigenfunctions of the Lange-Neubert
evolution kernel were found and used for a systematic implementation of the renormalization-
group effects for both the B-meson and Λb-baryon wave-function evolutions. Based on these
foundations, the new strategy to construct the LCDA models in accordance with the Wandzura-
Wilczek-like relations was presented. As a possible extension of the above analysis in application
to baryons, the classification of the non-local baryonic operators constructed from four particles
(three quarks and a gluon) is required to work out equations involving explicitly the there-
particle LCDAs and the twist-four four-particle ones which should reduce to the Wandzura-
Wilczek relations after four-particle LCDAs are neglected.

6 Conclusions

The total set of the non-local light-ray operators for the ground-state heavy baryons with JP =
1/2+ and JP = 3/2+ is constructed in QCD in the heavy-quark limit. Matrix elements of these
operators sandwiched between the heavy-baryon state and vacuum determine the LCDAs of
different twist through the diquark current. The first several moments of LCDAs are calculated
within the method of QCD sum rules using the non-local light-quark condensates. Simple
theoretical models for the LCDAs have been proposed and their parameters are fitted based on
the QCD sum rules estimations. SU(3)F breaking effects result the correction of order 10%.
The possibility to work out the LCDA evolution analytically is discussed.
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