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We discuss light and heavy hadrons in a holographic soft-wall AdS/QCD model. This ap-
proach is based on an action which describes hadron structure with broken conformal and
chiral invariance and incorporates confinement through the presence of a background dila-
ton field. According to the gauge/gravity duality the five-dimensional boson and fermion
fields propagating in AdS space are dual to four-dimensional fields leaving on the surface
of AdS sphere, which correspond to hadrons. In this picture hadronic wave functions —
basics blocks of hadronic properties — are dual to the profiles of AdS fields in the fifth
(holographic) dimension, which is identified with scale variable. As applications we con-
sider properties of light and heavy hadrons from unified point of view: mass spectrum,
form factors, decay rates and parton distributions.

Based on the gauge/gravity duality [1], a class of AdS/QCD approaches which model QCD
by using methods of extra-dimensional field theories formulated in anti-de Sitter (AdS) space,
was recently successfully developed for describing the phenomenology of hadronic properties
(for a recent review see e.g. [2]). One of the popular formalisms of this kind is the “soft-wall”
model [3]-[6] which uses a soft infrared (IR) cutoff in the fifth dimension. This procedure can be
introduced in the following ways: i) as a background field (dilaton) in the overall exponential
of the action (“dilaton” soft-wall model), ii) in the warping factor of the AdS metric (“metric”
soft-wall model), iii) in the effective potential of the action. In Ref. [5] we showed that these
three ways of proceeding are equivalent to each other via a redefinition of the bulk fields and
by inclusion of extra effective potentials in the action. In our opinion, the ”dilaton” form of
the soft-wall model is more convenient in performing the calculations.

In this paper we consider such type of soft-wall AdS/QCD approach. We report the appli-
cations of our approach to the properties of light and heavy hadrons. In particular, we present
results for hadronic mass spectra, coupling constants and form factors [4]-[6].
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1 Approach

Here we briefly review our approach. First, we specify the five-dimensional AdS metric:

ds2 = gMNdx
MdxN = ηab e

2A(z) dxadxb = e2A(z) (ηµνdx
µdxν − dz2) ,

ηµν = diag(1,−1,−1,−1,−1) , (1)

where M and N = 0, 1, · · · , 4 are the space-time (base manifold) indices, a = (µ, z) and
b = (ν, z) are the local Lorentz (tangent) indices, and gMN and ηab are curved and flat metric
tensors, respectively, which are related by the vielbein ǫaM (z) = eA(z) δa

M as gMN = ǫaM ǫbNηab.
Here z is the holographic coordinate, R is the AdS radius, and g = |detgMN |. In the following
we restrict ourselves to a conformal-invariant metric with A(z) = log(R/z).

The relevant AdS/QCD actions for the boson and fermion field of spin J are [4]-[6]

SB =

∫

d4xdz
√
g e−ϕ(z)

[

DMΦM1···MJ
(x, z)DMΦM1···MJ (x, z)

−
(

(µB
J )2 + UB

J (z)
)

ΦM1···MJ
(x, z)ΦM1···MJ (x, z)

]

, (2)

SF = S+
F + S−F , S±F =

∫

d4xdz
√
g e−ϕ(z)

∑

i=+,−

[

Ψ̄±
M1···MJ

(x, z)iD±MΨ±M1···MJ (x, z)

∓ Ψ̄±
M1···MJ

(x, z)
(

(µF
J )2 + UF

J (z)
)

Ψ±M1···MJ (x, z) (3)

where DM and D±M are the covariant derivative (including external vector and axial fields)
acting on boson ΦM1···MJ

and fermion Ψ±
M1···MJ

fields, respectively. Ψ±
M1···MJ

is the pair of
bulk fermion fields, which are the holographic analogues of the left- and right-chirality fermion
operators in the 4D theory. ϕ(z) = κ2z2 is the dilaton field with κ being a free scale parameter.
The quantities µB

J and µF
J are the bulk boson and fermion masses related to the conformal

dimensions (∆B
J , ∆F

J ) of the spin-J AdS boson and fermion fields, respectively

(µB
J R)2 = ∆B

J (∆B
J − 4) , µF

J R = ∆F
J − 2 (4)

As was shown in Refs. [7] and [5] the field dimensions ∆B
J and ∆F

J are related to twist-dimension
τB/F of hadronic operators as

∆B
J = τB = 2 + L , ∆F

J = τF +
1

2
=

7

2
+ L . (5)

where L = max |Lz| is the maximal value of the z component of the quark orbital angular mo-
mentum in hadron [7]: UB

J (z) = 4ϕ(z)(J−1)/R2 and UF
J (z) = ϕ(z)/R are the effective dilaton

potentials. Note the choice of quadratic dilaton profile and potentials UB
J (z) and UF

J (z) is nec-
essary in order to guarantee correct Regge behavior of hadronic mass spectra and asymptotic
power scaling of hadronic factors at large momenta transfer in agreement with quark counting
rules [4]-[6].

Notice that the fermion masses and the effective potentials corresponding to the fields Ψ+

and Ψ− have opposite signs according to the P -parity transformation. The absolute sign of the
fermion mass is related to the chirality of the boundary operator. According to our conventions
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the QCD operators OR and OL have positive and negative chirality, and therefore the mass
terms of the bulk fields Ψ+ and Ψ− have absolute signs “plus” and “minus”, respectively.

One of the main advantages of the soft-wall AdS/QCD model is that the most of the
calculations can be done analytically. In a first step, we show how in this approach the hadron
wave functions and spectrum are generated. We follow the procedure pursued in Refs. [4]-[6].
We drop the external vector and axial fields in covariant derivatives, turn to the tangent space
with Lorentz signature, where the AdS fields are rescaled as

Φµ1···µJ
= eϕ(z)/2+A(z)Jφµ1···µJ

, Ψ±
µ1···µJ

= eϕ(z)/2+A(z)(J−1/2)ψ±µ1···µJ
. (6)

Next we split the fermion field into left- and right-chirality components

ψ±µ1···µJ
(x, z) = ψ±L

µ1···µJ
(x, z) + ψ±R

µ1···µJ
(x, z) (7)

and perform Kaluza-Klein (KK) expansion for φµ1···µJ
(x, z) and ψ

±L/R
µ1···µJ

(x, z)

φµ1···µJ
(x, z) =

∑

n

φn µ1···µJ
(x)Fnτ (z) ,

ψ
±L/R
µ1···µJ

(x, z) =
1√
2

∑

n

ψ
L/R
n µ1···µJ

(x)G±L/R
nτ (z) , (8)

where the tower of the KK fields φn µ1···µJ
(x) is dual to four-dimensional fields describing mesons

with spin J , while KK fields ψ
L/R
n µ1···µJ

(x) are dual left/right-chirality fermion fields describing
baryons with spin J . The number n corresponds to the radial quantum number. The set of
functions Fnτ (z) are the profiles of boson AdS fields in holographic direction, which are dual to
the mesonic wave functions with twist τ and radial quantum number n. In case of baryon we
have four sets of such profiles dual to baryonic wave functions, which satisfy to the following
relation (due P - and C-invariance)

G±R
nτ (z) = ∓G∓L

nτ (z) . (9)

Then it is convenient to rescale the boson and fermion profiles as

Fnτ (z) = e−3/2A(z) fnτ (z) , G±R/L
nτ (z) = e−2A(z) g±R/L

nτ (z) (10)

in order derive the Schrödinger-type equation of motions (EOMs) for the wave functions fnτ

and g
±L/R
nτ (z)

[

− ∂2
z +

4L2 − 1

4z2
+ κ4z2 + 2κ2(J − 1)

]

fnτ (z) = M2
B,nτJ fnτ (z) (11)

and
[

−∂2
z + κ4z2 + 2κ2

(

m∓ 1

2

)

+
m(m± 1)

z2

]

gL/R
nτ (z) = M2

F,nτ g
L/R
nτ (z) , (12)

where m = τ − 3/2; MB,nτJ and MF,nτ are the masses of bosons and fermions dual to corre-
sponding hadrons (mesons and baryons) with specific values of quantum numbers.
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Above EOMs have analytical solutions for both wave functions

fnτ (z) =

√

2Γ(n+ 1)

Γ(n+ τ − 1)
κτ−1 zτ−3/2 e−κ2z2/2 Lτ−2

n (κ2z2) ,

gL
nτ (z) =

√

2Γ(n+ 1)

Γ(n+ τ)
κτ zτ−1/2 e−κ2z2/2 Lτ−1

n (κ2z2) , (13)

gR
nτ (z) =

√

2Γ(n+ 1)

Γ(n+ τ − 1)
κτ−1 zτ−3/2 e−κ2z2/2 Lτ−2

n (κ2z2)

and mass spectrum

M2
B,nτJ = 4κ2

(

n+
τ + J

2
− 1

)

, M2
F,nτ = 4κ2

(

n+ τ − 1
)

. (14)

Therefore, our main idea is to find the solutions for the bulk profiles of the AdS field in the
z–direction, and then calculate the physical properties of hadrons in terms of the bulk profiles
of AdS fields dual to hadronic wave functions. In this way both mass spectrum and dynamical
hadronic properties like form factors and parton distributions will be calculated from a unified
point of view based on the solutions of the Schrödinger-type EOMs (13). One can see that the
bulk profiles of AdS fields have the correct scaling behavior for small z, which leads to correct
power behavior of calculated hadronic form factors at large Q2. Another important property
of the bulk profiles is that they vanish at large z (confinement). Up to now we discussed the
solutions of EOMs for the bulk profiles on its mass shell p2 = M2. In case when we go beyond
mass shell, we can calculate so-called bulk-to-boundary propagators describing the behavior of
bulk profiles at arbitrary p2, which are necessary for calculation of momentum dependence of
matrix elements in our approach. In particular, the bulk-to-boundary propagator for the vector
AdS field dual to electromagnetic field is given in analytical form in terms of the Gamma Γ(n)
and Tricomi U(a, b, z) functions:

V (Q, z) = Γ

(

1 +
Q2

4κ2

)

U

(

Q2

4κ2
, 0, κ2z2

)

. (15)

The bulk-to-boundary propagator V (Q, z) obeys the normalization condition V (0, z) = 1 consis-
tent with gauge invariance and fulfils the following ultraviolet (UV) and infrared (IR) boundary
conditions: V (Q, 0) = 1 , V (Q,∞) = 0. The UV boundary condition corresponds to the local
(structureless) coupling of the electromagnetic field to matter fields, while the IR boundary
condition implies that the vector field vanishes at z = ∞. E.g. a generic expression for the
meson form factor is given in the form integral over z variable of the product of V (Q, z) and
bulk profiles corresponding to the wave functions of initial (in) and final (fin) meson

FM (Q2) =

∞
∫

0

dzV (Q, z)fin(z)ffin(z) . (16)

Another advantage of our approach is a possibility to constraint the form of light-front wave
functions (see detailed discussion in Refs. [4]-[6]) from matching of matrix elements of physical
processes in AdS/QCD and Light-Front QCD. The idea of such matching was proposed in
Ref. [7]. Next step is inclusion of effects of quark masses in agreement with constraints imposed
by chiral symmetry and heavy quark effective theory.

4 HQ2013

VALERY E. LYUBOVITSKIJ, THOMAS GUTSCHE, IVAN SCHMIDT, ALFREDO VEGA

228 HQ2013



2 Applications

2.1 Meson mass spectrum and leptonic decay constants

We consider applications of our approach to mass spectrum, decay constants, form factors and
parton distributions. First we present the results for the mass spectrum and decay constants
of mesons: light, heavy-light and heavy quarkonia (see Tables I-V).

Table I. Masses of light mesons.

Meson n L S Mass [MeV]
π 0,1,2,3 0 0 140 1010 1421 1738
K 0 0,1,2,3 0 495 1116 1498 1801
η 0,1,2,3 0 0 566 11494 1523 1822
f0[n̄n] 0,1,2,3 1 1 721 1233 1587 1876
f0[s̄s] 0,1,2,3 1 1 985 1404 1723 1993
ρ(770) 0,1,2,3 0 1 721 1233 1587 1876
ω(782) 0,1,2,3 0 1 721 1233 1587 1876
φ(1020) 0,1,2,3 0 1 985 1404 1723 1993
a1(1260) 0,1,2,3 1 1 1010 1421 1738 2005

Table II. Masses of heavy-light mesons.

Meson JP n L S Mass [MeV]
D(1870) 0− 0 0,1,2,3 0 1870 2000 2121 2235
D∗(2010) 1− 0 0,1,2,3 1 2000 2121 2235 2345
Ds(1969) 0− 0 0,1,2,3 0 1970 2093 2209 2320
D∗

s(2107) 1− 0 0,1,2,3 1 2093 2209 2320 2425
B(5279) 0− 0 0,1,2,3 0 5280 5327 5374 5420
B∗(5325) 1− 0 0,1,2,3 1 5336 5374 5420 5466
Bs(5366) 0− 0 0,1,2,3 0 5370 5416 5462 5508
B∗s (5413) 1− 0 0,1,2,3 1 5416 5462 5508 5553

Table III. Masses of heavy quarkonia.

Meson JP n L S Mass [MeV]
ηc(2980) 0− 0,1,2,3 0 0 2975 3477 3729 3938
ψ(3097) 1− 0,1,2,3 0 1 3097 3583 3828 4032
χc0(3415) 0+ 0,1,2,3 1 1 3369 3628 3843 4038
χc1(3510) 1+ 0,1,2,3 1 1 3477 3729 3938 4129
χc2(3555) 2+ 0,1,2,3 1 1 3583 3828 4032 4219
ηb(9390) 0− 0,1,2,3 0 0 9337 9931 10224 10471
Υ(9460) 1− 0,1,2,3 0 1 9460 10048 10338 10581
χb0(9860) 0+ 0,1,2,3 1 1 9813 10110 10359 10591
χb1(9893) 1+ 0,1,2,3 1 1 9931 10224 10471 10700
χb2(9912) 2+ 0,1,2,3 1 1 10048 10338 10581 10808
Bc(6277) 0− 0,1,2,3 0 0 6277 6719 6892 7025
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Table IV. Decay constants fP (MeV) of pseudoscalar mesons.
Meson Data Our
π− 130.4± 0.03± 0.2 153
K− 156.1± 0.2± 0.8 153
D+ 206.7± 8.9 207
D+

s 257.5± 6.1 224
B− 193± 11 163
B0

s 253± 8± 7 170
Bc 489± 5± 3 489

Table V. Decay constants fV (MeV) of vector mesons.

Meson Data Our Meson Data Our
ρ+ 210.5± 0.6 216 ρ0 154.7 ± 0.7 153

D∗ 245± 20+3
−2 207 ω 45.8 ± 0.8 51

D∗
s 272± 16+3

−20 224 φ 76 ± 1.2 72

B∗ 196± 24+39
−2 170 J/ψ 277.6 ± 4 223

B∗s 229± 20+41
−16 170 Υ(1s) 238.5 ± 5.5 170

One should stress that our analytical results for the masses of light pseudoscalar mesons are
consistent with chiral symmetry: M2

π ,M
2
K ,M

2
η → 0 at mu,d,ms → 0. The masses and leptonic

decay constant of heavy-light mesons are consistent with constraints imposed by heavy quark
mass limit. In particular, the heavy quark mass expansion of heavy-light mesons masses reads
MQq = mQ + Λ̄ +O(1/mQ) and their leptonic decay constants scale as fQq ∼ 1/

√
mQ.

2.2 Electromagnetic structure of nucleon

Here from unified point of view we describe nucleon form factors and the electroproduction of
the N(1440) Roper resonance. The Roper resonance is identified as the first radially excited
state of the nucleon. The obtained results for helicity amplitudes of the Roper electroproduction
are in good agreement with the recent results of the CLAS Collaboration at JLab. In Table
VI we present our results for the nucleon properties: mass, magnetic moments, electromagnetic
and axial charge radii. In Figs. 1-2 we present selected results for the electromagnetic form
factors of nucleon.

Table VI. Mass and electromagnetic properties of nucleons.

Quantity Our results Data [9]
mp (GeV) 0.93827 0.93827
µp (in n.m.) 2.793 2.793
µn (in n.m.) -1.913 -1.913

gA 1.270 1.2701
rp
E (fm) 0.840 0.8768 ± 0.0069

〈r2E〉n (fm2) -0.117 -0.1161 ± 0.0022
rp
M (fm) 0.785 0.777 ± 0.013 ± 0.010

rn
M (fm) 0.792 0.862+0.009

−0.008

rA (fm) 0.667 0.67±0.01
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Table VII. Helicity amplitudes AN
1/2(0) and SN

1/2(0), N = p, n.

Quantity Our results Data [9]

Ap
1/2(0) (GeV−1/2) -0.065 (-0.065) -0.065 ± 0.004

An
1/2(0) (GeV−1/2) 0.040 (0.040) 0.040 ± 0.010

Sp
1/2(0) (GeV−1/2) 0.047 (0.048)

Sn
1/2(0) (GeV−1/2) -0.044 (-0.045)
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Figure 3: Helicity amplitudes Ap
1/2(Q

2) and Sp
1/2(Q

2) up to Q2 = 4 GeV2.
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Figure 4: Transition charge densities for unpolarized and transversely polarized nucleon and
Roper.

In Table VII we present our results for the helicity amplitudes AN
1/2(0) and SN

1/2(0), N = p, n

at Q2 = 0. In Fig. 3 we present our predictions for the Q2 dependence of helicity amplitudes.
Results for the transition charge densities for unpolarized and transversely polarized nucleon
and Roper in the transverse impact parameter plane b⊥ = (bx, by) are shown in Fig. 4.

From Fig.3 it should be evident that our results for the helicity amplitudes in the proton
case have qualitative agreement with the present data of the CLAS Collaboration [10]. Within
the current approach it is difficult to reproduce the maximum of data for Ap

1/2 at about 2 GeV2.

Further data for the helicity amplitudes in the region from 1.6 to 4 GeV2 could be accumulated
at the upgraded facilities of JLab and certainly help to clarify the theoretical understanding.
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