Status of the preparations for a plasma wakefield acceleration experiment at PITZ

O. Lishchyn1, R. Brinkmann2, J. Engel1, M. Gross1, F. Grüne1-3, G. Koss1, M. Krasiukov1, G. Pathak1, S. Philipp1, Y. Renier1, D. Richter1, C. Schroeder1, R. Schütze1, F. Stephan1, 2, D. Richter1, C. Schroeder1, R. Schütze1, F. Stephan1, 2

1Deutsches Elektronen-Synchrotron, DESY, Zeuthen, Germany, 2Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany, 3Universität Hamburg, UHH, Hamburg, Germany, 4Center for Free-Electron Laser Science, CFEL, Hamburg, Germany, 5Helmholtz Zentrum Berlin, HZB, Berlin, Germany, 6Lawrence Berkeley National Laboratory, LBNL, Berkeley, USA

Abstract

A proof-of-concept experiment for the AWAKE experiment is in preparation at the Photo-Injector Test Facility at DESY, Zeuthen site (PITZ) [1]. The goal of the experiment is to observe and measure the energy and density self-modulation of a long electron beam passing through a laser-generated Lithium plasma. A new type of plasma cell was designed and manufactured to fulfill feasible constraints of the plasma experiment at PITZ. The plasma cell is a Lithium heat pipe oven with inert gas buffers all input/output ports. Key aspects of the construction are an Ar/Ionization laser coupled through side ports for the plasma generation, as well as electron windows which separate the plasma from the vacuum beam line. Although side ports design is more complicated than coaxial laser coupling, it also has an advantage: a shadow mask can be used to precisely adjust the beam line to accommodate the experiment. Other aspects of the preparations are the generation of homogenous Lithium vapor inside the cell and adjustments to the beam line to accommodate the beam line to accommodate the experiment.

Evolution of Lithium melting experiments

- Goal of the experiments: study the distribution of liquid Li over the mesh ports and especially over connections between them (the side ports design entails a complex design of the wire mesh).
- The experiments were conducted with a specially made small heat plasma oven.
- Lithium reacts quickly with components of air and forms a protective layer that prevents proper melting - all operations with Li were conducted under Argon atmosphere.
- Experimental parameters:
 - Amount of Lithium
 - Wire mesh constructions (1)
 - Heating temperature
 - Temperature temporal profiles.
 - Result: Li distributions well over the mesh and the mesh connections in the small oven (2).
 - Experiments with plasma cell: after several days of operation period Li tends to form depositions on the border between the vapor and the buffer gas zone near cooling jackets (4).
 - After 4 days of continuous run a big ball of Li was grown, blocking the beam path completely (5).
 - Possible reason for depositions: mesh does not provide enough capillary force to transport condensed Li back to the heater zone.
 - Mesh number N (wires per inch) for alkal metal heat pipes should be 40 to 300 [2] - in our case: N = 26.
 - Another problem: length of orthogonal pipe is too low; copper shadow masks were installed in the side ports as temporal fix: (3) shadow mask covered with Li crystals.

Electron windows

Calculated and measured scattering values for Kapton foils of different thicknesses.

<table>
<thead>
<tr>
<th>Kapton Thickness (µm)</th>
<th>Gas</th>
<th>Measured Scattering Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ar</td>
<td>0.98 ± 0.10</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>0.90 ± 0.10</td>
</tr>
<tr>
<td>2</td>
<td>Ar</td>
<td>0.98 ± 0.10</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>0.90 ± 0.10</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>0.90 ± 0.10</td>
</tr>
</tbody>
</table>

Table above shows measured gas permeability values for foils of different materials and thicknesses tested at PITZ (courtesy Dieter Richter) and literature data. An allowed gas load coming from the windows is 1·10^-7 mbar·s, therefore, almost all tested foils could be used without compromising the machine run. Another major property of the electron windows is mechanical strength. The windows have to withstand a pressure difference of 1 bar. 8 µm Kapton windows were tested in PITZ beam line with a dummy plasma cell and they are being used in current self-modulation experiments. Experiments are ongoing to find the most suitable window material.

References