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1. Introduction

Chern–Simons theories play a central role in modern string theory. Two major subjects in the early
days were open-string field theory [1] and topological string theory [2]. It was known not only that
Chern–Simons theory satisfies the axiom of topological field theory but also that the topological
theory can be lifted to topological string theory. Also, the beautiful gauge-invariant structure was
used to construct the covariant open-string field theory. Both of these developments are deeply related
to understanding the non-perturbative aspects of string theory.

The relation between Chern–Simons theory and non-perturbative string theory becomes even more
important in supersymmetrization. It is known that, up to N = 3, the supersymmetric Chern–Simons
theory can be constructed for any gauge group and any representation [3–5]. In the context of the
conformal symmetry, the condition that the levels are summed up to zero was proposed [6,7]. After
some special arguments of the N = 4 enhancements [8,9], it was finally found that, when the gauge
group is U (N )k × U (N )−k , with the subscripts denoting levels k and −k, and the matters are in
the bifundamental representation, the supersymmetry is enhanced to N = 6 [10], which is called
ABJM theory. Later, it was also found [11,12] that, even when the ranks of two factors in the gauge
group are different, U (N1)k × U (N2)−k , Chern–Simons theory still enjoys the enhanced supersym-
metry N = 6, which is called ABJ theory. So we shall often refer to them inclusively as ABJ(M)
theory.

The discovery of this maximally supersymmetric conformal Chern–Simons theory enables us to
open up another window to the non-perturbative aspects of string theory. In the study of the non-
perturbative effects in string theory, we are naturally led to a conjecture that there exists an 11D
theory, which is dubbed M-theory [13]. It is expected that this theory is the mother theory with
fundamental membrane excitation from which our perturbative string theory stems after compactifi-
cations, though only little is known about this mysterious theory. From the supergravity analysis, it is
known that, besides the fundamental electric M2-branes, there exist solitonic magnetic M5-branes.
Also, from the anti-de Sitter/conformal field theory (AdS/CFT) correspondence, we know that the
degrees of freedom of N M2-branes and N M5-branes are N 3/2 and N 3, respectively [14].

The ABJM theory describes a stack of N multiple M2-branes put on the target space C
4/Zk , while

the ABJ theory describes a composite system of both N1 multiple M2-branes and N2 − N1 multi-
ple fractional M2-branes for N2 > N1. For other superconformal Chern–Simons theories with fewer
supersymmetries [6,7,15], we expect that they describe multiple M2-branes on various backgrounds
with fewer supersymmetries. It is then natural to ask whether we can reproduce the degrees of free-
dom by studying the free energy of the ABJM theory in the large-N limit. Also, it is interesting to see
how the large-N corrections behave and whether there is any interesting physical implication to this.

In contrast to Chern–Simons theory, let us briefly comment on Yang–Mills theory. Along with
Chern–Simons theory, Yang–Mills theory also plays a crucial role in modern string theory. In partic-
ular, it is known that multiple D-branes are described by the maximally supersymmetric Yang–Mills
theory with the gauge group U (N ) [16]. This was found by identifying the dynamical degrees
of freedom of D-branes as open-string excitations appearing in each pair of multiple D-branes.
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The free energy N 2 in the large-N limit is interpreted as the number of matrix elements and matches
the supergravity computation [14].

Although the maximally supersymmetric Chern–Simons theory selects a special gauge group and
a special representation, the maximally supersymmetric Yang–Mills theory is defined for general
gauge groups and representations. Then, it is natural to expect that the gauge group and the matter
contents of the ABJ(M) theory are special. In fact, it was observed in Ref. [17] that, when we look
at the matrix model that appears after applying the localization techniques, the gauge group and the
matter content have a good interpretation in the supergroup U (N1|N2). Interestingly, the relation to
the supergroup U (N1|N2) persists even in the one-point function of the half-BPS Wilson loop. The
underlying relation to the supergroup may go beyond an accidental relation after the localization
techniques and plays some roles in understanding the ABJ(M) theory itself.

In the supersymmetric theory, it was found that, when we compute the partition function or the
correlation function preserving supersymmetries, the infinite-dimensional path integral reduces to a
finite-dimensional matrix integration [18]. For a more careful explanation of localization techniques,
see Ref. [19] in this volume.

After the localization techniques, the partition function of the ABJ(M) theory is reduced to
a matrix model [20]. Although many works have concentrated on the matrix model expression
itself, solving the matrix model is an interesting and important subject. In physics, solving one
theory classically means finding the exact solutions to the equation of motion, while solving one
theory on the quantum-mechanical level means performing the path integral exactly. Since the
localization techniques already reduce the infinite-dimensional path integral into a matrix integra-
tion, solving the ABJ(M) theory amounts to performing the matrix integration exactly. This is our
main result in Refs. [21–24] and we shall explain it in more detail in the remaining part of this
introduction.

Before explaining the details, let us try to discuss our motivation and expectation for the results.
First of all, the full expression of the ABJ(M) partition function may provide some hidden structures
of the M2-branes. After reproducing the predicted N 3/2 behavior in the large-N limit from the matrix
model [25], it is natural to ask what the corrections look like. In particular, compared with the matrix
interpretation of the N 2 behavior for the D-branes, it is perplexing to find N 3/2 behavior for the
M2-branes. We expect that finding all the corrections will give us some hints to this mysterious N 3/2

behavior of the M2-branes. Prior to the discovery of the ABJ(M) theory, attempts were made to find
the worldvolume theory of the M2-branes from a generalization of the Lie algebra [26,27]. Though
it turned out that the algebra is very restricted and is not explored extensively any more, these works
may suggest a hidden novel structure in M2-branes yet to be discovered.

Secondly, the ABJ(M) theory is one of the maximally supersymmetric theories. If we consider
that the uniqueness of string theory stems from the maximum in the supersymmetrization, we expect
that maximally supersymmetric theories will play a crucial role in understanding string theory. At
this point, it should be important to study carefully all the fundamental quantities in the maximally
supersymmetric theories.

Thirdly, let us stress the importance of the exact solution. The main method in studying physics is
the perturbation theory. However, in a standard situation, the physics beyond the perturbation theory
has a very rich structure. We expect that the exact instanton expansion will provide us with a window
to understand non-perturbative effects.

In the remaining part of this introduction, let us briefly recapitulate the main results of a series of
our works [21–24]. We will see that the results provide some insights to the above questions.
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1.1. ABJ(M) matrix model

After applying the localization techniques, the partition function of the ABJ(M) theory reduces to a
matrix model

Zk (N1, N2) = (−1)
1
2 N1(N1−1)+ 1

2 N2(N2−1)

N1!N2!

×
∫

R
N1+N2

N1∏
i=1

Dμi

N2∏
j=1

Dν j

∏N1
i< j

(
2 sinh

μi −μ j
2

)2∏N2
i< j

(
2 sinh

νi −ν j
2

)2

∏N1,N2
i, j

(
2 cosh

μi −ν j
2

)2 , (1.1)

where
∏N1

i< j and
∏N2

i< j denote the product taking over all of the pairs (i, j) satisfying 1 ≤ i < j ≤ N1

and 1 ≤ i < j ≤ N2, respectively, while the product
∏N1,N2

i, j denotes
∏N1

i=1

∏N2
j=1. The integration

is defined by

Dμi = dμi

2π
e

ik
4π (μi )

2
, Dν j = dν j

2π
e− ik

4π (ν j)
2
. (1.2)

The derivation of this partition function was originally done in Ref. [20]. Here we shall not go into
the details of the derivation and instead take this ABJ(M) matrix model (1.1) as our starting point.

1.2. Supergroup structure

This matrix model comes from the maximally superconformal Chern–Simons theory. Let us briefly
comment on the beauty of this matrix model [17]. In (1.1) the most complicated part of this partition
function is probably the measure∏N1

i< j

(
2 sinh

μi −μ j
2

)2∏N2
i< j

(
2 sinh

νi −ν j
2

)2

∏N1,N2
i, j

(
2 cosh

μi −ν j
2

)2 . (1.3)

This measure can be greatly simplified by dropping one factor of the gauge group:

N1∏
i< j

(
2 sinh

μi − μ j

2

)2

. (1.4)

This measure is the famous one of the Chern–Simons matrix model. If the reader is not familiar with
it, she can replace the hyperbolic function by a rational function

N1∏
i< j

(
μi − μ j

)2
. (1.5)

This is nothing but the U (N1)-invariant Vandermonde measure appearing in the diagonalization of
the N1 × N1 Hermitian matrix in the Gaussian matrix model. We can restore the hyperbolic function
by exponentiating the variables μ into e±μ. If we want to restore the dependence of the variables ν,
all we have to do is the supersymmetrization. Namely, we replace the invariant measure of U (N1) by
that of the supergroup U (N1|N2):∏N1

i< j

(
μi − μ j

)2∏N2
i< j

(
νi − ν j

)2∏N1,N2
i, j

(
μi + ν j

)2 . (1.6)

After exponentiating μi , ν j into e±μi , e±ν j , respectively, we come back to the original measure of
the ABJ(M) matrix model. The explanation is summarized in Table 1.
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Table 1. The measure of the ABJ(M) matrix model can be regarded as a simultaneous deformation of the
supersymmetry deformation and the Chern–Simons deformation from the standard Vandermonde measure.

∏N1
i< j

(
2 sinh μi −ν j

2

)2∏N2
i< j

(
2 sinh νi −ν j

2

)2

∏N1,N2
i, j

(
2 cosh μi −ν j

2

)2

↗ ↖
N1∏

i< j

(
2 sinh

μi − ν j

2

)2
∏N1

i< j

(
μi − ν j

)2∏N2
i< j

(
νi − ν j

)2∏N1,N2
i, j

(
μi + ν j

)2
↖ ↗

N1∏
i< j

(
μi − ν j

)2

In this sense, we can say that the ABJ(M) matrix model is the generalization of the most
fundamental Gaussian matrix model with simultaneous deformation of the supersymmetrization and
the Chern–Simons deformation. As a message, we would like to stress that, aside from the physical
interpretation, even purely from a mathematical viewpoint, the ABJ(M) matrix model is one of the
most fundamental matrix models and deserves careful study.

1.3. Complete large-N expansion

Now let us summarize the result found in a series of works [21–25,28–39] for both the ABJM case
and the ABJ case. Let us reparametrize the arguments of the partition function Zk(N1, N2) in (1.1) as
Zk,M(N ) with (N1, N2) = (N , N + M) and define the grand canonical partition function �k,M(μ)

with

�k,M(μ) =
∞∑

N=0

eμN |Zk,M(N )|, (1.7)

and the (modified) grand potential Jk,M(μ) with [22]

�k,M(μ) =
∞∑

n=−∞
eJk,M (μ+2π in), (1.8)

by regarding the rank N as the number of particles and introducing the chemical potential μ dual
to N . Note that the phase dependence of the partition function Zk,M(N ) was studied carefully in
Ref. [20] and, to make contact with the topological string theory, we have to take the absolute
value of the partition function in defining the grand potential [38]. It is important to notice that the
large-N physics in the canonical ensemble is governed by the large-μ limit in the grand canonical
ensemble; thus, below we focus on this expansion.

Note that the grand canonical partition function defined originally in (1.7) is symmetric under the
2π i shift of the chemical potential

μ → μ+ 2π i. (1.9)

Due to the periodicity, the grand partition function contains an oscillatory behavior in an appar-
ent sense [22]. The (modified) grand potential in (1.8) is defined by getting rid of this oscillation.
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In the inverse transformation, the partition function is given in terms of the grand canonical partition
function �k,M(μ) by

|Zk,M(N )| =
∫ π i

−π i

dμ

2π i
�k,M(μ)e

−μN , (1.10)

and in the grand potential Jk,M(μ) (1.8) by

|Zk,M(N )| =
∫ ∞i

−∞i

dμ

2π i
eJk,M (μ)−μN . (1.11)

This difference plays crucial roles, e.g., in discussing the generalizations of the ABJM theory in
Ref. [40].

Let us first display our main result, and explain how it was found and what the physical implication
is later in the subsequent subsections. The large-μ results of the grand potential can be summarized
as follows. The grand potential is split into the “perturbative” part and the “non-perturbative” part:

Jk,M(μ) = J pert
k,M

(
μeff
)

+ J np
k,M

(
μeff
)
, (1.12)

where the “effective” chemical potentialμeff will be explained later. The perturbative part is given by

J pert
k,M(μ) = Ck

3
μ3 + Bk,Mμ+ Ak, (1.13)

where the coefficients Ck and Bk,M are [25,38]

Ck = 2

π2k
, Bk,M = 1

3k
− k

12
+ k

2

(
M

k
− 1

2

)2

, (1.14)

while Ak is [33,41]

Ak = 2ζ (3)

π2k

(
1 − k3

16

)
+ k2

π2

∫ ∞

0
dx

x

ekx − 1
log
(

1 − e−2x
)
. (1.15)

For integral k, the integration is performed explicitly.
The non-perturbative part is given by

J np
k,M(μ) = F top (T; gs)+ 1

2π i

∂

∂gs

[
gs FNS

(
T

gs
; 1

gs

)]
. (1.16)

Here the functions F top and FNS are defined by the limits

F top (T; τ) = lim
τ1→τ,τ2→−τ F ref (T; τ1, τ2) ,

FNS (T; τ) = lim
τ1→τ,τ2→0

2π iτ2 F ref (T; τ1, τ2) (1.17)

of a refined function

F ref (T; τ1, τ2) =
∑
jL , jR

∞∑
n=1

∑
d

N d
jL , jR

χ jL (qL) χ jR (qR) e−nd·T

n
(

qn/2
1 − q−n/2

1

) (
qn/2

2 − q−n/2
2

) , (1.18)

with the su(2) character

χ j (q) = q2 j+1 − q−(2 j+1)

q − q−1 , (1.19)
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and various variables

q1 = e2π iτ1, q2 = e2π iτ2, qL = eπ i(τ1−τ2), qR = eπ i(τ1+τ2). (1.20)

The functions in (1.17) have their origin in topological string theory. Namely, the function
F ref(T; τ1, τ2) is the free energy of the refined topological string theory, while F top(T; τ) and
FNS(T; τ) are the free energy of the original topological string theory and the free energy in the
so-called Nekrasov–Shatashvili (NS) limit. The integers N d

jL , jR
are the BPS indices, which are topo-

logical invariants counting modes on the manifolds. The relation between two Kähler parameters T
and the chemical potential μ is given by

T1 = 4μ

k
+ 2π i

(
1

2
− M

k

)
, T2 = 4μ

k
− 2π i

(
1

2
− M

k

)
, (1.21)

while the string coupling gs is identified to the level k as

gs = 2/k. (1.22)

Note that, in (1.12), we need to substitute for the effective chemical potential

μeff =
⎧⎨⎩μ− 2 (−1)

k
2 −M e−2μ

4 F3

(
1, 1, 3

2 ,
3
2 ; 2, 2, 2; 16 (−1)

k
2 −M e−2μ

)
, for even k,

μ+ e−4μ
4 F3

(
1, 1, 3

2 ,
3
2 ; 2, 2, 2; −16e−4μ

)
, for odd k.

(1.23)

It is interesting to find that the ABJ(M) matrix model has a deep relation to the topological string
theory [42].

This result, with the effective chemical potential plugged in, shows that the grand potential is given
by

J pert
k,M

(
μeff
)

+ J np
k,M

(
μeff
)

=
∞∑

m,	=0

fm,	(μ)e
−
(

4m
k +2	

)
μ
, (1.24)

with fm,	(μ) being polynomials ofμ. Here the effect of e− 4μ
k is identified with the worldsheet instan-

ton, which is a fundamental string wrapping the holomorphic cycle CP
1 in C

4/Zk on the gravity
side [25,43], and that of e−2μ with the membrane instantons, which is a D2-brane wrapping the
Lagrangian submanifold RP

3 [29]. In particular, the coefficients fm,	(μ) with 	 = 0 or m = 0 take
the following form [32]:

fm,0(μ) = dm(k), f0,	(μ) = a	(k)μ
2 + b	(k)μ+ c	(k). (1.25)

Besides the worldsheet instantons and the membrane instantons, the full instanton series (1.24)
contains the bound states of these two instantons.

1.4. History

Here we shall explain how the result (1.12) with (1.13) and (1.16) was found in chronological order.
From the AdS/CFT correspondence, the N 3/2 behavior of the degrees of freedom of the N mul-
tiple M2-branes [14] in the large-N limit was known from the gravity side about two decades ago.
The study from the gauge theory side to reproduce the N 3/2 behavior and investigate the corrections,
on the other hand, was started quite recently [25] after the discovery of the worldvolume theory of
the multiple M2-branes [10]. For the explanation, we shall mainly concentrate on the ABJM case.
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Since the partition function was reduced to a matrix integration from the localizations of the
supersymmetric theories [20,44,45], we can apply ’t Hooft expansion, the standard matrix model
technique, to it. The ’t Hooft expansion is to consider the ’t Hooft limit

N → ∞, λ = N/k : fixed, (1.26)

and keep track of the 1/N corrections. Then, the free energy F(N , λ) = log Zk,0(N ) is given by

F(N , λ) = N 2 F0(λ)+ F1(λ)+ N−2 F2(λ)+ · · · , (1.27)

which can be regarded as the genus expansion. From this viewpoint, it is not difficult to imagine that
the ’t Hooft expansion has a good interpretation in string theory.

The first important work of the ABJM matrix model is the reproduction of the N 3/2 behavior [25]
in the ’t Hooft limit. In Refs. [25,29] it was further noted that the expansion has infinitely many 1/N
corrections,

F0(λ) = λ− 1
2 + O

(
e−√

λ
)
,

F1(λ) = λ
3
2 + log λ+ O

(
e−√

λ
)
,

F2(λ) = λ
7
2 + λ2 + λ

1
2 + O

(
e−√

λ
)
, (1.28)

. . . ,

where we only present the result schematically. In particular, the coefficients are not displayed and the
’t Hooft coupling constant is slightly shifted from the original one, but we will only come back to these
points later. The study of the 1/N corrections is most easily done by observing the relation between
the ABJ(M) matrix model and the topological string theory on local P

1 × P
1 [42] and studying it

with the holomorphic anomaly equation [46] from the topological string theory. Here it is interesting
to notice a triangular structure in the expansion (1.28). Namely, by going to one higher genus from
Fg(λ) to Fg+1(λ), we always gain only one more perturbative term and the perturbative terms in

Fg+1(λ)/Fg(λ) range between λ2 and λ
1
2 in the large-λ limit. This means that the large-N expansion

can be alternatively obtained by taking the large-N limit with λ2 N−2a (0 ≤ a ≤ 1) fixed.1 If we look
at the coefficients carefully, it is not difficult to observe that, after introducing [29]

λren = λ− 1

24
− λ2

3N 2 , (1.29)

the infinite expansion can be partially taken care of. So the remaining question is whether we can
perform the other summation by dropping the non-perturbative terms and solving the perturba-
tive holomorphic anomaly equation. In Ref. [30] it was found that if we drop the non-perturbative
corrections all of the perturbative expansions can be summed up to the Airy function:

Zpert
k (N ) = eAk C

− 1
3

k Ai

[
C

− 1
3

k

(
N − Bk,0

)]
. (1.30)

In Ref. [30] the constant Ak was not taken care of but this constant was later pointed out in Ref. [33]
and studied carefully in Ref. [41]. There are many arguments on the meaning of the Airy function

1 See Ref. [47] for more discussions on the limits.
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appearing in the summation of the perturbative corrections.2 Technically, it suggests the viewpoint
of the grand canonical ensemble. Namely, the integral representation of the Airy function is

Ai(N ) =
∫

C

dμ

2π i
e

1
3μ

3−μN , (1.31)

where the integral contour C comes from the infinity in the region with angle −π/2 < θ < −π/3
seen from the origin and goes to the infinity in the region with angle π/3 < θ < π/2. Comparing
this expression with the inverse transformation (1.11), it is not difficult to find that the complicated
Airy function is mapped to a simple cubic function (1.13). This suggests that the full expression is
clearer in the grand canonical ensemble.

As pointed out in Ref. [28], there are dissatisfactions with the ’t Hooft expansion. In the ’t Hooft
expansion, the large-N limit is taken by fixing the ’t Hooft coupling λ = N/k. However, in approach-
ing the M-theory regime in the large-N limit, the parameter we want to fix is the level k itself, which
characterizes the M-theory background C

4/Zk :

N → ∞, k : fixed. (1.32)

These ideas were incarnated in Ref. [32], by rewriting the partition function of the ABJM theory
with gauge group U (N )k × U (N )−k into that of a Fermi gas system with N non-interacting particles
whose Hamiltonian is given by

e−H = 1√
2 cosh q

2

1

2 cosh p
2

1√
2 cosh q

2

, (1.33)

with the canonical commutation relation [q, p] = i� where the Chern–Simons level plays the role
of the Planck constant, � = 2πk.

This beautiful rewriting directly suggests another analysis for the study of the ABJM matrix model.
Namely, we can study the grand canonical ensemble of the ABJM matrix model from the WKB
expansion around � = 0 [32]. In this expansion, we first expand the whole grand potential in the
small-k region,

Jk(μ) = 1

k
J (0)(μ)+ k J (2)(μ)+ k3 J (4)(μ)+ · · · , (1.34)

and further study each term separately in the large-μ expansion. After that, we collect all terms of
the same order in μ and hope that we can sum up the k expansion. In this sense, we can separate the
small-k expansion from the large-μ expansion and take the large-μ limit by keeping the level k fixed.

Both the ’t Hooft expansion and the WKB expansion are powerful enough to study the matrix model
to some extent. On one hand, the ’t Hooft expansion detects not only the perturbative part of the Airy
function but also the worldsheet instanton part, though is sensible to neither the membrane instanton
part nor the bound state part. This is because, after plugging in the stationary condition for μ,

N = ∂ Jk

∂μ
	 Ckμ

2, (1.35)

the worldsheet instanton factor and the membrane instanton factor in (1.24) become

e− 4μ
k 	 e−2π

√
2λ, e−2μ 	 e−πN

√
2/λ. (1.36)

2 See a recent work [48] for interesting generalizations and discussions.
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On the other hand, the WKB expansion detects only the perturbative part and the membrane instanton
part, but not the worldsheet instanton part or the bound state part. So, unfortunately, for the bound
state of the worldsheet instantons and the membrane instantons, neither the ’t Hooft expansion nor
the WKB expansion is applicable. The only method we have is the numerical analysis and the pole
cancellation mechanism, which we will explain in the next subsection.

1.5. Pole cancellation mechanism

In determining the non-perturbative effects, the so-called pole cancellation mechanism plays an
important role. Let us recapitulate it briefly. For this purpose we display the explicit forms of the
first few worldsheet instantons in (1.25):

d1(k) = 1

sin2 2π
k

, d2(k) = − 1

2 sin2 4π
k

− 1

sin2 2π
k

, . . . , (1.37)

and membrane instantons [22,35]:

a1(k) = −4 cos πk
2

π2k
, b1(k) = 2 cos2 πk

2

π sin πk
2

, c1(k) = · · · ,

a2(k) = −8 + 10 cosπk

π2k
, b2(k) = 4 (1 + cosπk)

π2k
+ 17 + 24 cosπk

2π sinπk
, c2(k) = · · · ,

· · · . (1.38)

It is not difficult to find that the coefficients of the mth worldsheet instanton contain poles when
2m
k ∈ Z, while the coefficients of the 	th membrane instanton contain poles when 2	k ∈ Z. However,

it is interesting to observe that, whenever one coefficient is divergent, the other coefficient is always
divergent as well and, in total, the coefficient is completely finite. This property was first observed
in Ref. [22] and its importance was stressed in Ref. [35].

This property is probably due to the supersymmetries. Since there is no phase transition in the-
ories with enough supersymmetries, the partition function should be finite. From the viewpoint of
applications, this property can be used to fix the first few instanton coefficients. In fact, the first few
coefficients of the membrane instantons listed above were found from this pole cancellation mecha-
nism. The existence of the membrane instantons was first observed in Ref. [49]. It is surprising that
the first quantitative study of the membrane instanton is performed in this way.

We can proceed to the bound states and find a similar pole cancellation mechanism there. Namely,
instead of the simple pole cancellation mechanism between the worldsheet instanton and the mem-
brane instanton, for higher instanton effects the bound states of the worldsheet instanton and the
membrane instanton appear as well. Hence, we need to consider the cancellation among all of the
bound states besides the pure worldsheet instanton and the pure membrane instanton.

In Ref. [23] we find that the effect of the bound states can be incorporated into that of the worldsheet
instantons by shifting the chemical potential as in (1.23). As a bonus, after shifting the chemical
potential μ into the effective one μeff, we find that the quadratic polynomial coefficients of the pure
membrane instanton f0,	(μ) (1.25) become linear polynomials, where the coefficients of the linear
terms and constant terms obey a derivative relation. Finally, in Ref. [24], all of these structures are
re-expressed in terms of the refined topological string theory as in (1.12).
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1.6. Contents

The main purpose of this paper is to review the beautiful aspects of the ABJ(M) matrix model and its
generalizations. After reviewing the history of the progress in Sects. 1.4 and 1.5, it is not difficult to
imagine that the explanation would be simplest if we start with reviewing the Fermi gas formalism.
We shall do this in the next section first for the ABJM matrix model and then generalize to the
ABJ matrix model. After that, in Sect. 3, we shall proceed to various analyses, including the WKB
expansion, the exact evaluation of the partition function, the numerical study of the grand potential,
the pole cancellation mechanism, and the viewpoint from the topological string theory. Finally, in
Sect. 4, we summarize some recent progress in the supersymmetry-enhanced case and more general
cases.

2. Fermi gas formalism

In this section, let us explain how the Fermi gas formalism is applied to the ABJM and ABJ
matrix model.

2.1. ABJM matrix model

In this subsection, we shall explain the Fermi gas formalism for the ABJM matrix model [32].
Namely, we shall study (1.1) by restricting ourselves to the case of N2 = N1 = N and define

Zk(N ) = Zk(N , N ) . (2.1)

Using the Cauchy identity

det

(
1

ui + v j

)
=
∏

i< j

(
ui − u j

) (
vi − v j

)∏
i, j

(
ui + v j

) , (2.2)

one can show that (1.1) is rewritten as

Zk(N ) =
∫

DNμ

N !

DNν

N !
det

(
1

2 cosh
μi −ν j

2

)
1≤i≤N
1≤ j≤N

det

(
1

2 cosh
νi −μ j

2

)
1≤i≤N
1≤ j≤N

. (2.3)

Note that the two determinant factors are identical, though we write them separately, so that
the structure is clearer. Using a determinantal formula from Ref. [38], we can combine the two
determinants,

Zk(N ) =
∫

DNμ

N !
det

(
1

2 cosh μi −ν
2

◦ 1

2 cosh
ν−μ j

2

)
1≤i≤N
1≤ j≤N

, (2.4)

where ◦ stands for the integration:

φ ◦ ψ =
∫

Dνφ (ν)ψ (ν) . (2.5)

In other words, we regard two ingredients
(
2 cosh μ−ν

2

)−1
and

(
2 cosh ν−μ

2

)−1
as matrices with con-

tinuous indices μ and ν. As in the discrete case, where we perform the matrix multiplication by
contracting the indices, here the contractions of the continuous indices are done by the integrations
given in (1.2).
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After expanding the determinant of (2.4) and rescaling the integration variables μ = x/k, ν =
y/k, we find that it can be expressed as a sum over permutations SN :

Zk(N ) = 1

N !

∑
σ∈SN

(−1)σ
∫

d N x

(2π)N

N∏
i=1

ρ
(
xi , xσ(i)

)
, (2.6)

with ρ(x, x ′) given by

ρ
(
x, x ′) =

∫
dy

2π
e

i
4πk x2 1

k

1

2 cosh x−y
2k

e− i
4πk y2 1

k

1

2 cosh y−x ′
2k

. (2.7)

If we use the Fourier transformation

1

k

1

2 cosh x−y
2k

=
〈

x | 1

2 cosh p̂
2

|y
〉
, (2.8)

by introducing the coordinate operator q̂ and the momentum operator p̂ satisfying [̂q, p̂ ] = i� with
� = 2πk and the coordinate eigenstate

q̂ |x〉 = x |x〉, (2.9)

normalized by 〈x |x ′〉 = 2πδ(x − x ′), we find that ρ(x, x ′) can be expressed as

ρ
(
x, x ′) =

〈
x

∣∣∣∣∣e i
2�

q̂2 1

2 cosh p̂
2

e− i
2�

q̂2 1

2 cosh p̂
2

∣∣∣∣∣ x ′
〉
. (2.10)

After some further canonical transformations with the help of the formula

e
i

2�
q̂2

f ( p̂ ) e− i
2�

q̂2 = f ( p̂ − q̂ ) , e
i

2�
p̂2

g(̂q ) e− i
2�

p̂2 = g(̂q + p̂ ) , (2.11)

and a similarity transformation, we finally find that ρ(x, y) can be interpreted as a density matrix of
a quantum-mechanical system

ρ (x, y) =
〈
x
∣∣∣e−H

∣∣∣ y
〉
, (2.12)

with (1.33), which leads to the expression

ρ (x, y) = 1

k

1√
2 cosh x

2

1

2 cosh x−y
2k

1√
2 cosh y

2

. (2.13)

The formula (2.6) can be regarded as the (−1)σ -graded partition function of a particle propagating
from a state labeled by the coordinate xi to the permutated coordinate xσ(i). This is nothing but the
partition function of a Fermi gas system. To avoid unnecessary complexities, hereafter we shall often
drop the hats for the operators q̂ and p̂.

It is convenient to define the grand partition function �k(μ) by introducing the chemical poten-
tial μ conjugate to N and summing over N . It turns out that �k(μ) can be written as a Fredholm

12/35

 at D
eutsches E

lektronen Synchrotron D
E

SY
 on D

ecem
ber 8, 2015

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 

http://ptep.oxfordjournals.org/


PTEP 2015, 11B104 Y. Hatsuda et al.

determinant of ρ,

�k(μ) =
∞∑

N=0

eNμZk(N ) = det
(
1 + eμρ

)
, (2.14)

and the grand potential J̃k(μ) = log�k(μ) is given by3

J̃k(μ) =
∞∑
	=1

(−1)	−1

	
e	μTrρ	. (2.15)

The expression of the Fredholm determinant (2.14) and its expansion (2.15) can be shown by relating
the coefficients of

∏∞
	=1

(
Trρ	

)m	 to the combinatorics of distributing N into an assembly of m	

cycles of length 	 satisfying
∑∞
	=1 m		 = N [50].

In terms of the eigenvalues En (n = 0, 1, . . .) of the Hamiltonian H , the grand partition function
is given by

�k(μ) =
∞∏

n=0

(
1 + eμ−En

)
; (2.16)

hence, the problem boils down to the diagonalization of the Hamiltonian. The study of the spectrum
of the ABJM Hamiltonian was initiated in Ref. [21] using the Hankel matrix representation of ρ,
which was later generalized to other models.

Note that the partition function can also be rewritten as

Zk(N ) = 1

N !

∫
d N x

(4πk)N

N∏
i< j

tanh2 xi − x j

2k

N∏
i=1

1

2 cosh xi
2

, (2.17)

which is useful for discussing the generalization to the ABJ model.

2.2. ABJ matrix model

In the previous subsection, we have given the Fermi gas formalism for the ABJM matrix model.
Using this Fermi gas formalism, we shall explain how the exact instanton expansion was found in
the next section. Before that, let us comment that the Fermi gas formalism is also applicable to the
ABJ matrix model where the gauge group U (N1)k × U (N2)−k has different ranks. In generalizing
the discussions in the previous subsection, there are two Fermi gas formalisms for the ABJ matrix
model. One is to dress the density matrix in (2.13) by extra factors with the traces kept unchanged,
while the other is to keep the density matrix and introduce the endpoints for the density matrix.

Since the extra physical ingredients of the ABJ theory compared with the ABJM theory are the
fractional M2-branes, two formalisms amount to expressing the fractional branes by changing the
closed-string backgrounds or from the open-string excitations. Hence, it is reasonable to call these
two formalisms the closed-string formalism and open-string formalism, respectively.

After the perturbative coefficients Ck , Bk,M (1.14) and Ak (1.15) and the worldsheet instantons
were found from the consistency with the ’t Hooft expansion [25], the topological string on local
P

1 × P
1, and the ABJM limit M → 0, we can use either of these Fermi gas formalisms to further

study the membrane instantons and the bound states.

3 Note that this grand potential J̃k(μ) is different from the modified one defined in (1.8).
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2.2.1. Closed-string formalism

Let us start the study of the ABJ matrix model (1.1) with different ranks. In what follows, we will
set N1 = N , N2 = N + M and assume k,M > 0 without loss of generality. First let us note that the
partition function for N = 0 is nothing but the bosonic U (M) Chern–Simons matrix model, which
is given by [51]

Zk(0,M) = k− M
2

M−1∏
s=1

(
2 sin

πs

k

)M−s
. (2.18)

As discussed in Refs. [36,37,39], if we define Ẑk(N , N + M) to be the absolute value of the partition
function Zk(N , N + M) normalized by the Chern–Simons case (N = 0),

Ẑk(N , N + M) =
∣∣∣∣ Zk (N , N + M)

Zk (0,M)

∣∣∣∣ , (2.19)

we find that Ẑk(N , N + M) is given by an integration

Ẑk(N , N + M) = 1

N !

∫
d N x

(4πk)N

N∏
i< j

tanh2 xi − x j

2k

N∏
i=1

V (xi ) , (2.20)

with a dressing factor

V (x) = 1

e
x
2 + (−1)M e− x

2

M−1
2∏

s=− M−1
2

tanh
x + 2π is

2k
, (2.21)

which is very similar to (2.17) in the ABJM matrix model. The Seiberg-like duality of the ABJ theory

U (N )k × U (N + M)−k ⇔ U (N )−k × U (N + k − M)k (2.22)

implies that Ẑk(N , N + M) is invariant under the exchange M ↔ k − M with k and N fixed. Also,
note that the original partition function Zk(N , N + M) (as well as the Chern–Simons case Zk(0,M))
vanishes when k < M , which is consistent with the conjecture that the supersymmetry of the ABJ
theory is spontaneously broken for k < M .

Again, using the Cauchy identity, Ẑk(N , N + M) can be recast as a Fermi gas form

Ẑk(N , N + M) = 1

N !

∑
σ∈SN

(−1)σ
∫

d N x

(2π)N

N∏
i=1

ρ
(
xi , xσ(i)

)
, (2.23)

with the density matrix (2.13) changed into

ρ(x, y) = 1

k

√
V (x)

1

2 cosh x−y
2k

√
V (y). (2.24)

Using this dressed density matrix, the grand partition function �k,M(μ) in (1.7) is given by

�k,M(μ) = |Zk (0,M)| det
(
1 + eμρ

)
. (2.25)

2.2.2. Open-string formalism

Having seen the description of the fractional branes by changing the closed-string background in
Sect. 2.2.1, here let us turn to the description from the open string [38]. This formalism has a benefit
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in the compatibility with the vacuum expectation values of the half-BPS Wilson loop, since we end
up with an ultimate Fermi gas formalism that includes both the M2 fractional branes and the half-BPS
Wilson loop. As a corollary of this formalism, we can reproduce, on one hand, the Fermi gas formal-
ism for the vacuum expectation values of the half-BPS Wilson loop [52] and, on the other hand, that
for the partition function of the M2 fractional branes [38].

To state the results we need some preparations. Instead of the partition function itself, since the
formalism incorporates the insertion of the half-BPS Wilson loop as well, let us consider the vacuum
expectation value of the half-BPS Wilson loop. After the localization of the supersymmetric theory,
it was found [17,20] that the insertion means to include a loop operator in the matrix model:

〈sY 〉k (N1, N2) = (−1)
1
2 N1(N1−1)+ 1

2 N2(N2−1)

N1!N2!

∫
d N1μ

(2π)N1

d N2ν

(2π)N2
sY
(
eμ|eν)

×
[∏N1

i< j 2 sinh
μi −μ j

2

∏N2
i< j 2 sinh

νi −ν j
2∏N1

i=1

∏N2
j=1 2 cosh

μi −ν j
2

]2

e
ik
4π

(∑N1
i=1 μ

2
i −
∑N2

j=1 ν
2
j

)
. (2.26)

Here the loop operator sY (eμ|eν) = sY (eμ1, eμ2, . . . , eμN1 |eν1, eν2, . . . , eνN2 ) is the so-called super-
symmetric Schur polynomial, which is nothing but the character of the hidden supergroup U (N1|N2).
This is a symmetric polynomial with N1 variablesμi and N2 variables ν j , labeled by a Young tableau
Y . It is probably simplest to find this supersymmetric Schur polynomial by expressing the original
Schur polynomial in terms of a diagonal matrix diag (eμi )

N1
i=1 and the trace tr (in other words, the

power sum symmetric polynomials) and replacing the diagonal matrix by a diagonal supermatrix

diag
(
(eμi )

N1
i=1 | (−eν j )

N2
j=1

)
and the trace by a supertrace. For example, let us consider the super-

symmetric Schur polynomial of the second symmetric tensor in the supergroup U (N1|N2) with N1

and N2 being large enough:

s
(
eμ
) = 1

2

(
tr diag

(
eμ
))2 + 1

2 tr diag
(

e2μ
)
. (2.27)

Then, after the replacement, we find that the supersymmetric Schur polynomial can be decomposed
into the original one by

s
(
eμ|eν) = s

(
eμ
)+ s

(
eμ
)

s
(
eν
)+ s

(
eν
)
. (2.28)

Also, let us define the vacuum expectation value in the grand canonical ensemble,

[sY ]GC
k,M(z) =

∞∑
N=0

〈sY 〉k (N , N + M) zN , (2.29)

as for the partition function. We further normalize it by the ABJM grand canonical partition function:

〈sY 〉GC
k,M(z) = [sY ]GC

k,M(z)

[1]GC
k,0(z)

. (2.30)

Then, we can prove

〈sY 〉GC
k,M(z) = det

(
Hp,q(z)

)
1≤p≤M+r
1≤q≤M+r

, (2.31)

where Hp,q(z) is given by

Hp,q(z) =
{

Elp (1 + zQ P)−1 E−M+q−1, for 1 ≤ q ≤ M,

zElp (1 + zQ P)−1 QEaq−M , for 1 ≤ q − M ≤ r.
(2.32)
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We have to explain the meaning of each expression. First of all, we regard (Q)ν,μ and (P)μ,ν as
matrices and (E j )ν as a vector with continuous indices μ and ν. Again, as explained below (2.5),
we multiply matrices with continuous indices by the integrations (1.2). So each expression is a
scalar constructed by the inner product of two vectors with many matrices sandwiched in between.
The explicit forms of (Q)ν,μ, (P)μ,ν , and (E j )ν are

(Q)ν,μ = 1

2 cosh ν−μ
2

, (P)μ,ν = 1

2 cosh μ−ν
2

,
(
E j
)
ν

= e

(
j+ 1

2

)
ν
. (2.33)

Now let us turn to the integers l p and aq . In short, these integers are the pth leg length and qth arm
length, which appear in the Frobenius symbol (a1a2 · · · ar ; l1l2 · · · lr+M). The Frobenius symbol for
the ABJM U (N |N ) case is found by drawing the diagonal line for the Young diagram and counting
the number of boxes horizontally or vertically for the arm length or the leg length, respectively. For the
general ABJ case with U (N |N + M), all we have to do is to shift the diagonal line by M boxes. Note
that, after shifting the diagonal line, the numbers of arm and leg lengths are no longer equal. Hence,
we cannot consider the determinant of the square matrix. We can restore, however, the equality of
the numbers by considering the “inverse” arm length as well. The subscript −M + q − 1 appearing
in (2.32) is nothing but this inverse arm length. Therefore, we can say that the lower expression in
(2.32) comes from the usual arm length while the upper one is from the inverse arm length. (See,
e.g., Refs. [38,52] for figures explaining the Frobenius symbol).

Before explaining how the expression is obtained, let us first see how this formula is beautiful and
useful simultaneously. First let us consider the ABJM case N2 = N1 with a non-trivial insertion of
the loop operator. Then, we find that M = 0 and the upper expression of Hp,q is absent. If we further
use the same formula for the hook Young tableau,〈

s(aq ;l p)

〉GC

k,0
= zElp (1 + zQ P)−1 QEaq , (2.34)

then, as a corollary of the above formula, we can express the vacuum expectation value of a gen-
eral loop operator as the determinant of those of the hook loop operators constructed by taking all
combinations of the arm and leg lengths from the original Young tableau [52]:

〈sY 〉GC
k,0(z) = det

(
〈s(aq ;l p)〉GC

k,0(z)
)

1≤p≤r
1≤q≤r

. (2.35)

Note that, without taking the vacuum expectation value, this is a classical mathematical result stating
that the character itself satisfies the same type of formula,

sY = det
(

s(aq ;l p)

)
1≤p≤r
1≤q≤r

, (2.36)

which is called the Giambelli formula. Hence, in other words, what we have shown is that we can
put to each loop operator in the Giambelli formula (2.36) the normalized vacuum expectation values
in the sense of the grand canonical ensemble. Namely, the normalized vacuum expectation values
defined in (2.30) are Giambelli compatible.

Next, let us turn to another special case of the partition function with no insertions sY = 1. Then,
we find

〈1〉GC
k,M(z) = det

(
EM−p (1 + zQ P)−1 E−M+q−1

)
1≤p≤M
1≤q≤M

, (2.37)
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Table 2. An explanation of how the E Q P E term in the expansion of E(1 + zQ P)−1 E in (2.32) appears.

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
u1+v1

1
u1+v2

· · · 1
u1+vN2

...
...

...
1

uN1 +v1

1
uN1 +v2

· · · 1
uN1 +vN2

v
N2−N1−1
1 v

N2−N1−1
2 · · · v

N2−N1−1
N2

v
N2−N1−2
1 v

N2−N1−2
2 · · · v

N2−N1−2
N2

...
...

...

v1 v2 · · · vN2

1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
v1+u1

1
v2+u1

· · · 1
vN2 +u1

...
...

...
1

v1+uN1

1
v2+uN1

· · · 1
vN2 +uN1

v
N2−N1−1
1 v

N2−N1−1
2 · · · v

N2−N1−1
N2

v
N2−N1−2
1 v

N2−N1−2
2 · · · v

N2−N1−2
N2

...
...

...

v1 v2 · · · vN2

1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

since l p = M − p in this case. If we regard the trace operators without endpoints as closed strings
and the meson operators E Q P Q P · · · E , which appear by expanding the expression in (2.32), as
open strings, this formula seems to state that the fractional M2-branes can be constructed from the
open strings. This is reminiscent of the fact that classical D-brane solutions can be studied from
open-string field theory [53].

So far we have stressed the beauty of this formula. It is also interesting to note that this formula
is actually very useful. In Sect. 3.2, we shall see that the special form of the density matrix is very
useful for computing the powers of the density matrix. Our formula in (2.32) also shows the same
computability. Namely, due to the expression of the meson operator, we can start with a vector E and
multiply matrices Q and P to it one after another without difficulty.

Let us now turn to the explanation of how this expression is obtained. First let us explain the formula
for the partition function 〈1〉GC

k,M(z). Again, our starting point is the matrix model (1.1). Instead of
the Cauchy determinant formula (2.2), let us consider the following formula:

det

⎛⎜⎜⎜⎝
(

1

ui + v j

)
1≤i≤N1
1≤ j≤N2(

v
N2−N1−i
j

)
1≤i≤N2−N1

1≤ j≤N2

⎞⎟⎟⎟⎠ =
∏N1

i< j

(
ui − u j

)∏N2
i< j

(
vi − v j

)∏N1,N2
i, j

(
ui + v j

) . (2.38)

This is a natural combination of the Vandermonde determinant and the Cauchy determinant, which
reduces to the Vandermonde determinant for the special case of N1 = 0, while reducing to the
Cauchy determinant (2.2) for N2 = N1. This formula can be proved by starting with the Cauchy
determinant (2.2) with matrix size N2 × N2 and sending vN2 , vN2−1, . . . , vN1+1 to infinity one after
another.

Then, after plugging in ui = exi and v j = ey j , we can reproduce the measure of the ABJ matrix
model. Let us see how we can put the measure into a Fredholm determinantal expression as in the
case of the ABJM matrix model. Since the substitution can be done at any stage, for simplicity, let
us stick to the variables ui and v j .

Since in the partition function (1.1) we have two factors of this measure, we have two determinants
(see Table 2). So there are a lot of terms in expanding the determinant. Suppose we pick up one
element from the lower (N2 − N1)× N2 submatrix of the first determinant, say vN2−N1−1

1 . This
means that, in this term, we are not allowed to pick up the other elements in the same row or in the
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same column. This element vN2−N1−1
1 is associated with the integration of the variable v1. To finish

the integration of v1, we need to decide which element to pick up from the first column in the second
determinant.

If we pick up one element from the lower (N2 − N1)× N2 submatrix of the second determinant,
say vN2−N1−2

1 , this again means that we do not pick up the others in the same row or column. Then,
we do not have other elements depending on the variable v1 and we can complete the v1 integration.

Instead, suppose that in the second determinant we pick up another element from the upper N1 × N2

submatrix, say (v1 + u1)
−1. Again, there are no other elements associated with the variable v1 and

we can integrate v1. But now we are associated with the integration of another variable u1. To finish
the u1 integration, we need to pick up one element from the first row of the first determinant, say
(u1 + v2)

−1. (Note that we can no longer pick up the element (u1 + v1)
−1 from the first determinant,

because we already pick up vN2−N1−1
1 ). Then, we are associated with the integration of the other

variable v2.
Now, in the second determinant, if we choose from the lower (N2 − N1)× N2 submatrix, then

we finish the v2 integration. But if we choose from the upper N1 × N2 submatrix, we need to finish
another integration of the variable u.

We can continue this process and find a term consisting of a series of matrix multiplications, with
two monomials of v on the two ends connected by products of (v + u)−1(u + v)−1. After plugging in
ui = exi and v j = ey j , essentially v on the two ends turns into E while (v + u)−1(u + v)−1 becomes
Q P . This can be regarded as an open string with Chan–Paton factors on the two ends. Of course,
there are also contributions from the pure traces without ends. Now the only problem is to count the
combinatorial factor correctly. The answer can be found more efficiently by preparing a mathematical
formula for the matrix multiplications. This was done in Ref. [38].

For the vacuum expectation values of the loop operator, we can use another beautiful formula [54],
stating that the supersymmetric Schur polynomial can be expressed as a ratio of two determinants,
where the determinant in the denominator is nothing but the Vandermonde–Cauchy determinant
that we encountered in (2.38). Hence, by combining the supersymmetric Schur polynomial with the
measure, we find that one of the two determinants appearing in the measure of the partition function
is replaced by another determinant. Hence, we can repeat the process explained in Table 2 and find
the formula (2.31).

3. Non-perturbative corrections at large N

After presenting the Fermi gas formalism for the ABJ(M) matrix model in the previous section, we
can now start our study of the large-μ expansion for the grand potential. For simplicity, we will
mainly focus on the ABJM case. Since the expression as the partition function of a Fermi gas system
already suggests a statistical-mechanical method, we first start with the WKB � expansion. After
that, we turn to the study of the exact values of the partition function at finite N and see how these
exact values lead to the numerical study of the grand partition function. Finally, we compare with
the free energy of the topological string theory and see how the exact expression is found.

3.1. WKB expansion

As emphasized in Refs. [32,55], the Fermi gas formalism enables us to study the M-theory regime
(1.32). One useful way to study this regime is to perform the semiclassical (or WKB) expansion
(1.34) of the grand potential J̃k(μ) = log�k(μ) around k = 0 in the limit μ → ∞.

18/35

 at D
eutsches E

lektronen Synchrotron D
E

SY
 on D

ecem
ber 8, 2015

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 

http://ptep.oxfordjournals.org/


PTEP 2015, 11B104 Y. Hatsuda et al.

For example, the leading-order term J̃ (0)(μ) in the WKB expansion is easily found by replacing
Trρ	 in (2.15) by the classical phase space integral [32]:

J̃ (0)(μ) =
∞∑
	=1

(−1)	−1

	
e	μ
∫

dqdp

2π

(
1

2 cosh q
2

1

2 cosh p
2

)	

= eμ

4
3 F2

(
1

2
,

1

2
,

1

2
; 1,

3

2
; e2μ

16

)
− e2μ

8π2 4 F3

(
1, 1, 1, 1; 3

2
,

3

2
, 2; e2μ

16

)
. (3.1)

From the large-μ behavior of the hypergeometric functions in the above expression,

J̃ (0)(μ) = 2μ3

3π2 + μ

3
+ 2ζ (3)

π2 + 2

3π2

(
−6μ2 + 6μ+ 6 − π2

)
e−2μ

+ 1

2π2

(
−36μ2 − 66μ+ 25 − 6π2

)
e−4μ + O

(
e−6μ

)
, (3.2)

one can see that the perturbative part of J̃ (0)(μ) is indeed a cubic polynomial in μ. The higher-order
correction of the WKB expansion can be systematically computed by the method of Wigner transfor-
mation [32], or the semiclassical analysis of the thermodynamic Bethe ansatz (TBA) equation [35].
It turns out that the coefficients Ck and Bk,0 in (1.13) do not receive corrections higher than O(k1)

and O(k3), respectively. On the other hand, the constant Ak in (1.13) receives corrections of all orders
in k.

We can continue this process to higher and higher � corrections and reproduce the Taylor expansion
of the functions a	(k) and b	(k) in (1.38) up to a certain large order of k. The coefficient of the
membrane instanton was first obtained in this way [32,35].

3.2. Exact values of partition function at finite N

To fully study the instanton expansion, let us start the computations of the exact values of the partition
function at finite N . The density matrix is of the form

ρ (q1, q2) = E (q1) E (q2)

M (q1)+ M (q2)
. (3.3)

This type of integration kernel is quite ubiquitous and appears from time to time in modern physics.
In the context of light-cone string field theory [56], the so-called Neumann coefficients, representing
the overlap between the one-string state and the two-string state, take this form. From the integrability
viewpoint, this form has a close relation to the TBA equation and was studied in Ref. [57].

Among other things, this expression of the density matrix implies that we can compute the powers
of the density matrix without much difficulty. To explain the computation, we first rewrite (3.3)
schematically as

{M, ρ} = E ⊗ E, (3.4)

if we regard ρ, M , and E as a symmetric matrix, a diagonal matrix, and a vector with continuous
indices, respectively. Then, by studying the commutator [M, ρn] for even n or the anti-commutator
{M, ρn} for odd n, we find

ρn(q1, q2) =
n−1∑
m=0

(−1)m
(ρm E) (q1)

(
ρn−1−m E

)
(q2)

M (q1)− (−1)n M (q2)
. (3.5)

19/35

 at D
eutsches E

lektronen Synchrotron D
E

SY
 on D

ecem
ber 8, 2015

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 

http://ptep.oxfordjournals.org/


PTEP 2015, 11B104 Y. Hatsuda et al.

Table 3. The first few exact values of the partition function of the ABJM matrix model. See Ref. [22] for
more exact values.

Z1 (1) = 1

4
, Z1 (2) = 1

16π
, Z1 (3) = −3 + π

64π
, Z1 (4) = 10 − π2

1024π2
,

Z2 (1) = 1

8
, Z2 (2) = 1

32π2
, Z2 (3) = 10 − π2

512π2
, Z2 (4) = 24 − 32π2 + 3π4

49 152π4
,

Z3 (1) = 1

12
, Z3 (2) = −3 + π

48π
, Z3 (3) = 9 + 108π − 64

√
3π

5184π
,

Z4 (1) = 1

16
, Z4 (2) = −8 + π2

512π2
, Z4 (3) = −8 − 32π + 11π2

8192π2
,

Z6 (1) = 1

24
, Z6 (2) = 54 − 5π2

5184π2
, Z6 (3) = 189 + 192

√
3π − 125π2

186 624π2
.

Table 4. The first few non-perturbative terms of the grand potential of the ABJM matrix model obtained from
the numerical study. See Refs. [22,23] for more terms.

J np
1 =

[
4μ2 + μ+ 1/4

π2

]
e−4μ +

[
−52μ2 + μ/2 + 9/16

2π2
+ 2

]
e−8μ + O (e−12μ

)
,

J np
2 =

[
4μ2 + 2μ+ 1

π2

]
e−2μ +

[
−52μ2 + μ+ 9/4

2π2
+ 2

]
e−4μ + O (e−6μ

)
,

J np
3 = 4

3
e− 4

3μ − 2e− 8
3μ +

[
4μ2 + μ+ 1/4

3π2
+ 20

9

]
e−4μ − 88

9
e− 16

3 μ + O
(

e− 20
3 μ
)
,

J np
4 = e−μ +

[
−4μ2 + 2μ+ 1

2π2

]
e−2μ + 16

3
e−3μ +

[
−52μ2 + μ+ 9/4

4π2
+ 2

]
e−4μ + O (e−5μ

)
,

J np
6 = 4

3
e− 2

3μ − 2e− 4
3μ +

[
4μ2 + 2μ+ 1

3π2
+ 20

9

]
e−2μ − 88

9
e− 8

3μ + O
(

e− 10
3 μ
)
.

Note that this formula shows that, instead of multiplying the matrices directly, we can pick up a vector
E and multiply ρ by it one after another, which is much easier.

Using this method, in Ref. [22] we obtained the exact values of the partition function up to
(k, Nmax) = (1, 44), (2, 20), (3, 18), (4, 16), (6, 14). See Table 3 for a few examples. By now, with
some small technical progress, we believe that we can proceed to more exact values. See Ref. [39]
for many exact values of the ABJ partition function.

3.3. Grand potential

After obtaining many exact values, we can now proceed to studying the exact coefficient of the total
non-perturbative effects [22]. The results are given in Table 4. Since our analysis contains some
guesswork, we shall spell out the full details, so that the reader can judge the accuracy for herself.
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Table 5. Mathematica code for studying the coefficients of non-perturbative effects.

Z={1/16,1/512-1/(64*Pi^2),11/8192-1/(1024*Pi^2)-1/(256*Pi)};
(*Add as many exact values as possible*)
$MaxExtraPrecision=300;
Xi[w_]:=Exp[(ga1) w+(al2 mu^2+be2 mu+ga2) w^2];
(*Add higher-order terms w^3, w^4, ... similarly when necessary*)
k = 4; c[k_]:= 2/(Pi^2 k); b[k_]:= 1/(3 k) + k/24;
a[k_]:= If[EvenQ[k], -(Zeta[3]/(Pi^2 k)) \

- 2/k Sum[m (k/2 - m) Log[2 Sin[(2 Pi m)/k]], {m,1,k/2-1}], \
-(Zeta[3]/(8 Pi^2 k)) + k/4 Log[2] \
- 1/k Sum[(k + (-1)^m (2 m - k))/4 (3 k - (-1)^m (2 m - k))/4 \
Log[2 Sin[(Pi m)/k]], {m,1,k-1}]];

J0 = c[k]^(-1/3) AiryAi[c[k]^(-1/3) (n-b[k])];
J1 = CoefficientList[CoefficientList[Series[Xi[w],{w,0,2}],w][[2]],mu]. \

Table[(-1)^m D[c[k]^(-1/3) AiryAi[c[k]^(-1/3) (n + 4/k - b[k])],{n,m}], \
{m,0,0}] // Simplify;

J2 = CoefficientList[CoefficientList[Series[Xi[w],{w,0,2}],w][[3]],mu]. \
Table[(-1)^m D[c[k]^(-1/3) AiryAi[c[k]^(-1/3) (n + 8/k - b[k])],{n,m}], \
{m,0,2}] // Simplify;

(*Define higher instanton terms J3, J4, ... similarly when necessary*)

Let us pick up the case of k = 4 for concreteness. Suppose that we already know the expansion
structure of the non-perturbative effects:

J np
4 (μ) = γ1e−μ +

(
α2μ

2 + β2μ+ γ2

)
e−2μ + γ3e−3μ + · · · . (3.6)

By rewriting the large-μ expansion of the grand potential in terms of the large-N expansion of the
partition function, we find

Z4(N ) = Z (0)4 (N )+ Z (1)4 (N )+ Z (2)4 (N )+ · · · , (3.7)

where each term is given by

Z (0)4 (N ) = eA4C
− 1

3
4 Ai

[
C

− 1
3

4 (N − B4)

]
,

Z (1)4 (N ) = γ1eA4C
− 1

3
4 Ai

[
C

− 1
3

4 (N + 1 − B4)

]
,

Z (2)4 (N ) =
(
α2∂

2
N − β2∂N + γ2 + γ 2

1

2

)
eA4C

− 1
3

4 Ai

[
C

− 1
3

4 (N + 2 − B4)

]
, (3.8)

with B4 = B4,0 (1.14). Note that the argument of the first non-perturbative effect Z (1)4 (N ) is shifted
by 1 because of the exponent factor e−μ in J np

4 (μ) (3.6). In the second non-perturbative effect
Z (2)4 (N ), instead of the polynomial of μ, we replace μ by −∂N . Note also that the lower non-
perturbative effects come from the expansion of the exponential function in the grand canonical
partition function.

Now let us fit the exact values against this function form. We first prepare as many exact values
as possible. In the following analysis, we shall utilize all the values with Nmax = 16 in Ref. [22]. As
long as we know the command “FindFit” in Mathematica, it is by no means difficult to obtain the
fitted result. Still, the reader may find it useful to directly apply the given program, so we also list the
program in Table 5. Note that, since we are only interested in integral k, we have used the expression
for Ak in Ref. [41]. Then, if we ask Mathematica what is the best fit for γ1 by

FindFit[Log[N[Z,50]],a[k]+Log[Abs[J0+J1]],{ga1},n],
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we find

γ1 = 0.987 217 181 038 943 116 089 720 984 763 427 159 164 382 260 644 01.

So we have 2% accuracy for γ1. We are sure that the reader is not satisfied with this. For example, it
is not possible to distinguish π from

√
10 with 2% accuracy. But it is not difficult to roughly estimate

the errors of this value. Although we have exact values for the partition function, since we neglect
higher orders of the non-perturbative corrections in the grand potential, at each order we always have
an error of e−4μ/k . After plugging in the stationary condition N = ∂ J/∂μ = Ckμ

2 (1.35), we find
the errors

e−4μ/k = e−2π
√

2N/k 	 10−6, (3.9)

with k = 4 and N 	 10. Since we have quadratic coefficients at the next order, the errors are actually
much bigger than we expect. But anyway, we can improve our results by including higher instantons:

FindFit[Log[N[Z,50]],a[k]+Log[Abs[J0+J1+J2]],{ga1,al2,be2,ga2},n].

Now the result is much improved:

γ1 = 1.000 000 031 595 205 703 112 645 819 864 097 712 750 672 969 024 25. (3.10)

We can continue this fitting to higher and higher orders. For example, for

FindFit[Log[N[Z,50]],a[k]+Log[Abs[J0+J1+J2+J3+J4+J5]], \

{ga1,al2,be2,ga2,ga3,al4,be4,ga4,ga5},n]

we find

γ1 = 1.000 000 000 000 000 000 000 000 121 199 386 553 425 131 382 322 92. (3.11)

However, if we go to the sixth non-perturbative corrections, the accuracy suddenly drops:

γ1 = 1.000 000 000 000 000 003 438 828 680 298 020 743 302 548 140 694 23. (3.12)

The reason is that, although we only find roughly 25-digit accuracy, we have already used up the
50 digits in the exact values of the partition function. Therefore, we improve by preparing 100 digits
from the beginning:

FindFit[Log[N[Z,100]],a[k]+Log[Abs[J0+J1+J2+J3+J4+J5+J6]], \

{ga1,al2,be2,ga2,ga3,al4,be4,ga4,ga5,al6,be6,ga6},n].

Then we find

γ1 = 0.999 999 999 999 999 999 999 999 999 999 999 998 548 662 756 071 218 409 269 666 · · · .
(3.13)

When we extend to the eighth non-perturbative corrections, an error message appears again:

Failed to converge to the requested accuracy or precision within

100 iterations.

But we can increase to 150 digits:

FindFit[Log[N[Z,150]],a[k]+Log[Abs[J0+J1+J2+J3+J4+J5+J6+J7+J8]], \

{ga1,al2,be2,ga2,ga3,al4,be4,ga4,ga5,al6,be6,ga6,ga7,al8,

be8,ga8},n]
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to avoid the error message and find

γ1 = 0.999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 994 165 937 · · · .
(3.14)

Note that we should end our fitting at this point. We have only 16 pieces of data and if we fit up to
the eighth non-perturbative corrections we use up all the data and it does not make sense to fit with
more unknowns. We believe that we can go a little further to find more data with good machines.
However, at present, let us be satisfied with more than 50-digit accuracy. After we are satisfied with
the first coefficient, we can simply plug in the correct value and proceed to finding coefficients of
higher orders.

Here we pick up the k = 4 case and explain our numerical study and the guesswork in detail. We
hope we have convinced the reader with the high accuracy that we can reach at this point.

3.4. Comparison with topological strings

Note that each term of the grand potential obtained in Table 4 has exactly the same exponent as the
worldsheet instanton e− 4m

k μ. Hence we can follow the proposal from Ref. [42] to compare the result
with the free energy of the topological string theory on local P

1 × P
1, which describes the worldsheet

instantons. We find that the numerical values of the first instanton for k = 3, 4, 6 and the values of the
second instanton for k = 6 match the prediction in (1.37) coming from F top in (1.16). However, if
we trust this expression and extrapolate to smaller k, we find that the match does not hold any more.
Besides, the expression is divergent at k = 1, 2 for the first instanton and k = 1, 2, 4 for the second
instanton. In fact, this divergence gives us an important clue to understanding the whole instanton
expansion. The exponents of the terms containing divergences are e−2	μ, which are nothing but
the exponents of the membrane instantons. Besides, if we look at the behavior of the worldsheet
instantons around the divergence, we find

lim
k→2

d1(k)e
− 4μ

k =
[

4

π2 (k − 2)2
+ 4 (μ+ 1)

π2 (k − 2)
+ 2μ2 + 2μ+ 1

π2 + 1

3

]
e−2μ,

lim
k→4

d2(k)e
− 8μ

k =
[
− 8

π2 (k − 4)2
− 4 (μ+ 1)

π2 (k − 4)
− 2μ2 + 2μ+ 1

2π2 − 7

6

]
e−2μ, (3.15)

whose finite part already looks close to the expression of the numerical values. In this way, we can
expect that the membrane is also divergent at these points so that, in total, the divergences cancel
among themselves. From Table 4 we also observe that the divergence of the membrane instanton
e−2	μ for an odd integer 	 comes from even integers k, while the divergence for an even integer 	
comes from all integers k. Also, the coefficients of the membrane instanton e−2	μ for odd 	 vanish at
odd integers k. Analytically continuing to non-integral k, from this observation, we can expect that the
	th membrane instanton is given by a periodic function. In particular, if we assume that it is expressed
by using the trigonometric function tan πk	

4 and simple rational functions, we can determine the
function form of the membrane instantons by combining the results of the WKB expansion. In fact,
this is how (1.38) was first determined in Refs. [22,35].

Note that there are no other exponents e
−
(

4m
k +2	

)
μ

labeled by (m, 	) in (1.24) that have the same
contribution as the first and second membrane instantons e−2μ and e−4μ, except the pure worldsheet
instantons. For the higher instanton effects, however, the situation is more difficult. The reason is that
besides the worldsheet instantons and the membrane instantons we need to consider the bound states
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between them, e
−
(

4m
k +2	

)
μ

(m �= 0, 	 �= 0) [23,35]. We do not have clues to them from any system-
atic expansions because the bound state effects are detected neither from the ’t Hooft expansions nor
from the WKB expansions. The only clue is the pole cancellation mechanism, as we have explained
in Sect. 1.5 and used above to fix the coefficients of the membrane instantons. Luckily, we find that,
if we assume that the bound state effects fm,	(μ) are expressed in terms of the corresponding world-
sheet instantons dm(k) and the corresponding membrane instantons a	(k) as (Am,	(k) = −2mπ2

a	(k)) [23]

fm,	(μ) = dm(k)
∑

(p1,...,p	)

Ap1
m,1(k)A

p2
m,2(k) · · · Ap	

m,	(k)

p1!p2! · · · p	!
, (3.16)

with the sum running over all of the allowed partitions (p1, . . . , p	) of 	 satisfying p1 + 2p2 + · · · +
	p	 = 	, we can observe a general cancellation among the worldsheet instantons, the membrane
instantons, and their bound states, whose finite results coincide beautifully with the numerical studies.
This observation implies that, if we redefine the chemical potential μ as

μeff = μ+ 1

Ck

∞∑
	=1

a	(k)e
−2	μ, (3.17)

or, more explicitly, as in (1.23) for integral k,

◦ the bound state effects are absorbed into the worldsheet instanton effects.

Besides, we have a bonus from this redefinition:

◦ the quadratic polynomial coefficients of the membrane instantons are reduced into linear
polynomials,

J (μeff) = C

3
μ3

eff + Bμeff + A +
∞∑

m=1

dm(k)e
− 4mμeff

k +
∞∑
	=1

(̃
b	(k)μeff + c̃	(k)

)
e−2	μeff,

(3.18)
and the coefficients c̃	(k) are expressed in terms of b̃	(k) as

c̃	(k) = −k2 ∂

∂k

b̃	(k)

2	k
. (3.19)

3.5. Topological string theory

In the above several subsections, we have seen that the WKB expansion, computation of the parti-
tion function, and the pole cancellation mechanism can determine all of the worldsheet instantons,
the membrane instantons, and their bound states order by order. It is not clear, however, what the
coefficient functions of higher orders generally look like. In this subsection, we shall explain a fur-
ther relation between the ABJ(M) matrix model and topological string theory and determine the
coefficient functions systematically.

We shall sketch a relation between the membrane instanton and the refined topological string theory
in the NS limit after recapitulating the relation between the worldsheet instanton and the (unrefined)
topological strings. The large-N expansion of the free energy in the ABJ(M) theory is formally
equivalent to the free energy of pure Chern–Simons theory on RP

3, which in turn is related to the
topological string theory on a non-compact Calabi–Yau manifold, local P

1 × P
1 [42]. It turns out that

the chemical potential in the ABJ(M) Fermi gas is a natural variable in the large-radius expansion
on the topological string side. The Kähler parameters of two P

1 in local P
1 × P

1 are identified with
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the chemical potential as in (1.21), and they are exchanged under the Seiberg-like duality of the ABJ
theory. Surprisingly, it was found in Ref. [24] that the non-perturbative corrections in the ABJ(M)
matrix model are completely determined by the refined topological string on local P

1 × P
1, and the

precise relation is given by (1.16). The first term in (1.16) represents the worldsheet instanton, which
corresponds to the standard topological string. This part of the correspondence (1.16) is the usual
story for the genus expansion of matrix models, and it can be checked, in principle, to any order of the
string coupling gs = 2/k. The non-trivial part of the proposal in Ref. [24] is the second term in (1.16),
namely, the correspondence between the membrane instantons in the ABJ(M) matrix model and the
refined topological string in the NS limit. Note that in (1.16) the pole cancellation mechanism works
within every BPS multiplet. Namely, we can check that the combination of Ftop and FNS in (1.16)
with common BPS indices N d

jL , jR
does not contain any divergences. Also, we stress that not only the

singular part but also the finite part are correctly reproduced from (1.16).
As discussed in Refs. [58–60], the refined topological string theory in the NS limit is closely related

to the quantization of mirror curves of local Calabi–Yau manifolds. One can easily see that the Fermi
surface H(x, p) = 0 of the ABJM Fermi gas corresponds to the mirror curve of the diagonal local
P

1 × P
1. More generally, the mirror curve of local P

1 × P
1 is given by

H (x, p) = −1 + ex + ep + z1e−x + z2e−p = 0. (3.20)

We can “quantize” this curve with [x, p] = i�, where the Planck constant � of this quantum-
mechanical system is unrelated to the previous Planck constant in the Fermi gas system and is
determined later. The corresponding difference equation for the wave function �(x) is(−1 + ex + z1e−x)� (x)+� (x + �)+ z2� (x − �) = 0, (3.21)

whose formal solution

� (x) = exp

[
1

�
S (x, �)

]
, S (x, �) =

∞∑
n=0

Sn (x) �
2n, (3.22)

gives the “quantum periods”

�A =
∮

A
d S, �B =

∮
B

d S. (3.23)

Using the quantum periods, we can compute the free energy in the NS limit [60].
After identifying the two moduli zI (I = 1, 2) in (3.20) and � as

zI = e− TI
gs , � = 2π i

gs
= π ik, (3.24)

we find that the membrane instanton coefficients a	(k) and b	(k) appear as the coefficients of the
quantum A-period �A and the quantum B-period �B , respectively, in the small-zI expansion. Let
us see explicitly how this works in the following.

We shall explain how to compute the quantum periods systematically up to any desired order in
the small-zI expansion. As discussed in Refs. [24,60], it is convenient to introduce V (x) by

V (x) = � (x + �)

� (x)
. (3.25)
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Then (3.21) is rewritten as

V (X) = 1 − X − z1

X
− z2

V
(
Xq−1

) , (3.26)

where we have also introduced X = ex and q = e�. One can easily solve (3.26) in the small-zI

expansion as

V (X) = 1 − X − z1

X
+ qz2

X − q
− q3z1z2

X (X − q)2
+ q4z2

2

(X − q)2
(
X − q2

) + O
(

z3
)
. (3.27)

Once we know V (X), the quantum periods are obtained by rewriting the contour integral as a sum
of residues:4

�A (z1, z2; q) = −ResX=0
1

X
log

[
V (X)

1 − X

]
,

�B (z1, z2; q) = −
∑
j≥0

ResX=q j
log (X)

X
log

[
V (X)

1 − X

]
. (3.28)

The quantum A-period is given by

�A (z1, z2, q) = z1 + z2 +
(

4 + q + q−1
)

z1z2 + 3

2

(
z2

1 + z2
2

)
+ O

(
z3
)
, (3.29)

which defines a quantum version of the mirror map

1

2
log

QI

zI
= �A (z1, z2, q) . (3.30)

Here QI is related to the “effective” Kähler parameter T eff
I by

QI = e− T eff
I
gs , (3.31)

which takes care of the effect of the bound states. Inverting the quantum mirror map, we can express
zI in terms of QI :

− 1

2
log

zI

QI
= Q1 − Q2

1

2
+ Q2 − Q2

2

2
+ q2 − q−2

q − q−1 Q1 Q2 + O
(

Q3
)
. (3.32)

On the other hand, the quantum B-period is related to the derivative of the free energy in the NS
limit as

Q2
∂

∂Q2
FNS (Q1, Q2) = −2

�

[
2�even

B (z1, z2; q)−�A (z1, z2, q)2
]
,

Q1
∂

∂Q1
FNS (Q1, Q2) = −2

�

[
2�even

B (z2, z1; q)−�A (z1, z2, q)2
]
, (3.33)

where �even
B denotes the even-power part of the quantum B-period in the � expansion. Calculating

the residue in (3.28), the right-hand side of (3.33) is easily found to be

1

�

[
2�even

B (z1, z2; q)−�A (z1, z2, q)2
]

= q + 1

q − 1
z2 + (q + 1)3

(q − 1) q
z1z2

+ 5 + 8q + 5q2

2
(
q2 − 1

) z2
2 + O

(
z3
)
. (3.34)

4 Here we will use a slightly different normalization of quantum periods as compared to Ref. [24].
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Rewriting the above expression in terms of Q I using the quantum mirror map (3.32) and integrating
(3.33), we finally arrive at

FNS (Q1, Q2, q) = −q + 1

q − 1
(Q1 + Q2)−

(
q2 + 1

)
4
(
q2 − 1

) (Q2
1 + Q2

2

)
−
(
q2 + 1

)
(q + 1)

q (q − 1)
Q1 Q2 + O

(
Q3
)
. (3.35)

Plugging this expression into (1.16), we can show that our formula (1.16) reproduces all the known
results of the membrane instantons and the bound states in the ABJ(M) matrix model [24,39].

From this non-trivial correspondence in the ABJ(M) theory between the membrane instantons and
the refined topological string theory in the NS limit, in Ref. [24] it is further conjectured that this
correspondence holds for general local Calabi–Yau manifolds, and the combination of Ftop and FNS

appearing in (1.16) gives a non-perturbative completion of the topological string theory. However,
there is one subtle point: we have to turn on an extra discrete B-field along the worldsheet instanton
part in order for the pole cancellation to work for the general case. See Ref. [24] for details.

In Refs. [61–65], it is argued that this correspondence between the membrane instantons and the
refined topological string theory in the NS limit in the ABJ(M) theory can be naturally understood
from the “dual” perspective, by studying the spectral problem (2.16) of the Hamiltonian in the Fermi
gas system.

4. Related topics

In the previous section, we have reviewed the progress in understanding the partition functions of
the ABJM theory and the ABJ theory. Here we shall explain some progress after finding the exact
instanton expansion of the ABJ(M) partition function.

4.1. Exact results with supersymmetry enhancement

As seen before, the large-μ expansion of the grand potential is completely determined by the refined
topological string theory on local P

1 × P
1 [24]. However, it is not technically easy to compute the

higher-order instanton corrections in practice. It is well known that, at k = 1, 2, the supersymmetry
of the ABJM theory is enhanced from N = 6 to N = 8. It is natural to expect that for these levels
some simplifications happen. In fact, as we will see below, the large-μ expansion of the grand poten-
tial drastically simplifies at k = 1, 2 [66]. We can write this down in a closed form in terms of the
topological string free energy.

Let us first write down the results in Ref. [66]. The complete large-μ expansion of Jk(μ) at k = 1, 2
is exactly given by

J1(μ) = 1

16π2

(
F0 (t)− t F ′

0 (t)+ 1

2
t2 F ′′

0 (t)

)
+ 3μ

8
+ log 2

4
+ F1 (t)+ FNS

1 (t) ,

J2(μ) = 1

4π2

(
F0 (t)− t F ′

0 (t)+ 1

2
t2 F ′′

0 (t)

)
+ μ

4
+ F1 (t)+ FNS

1 (t) . (4.1)

We need to explain the notations in these equations.5 The functions F0(t) and F1(t) are the standard
genus zero and genus one free energies on local P

1 × P
1, respectively. These are computed in the

5 We denote the effective Kähler modulus T eff by t in the current case with fixed k. Since there are two Kähler
moduli t1 and t2 in local P

1 × P
1, the free energy is in general a function of these two parameters (t1, t2). Here

we denote the free energy in the diagonal slice by Fg(t, t) = Fg(t).
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standard way for the special geometry. The function FNS
1 (t) is the first correction to the refined

topological string free energy in the NS limit. The Kähler modulus t is related to the complex modulus
z by the mirror map

t = − log z + 4z 4 F3
(
1, 1, 3

2 ,
3
2 ; 2, 2, 2; −16z

)
. (4.2)

The only difference between k = 1 and k = 2 is the identification of z and μ:

z = e−4μ for k = 1, z = e−2μ for k = 2. (4.3)

At large radius point (t → ∞), the genus zero free energy is expanded as

F0 (t) = t3

6
− 2ζ (3)+ 4e−t − 9

2
e−2t + O

(
e−3t

)
. (4.4)

Eliminating t by (4.2), one easily finds

F0 (t)− t F ′
0 (t)+ 1

2 t2 F ′′
0 (t) = −1

6 log3 z − 2ζ (3)+ 4
(

log2 z − log z + 1
)

z

− 1
2

(
52 log2 z − 2 log z + 9

)
z2 + O

(
z3
)
. (4.5)

The free energies F1(t) and FNS
1 (t) are exactly given by

F1 (t) = − 1

12
log [64z (1 + 16z)] − 1

2
log

[
K (−16z)

π

]
= − log z

12
+ 2

3
z − 10

3
z2 + O

(
z3
)
,

FNS
1 (t) = 1

12
log z − 1

24
log (1 + 16z) = log z

12
− 2

3
z + 16

3
z2 + O

(
z3
)
, (4.6)

where K (z) is the complete elliptic integral of the first kind. Plugging these results into (4.1), one
can check that the large-μ expansion in Table 4 is correctly reproduced.

In the following, we briefly explain how to obtain these results. Here we focus on the case of k = 2.
What we should do is to take the limit k → 2 in the general formula (1.16). As mentioned before,
both the worldsheet instanton correction and the membrane instanton correction are divergent in this
limit, but the sum of them is finite. Since we already know that the divergences are canceled, we can
focus on the finite parts. Let us see the worldsheet instanton part in (1.16). It is easy to see that the
finite part comes only from g = 0, 1. The g = 1 part is trivial. In the limit k → 2, each term of the
g = 0 part is

lim
k→2

(
2 sin

2πw

k

)−2

e− 4dwμ
k ∼ e−2dwμ

12π2w2

(
3 + π2w2 + 6dwμ+ 6d2w2μ2

)
, (4.7)

where ∼ means that we extract only the finite part. Therefore, the finite part of the worldsheet
instanton correction is finally given by

1

4π2 F inst
0 (t)− t

4π2 ∂t F inst
0 (t)+ t2

8π2 ∂
2
t F inst

0 (t)+ F inst
1 (t) , (4.8)

where F inst
g (t) is the instanton part in Fg(t). We have used the relation t = 2μeff at k = 2. Similarly,

as shown in Ref. [66], the finite part of the membrane instanton correction is finally given by

1

8

(
∂t1 − ∂t2

)2
F0 (t1, t2) |t1=t2=t + FNS,inst

1 (t) = − t

8
+ μ

4
+ FNS,inst

1 (t) . (4.9)

From these results, one obtains the exact expressions (4.1).
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Once the modified grand potential is known, one can compute the grand partition function. As seen
before, the grand potential is constructed from Jk(μ) by (1.8), with the subscript M dropped here.
Let us plug the result (4.1) into (1.8). For k = 2, using

eJ2(μ+2π in) = eJ2(μ) exp
[
π in2τ + 2π in

(
ξ − 1

12

)]
, (4.10)

with

τ = 2i

π
F ′′

0 (t) , ξ = 1

2π2

(
t F ′′

0 (t)− F ′
0 (t)

)
, (4.11)

we find that the grand partition function is expressed in terms of the elliptic theta function by

�2(μ) = eJ2(μ)ϑ3
(
ξ − 1

12 , τ
)
. (4.12)

Similarly, the grand partition function at k = 1 is given by

�1(μ) = eJ1(μ)ϑ3

(
ξ

2
− 7

24
, τ

)
. (4.13)

We stress that these expressions are exact. All the instanton corrections are encoded through the
topological string free energies F0(t), F1(t), and FNS

1 (t).
There are two important consequences of the exact expressions (4.12) and (4.13). One is that one

can know the eigenvalues of the density matrix ρ as the zeros of �k(μ). In fact, it is well known
that the theta function has an infinite number of zeros. It was confirmed in Ref. [66] that the zeros
in (4.12) and (4.13) precisely reproduce the eigenvalues of ρ at k = 1, 2, numerically computed
by the exact quantization condition in Ref. [61]. The other important point is that it is possible to
analytically continue�k(μ) from μ → ∞ to μ → −∞. The continuation is essentially the modular
S-transformation τ → τ̄ = −1/τ . In Ref. [66], this analytic continuation was indeed performed, and
then the small-eμ expansion was computed. The results perfectly agree with the exact values of the
partition function in Table 3 (see Refs. [21,22] for more values)!

Furthermore, in Refs. [66,67], the exact results for ABJM at k = 4 and ABJ at (k,M) = (2, 1)were
presented. These also reproduce the known results perfectly. Note that at k = 4 the supersymmetry is
no longer enhanced. Nevertheless, we can write down the grand potential in a closed form. Moreover,
in Ref. [67], exact functional equations among the grand partition functions in the ABJ matrix model
were found. These relations are quite similar to the so-called quantum Wronskian relations [68]. This
seems to imply an interesting connection to integrable models.

4.2. ’t Hooft expansion and Borel resummation

Throughout this paper, we focus on the large-N expansion in the M-theory limit (1.32). As already
seen in Sect. 1.4, it is also interesting to consider the ’t Hooft limit (1.26). In this limit, the ABJM
theory is dual to type IIA string theory on Ad S4 × CP

3, and the large-N expansion is related to
the genus expansion in this string theory. In the ’t Hooft limit, the free energy admits the large-N
expansion (1.27). The genus g free energy Fg(λ) can be exactly computed by using the holomorphic
anomaly equation order by order [25]. Then, the genus expansion (1.27) turns out to be an asymptotic
series for a given finite λ. The standard way to resum such formal asymptotic series is known as Borel
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resummations. For the genus expansion (1.27), let us define its Borel transform by

BF (ζ ) =
∞∑

g=2

Fg(λ)

(2g − 3)!
ζ 2g−2. (4.14)

Remarkably, as observed in Refs. [29,69], this Borel transform has no singularities on the positive
real axis. Therefore, the following Borel summation is well defined:

SF (N , λ) = N−2 F0(λ)+ F1(λ)+
∫ ∞

0

dζ

ζ
e−ζBF (Nζ ) . (4.15)

The crucial conclusion in Ref. [69] is that this Borel summation does not reproduce the exact values
of F(N , λ). There is an exponentially suppressed correction between them:

Fexact (N , λ)− SF (N , λ) = O
(

e−πN
√

2/λ
)
. (4.16)

This correction is nothing but the membrane instanton correction! It is not captured by the pertur-
bative 1/N expansion. Thus, in the ’t Hooft limit, the perturbative genus expansion and its Borel
resummation are insufficient to reconstruct the exact free energy. We need to take into account the
membrane instanton corrections in addition to the perturbative expansion. The incorporation of such
membrane instantons in the Borel analysis is an open problem. As pointed out in Ref. [29], such
corrections should be related to complex singularities of the Borel transform (4.14).

As reviewed in this paper, we already know the complete M-theoretic expansion of the free energy
with the help of the topological string. It should, in principle, be possible to use this result to under-
stand the membrane instanton corrections to the genus expansion. Interestingly, it was observed in
Ref. [70] that the Borel resummation (4.15) already contains a membrane instanton-like correction
in the M-theoretic expansion from the Fermi gas result. It would be interesting to reveal a quantitative
relation between the ’t Hooft expansion and the M-theoretic expansion.

4.3. Other theories

In Sect. 4.1, we have seen special cases with supersymmetry enhancements. Here, let us see how the
analysis can be generalized to other theories of M2-branes. In particular, when we are interested in
gaining the universal property of the M2-branes, it is very important to generalize to as many theories
as possible. We shall list some results obtained recently.

First, let us give a viewpoint from quiver diagrams, where the vertices represent the gauge group
factor U (N ) and the edges represent the bifundamental matters between the two connected factors.
Then, the quiver diagram of the ABJM theory is nothing but the Dynkin diagram of affine A1 or Â1.
Then, it is natural to ask about a general matrix model associated with Âr .

It has already been found in Ref. [32] that, if the density matrix is Hermitian, the perturbative part
of any Âr matrix model is summed up to the Airy function with the coefficient C given explicitly in
Refs. [32,71]. The other coefficients are not easy to obtain in general. In Ref. [40] it was found that, as
long as the quiver diagram associated with the levels is a repetition of an original quiver diagram, we
can express the grand potential of the new quiver diagram completely in terms of that of the original
diagram. In Ref. [72] we restricted ourselves to the N = 4 case [73], where the Chern–Simons levels
are given by

ka = k

2
(sa − sa−1) , sa = ±1, (4.17)
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and found that the explicit form of the coefficient B is given by

B = B(0)

k
+ kB(2), (4.18)

with

B(0) = −1

6

[
� (p)

�(q)
+ �(q)

� (p)
− 4

�(q)� (p)

]
,

B(2) = 1

24

[
�(q)� (p)− 12

(
� (q, p, q)

�(q)
+ � (p, q, p)

� (p)
− � (q, p)� (p, q)

�(q)� (p)

)]
. (4.19)

Here we adopt the notation of �(L), with L denoting an alternating sequence of q and p, whose
definition is given by

�(q) =
m∑

a=1

qa, � (p) =
m∑

a=1

pa,

� (q, p) =
∑

1≤a≤b≤m

qa pb, � (p, q) =
∑

1≤a<b≤m

paqb,

� (q, p, q) =
∑

1≤a≤b<c≤m

qa pbqc, � (p, q, p) =
∑

1≤a<b≤c≤m

paqb pc. (4.20)

Note that the condition in each sum can be stated as the requirement that we choose qa and pa out
of a sequence q1, p1, q2, p2, . . . , qm, pm by respecting its ordering.

Furthermore, if we restrict ourselves to the special N = 4 (q, p) model where the q edges with
sa = +1 and the p edges with sa = −1 are separated, we find that the coefficient A is given in terms
of that of the ABJM matrix model by [72]

A = 1
2

(
p2 AABJM (qk)+ q2 AABJM (pk)

)
. (4.21)

A similar proposal was made in Ref. [41] for the so-called M-theoretic matrix model [55,74], whose
Fermi gas Hamiltonian is related to that of the (q, 1) model by a canonical transformation [75]. In
Ref. [76], the membrane instanton of the (q, p) model was studied and a systematic expansion in
terms of the derivative operators acting on the classical expression was found. Using the results, we
were able to study the (2, 2) model in full detail [77] and find that the non-perturbative effects are
given by the refined topological string theory, as in the ABJM matrix model (1.12). It still awaits
to identify the Calabi–Yau manifold whose BPS index describes the (2, 2) model, but we observed
that the diagonal Gopakumar–Vafa invariant is nothing but that of the D5 del Pezzo surface. It is
interesting to find that the correspondence between the topological string theory and the matrix
model coming from the superconformal theory is not restricted to the case of the ABJM theory.
In Ref. [78], the non-perturbative effects were further explored. Based on the systematic WKB anal-
ysis and exact computations in various special cases, analytic expressions of the first few membrane
instanton corrections and worldsheet instanton corrections were conjectured for general (q, p) and k.

The generalization, however, is not restricted to the Â quiver. In Ref. [79], an ÂD̂ Ê sector was
specified by requiring that the long-range force among the eigenvalues vanishes. It is then interesting
to ask whether there is a Fermi gas formalism for these series and whether the perturbative corrections
are still summed up to the Airy function. In Refs. [80,81], we continue to study the D̂ quiver. We
find that, after using the Cauchy determinant (2.2) in a different way, we can still give a Fermi gas
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formalism for this type of theory and prove the previous proposal [82]:

C = 1

π2k

(
1

σ0σ1
+

r−1∑
m=1

sm − sm+1

σmσm+1
+ sr

σrσr+1

)
, (4.22)

with the variables σm given as

σm =
r∑

n=1

(|sm − sn| + |sm + sn|)− 4|sm |, σ0 = 2 (r − 2) , σr+1 = 2
r∑

n=1

|sn|, (4.23)

by the reordered s,

0 ≤ |sr | ≤ |sr−1| ≤ · · · ≤ |s1|. (4.24)

As in the N = 4 case of the Â quiver, here we can also restrict ourselves to the case of uniform sa ,
sa = 1, and find that the coefficient A is consistent with

A = 1

2

(
AABJM (2rk)+ r2 AABJM (2 (r − 2) k)

)
, (4.25)

up to O(k5), which is very similar to (4.21) for the (q, p)model. We hope that all these findings will
finally be completed to a more systematic understanding.

5. Summary and further directions

In this review article, we have explained carefully the quantum effects of the ABJM theory and the
ABJ theory, where the partition function and the vacuum expectation values of the half-BPS Wilson
loop can be studied in full detail, including both the perturbative and non-perturbative corrections.

We have seen many interesting properties. For example, the leading large-N behavior of the free
energy is given by ∼ k

1
2 N

3
2 . The perturbative 1/N corrections are summed up to an Airy function.

The non-perturbative corrections include the effects interpreted as worldsheet instantons and those
interpreted as membrane instantons. In general, the coefficients of both instantons and their bound
states can be divergent at certain values of k, though as a whole the divergences in these instanton
effects cancel among themselves and the final result is completely finite.

Also, in Sect. 4.3, we have seen that many generalizations enjoy these interesting properties. Hence,
one further direction is to generalize our analysis to as many theories as possible and identify this
class clearly. It is surprising to find that the superconformal Chern–Simons theory of the D̂ quiver
can also be formulated with the Fermi gas system. It is then natural to ask whether we can apply the
same method even for the Ê quiver or its cousins with orthogonal or symplectic groups [74,83]. We
hope that through these studies we will end up with a universal understanding of the M2-branes.

Next, let us also stress that, after a large number of numerical analyses, our large-μ expansion of
the grand potential (or large-N expansion of the partition function) remains a conjecture. It would,
of course, be interesting to see how this conjecture is proved with a mathematical method. The study
explained in Sect. 4.1 would be a first attempt in this direction.

Finally, let us come back to a more physical question. Our original motivation in studying the
ABJM partition function was to understand the M2-branes. After seeing all of the perturbative and
non-perturbative corrections, it is reasonable to come back to ask what we have learned about M2-
brane interactions. Unfortunately, we do not have much to say about this at this stage, except that
some of the results can be rederived from the supergravity [84–86]. However, we believe that the
beautiful structure that we find will be a guide towards a clearer understanding of the N

3
2 law or even

a better description of the mysterious M-theory.
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