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Abstract

In this thesis we discuss the phenomenology of the gravitino LSP scenario at the large
hadron collider (LHC) experiment. We concentrate on a long-lived stau NLSP which
gives rise to a prominent signature in the LHC detector as a ‘slow muon’. We discuss
the production channels and compute the cross sections for direct production via the
Drell-Yan process. On this basis we claim a conservative estimation of the discovery
potential for this scenario at the LHC.



Zusammenfassung

In dieser Arbeit diskutieren wir die phänomenologischen Perspektiven eines Gravitino
LSP Szenarios am Large Hadron Collider (LHC). Wir konzentrieren unsere Betrachtun-
gen auf ein meta-stabiles Stau als das NLSP. Letzteres wird eine deutliche Signatur als
„langsames Myon“ aufweisen. Wir diskutieren die Produktionskanäle und berechnen die
Wirkungsquerschnitte für direkte Stau Produktion via Drell-Yan. Auf der Basis dieser
Berechnungen schätzen wir das Potential des LHC für eine 5σ-Entdeckung des Staus ab.
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1 Introduction

The history of developing supersymmetry theories has over time gone through different
stages with different aspects becoming the focus of the research. The original motiva-
tion of adopting the supersymmetry algebra to physics [42, 58, 69] might be primarily
supported by the pure esthetic aspect that it is the only external symmetry extension
of the Poincaré algebra with a non-trivial S-matrix [43]. That is of course a strong mo-
tivation for observing quantities of such a theory in general. But since it is clear that
supersymmetry is a candidate to cure the hierarchy problem, phenomenological research
is almost completely concentrated on the TeV scale supersymmetry, which is constrained
to provide this feature. This means that the superpartner masses in such a theory (since
supersymmetry obviously has to be a broken symmetry at accessible energy scales) are
somehow constrained to be roughly of order a few hundred GeV, but not much higher
than 1TeV.

Anyway, within this thesis our viewpoint is that of a TeV scale supersymmetry. So
we will take the hierarchy problem as a boundary condition. Nevertheless it is still a
purely theoretical condition, since the Higgs has not been discovered yet. On the other
hand, if we would assume the superpartner masses to be at a much higher scale, then
the LHC would be no experiment to discover supersymmetry anymore. So, in that sense
the theoretical condition has some overlap with the technical one.

Besides curing the hierarchy problem a second theoretically desired feature of su-
persymmetry is the unification of the gauge coupling at a high scale through quantum
corrections of the extended particle content [11]. Another motivation comes from cos-
mological concerns. The lightest supersymmetric particle (LSP) makes a natural dark
matter candidate [48, 39, 57]. Neutralino LSP scenarios have already been studied widely
over the past decade, whereas gravitino LSP scenarios have only recently moved into the
center of interest. So, it is natural to ask what signatures such a scenario would lead to
in the ongoing LHC experiment.

It is clear that the gravitino itself will not be detected directly nor will the gravitino
play a dominant role (if at all) in the production and decay processes of supersymmetric
particles at a collider. Thus, the signature of a gravitino LSP scenario is to be found
in the behavior of the other supersymmetric particles, especially the next-to-lightest
supersymmetric particle (NLSP). Within this thesis we concentrate on a stau NLSP that
is furthermore assumed to be long-lived. Such a particle will give rise to a prominent
collider signature. As a massive charged particle it will pass the detector and will be
recognized as a ‘slow muon’. Such scenarios have occasionally been discussed in the
literature [13, 35, 36, 47, 49]. The best current collider bounds on staus come from the
OPAL experiment at LEP which excludes masses below 98.0GeV and 98.5GeV for right-
and left-handed staus and smuons, respectively [64].

We will restrict ourselves to the direct production of staus via the Drell-Yan process
and give a detailed analysis of the quantities that are crucial for the discrimination of
staus from muons. Finally we will show how to claim a 5σ-discovery.

This thesis is organized as follows. In section 2 we will give a brief introduction to
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the supersymmetric Lagrangian and soft breaking terms. Although this work is about
a gravitino LSP scenario, we will not go into a detailed discussion of supergravity, since
this is not relevant for the collider signatures. Once we have assembled all the relevant
expressions, in section 3 we will frame our choice of scenario against the breaking models
and motivate our further considerations.

A diploma thesis marks the transition a student passes through when entering into the
business of current research. Hence, we present some main arguments that are specific to
this work in a rather detailed manner, such that it is comprehensible for other students
working on their diploma in the field of particle physics. Therefore in section 4 we give
a detailed derivation of the stau cross section via photon and Z at parton level from the
Lagrangian terms onwards. In section 5 we will then introduce the effects that take place
at hadron level, which are crucial ingredients when discussing the LHC. In section 6,
finally, we will display and discuss the results obtained by Monte Carlo generators.
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2 The supersymmetry Lagrangian

What is Supersymmetry? The SM and its Lagrangian are based on a few powerful
principles. These are renormalizability, invariance under the SU(3)C × SU(2)L ×U(1)Y
gauge transformations as well as invariance under the Poincaré transformations. The
latter is an external symmetry, that is it concerns spacetime. Its generators are of
bosonic nature, they are vector- and tensor-like.

Now, supersymmetry is a (unique) extension of the symmetries under which the
Lagrangian should be invariant. And its generators are of fermionic nature. Thus a
supersymmetry transformation turns a bosonic field into a fermionic field and vice versa.
Within the SM one cannot identify any of those boson-fermion-pairs. Hence, this sym-
metry requires us to double the particle content of the SM, giving each SM particles its
so called superpartner.

In this section we will motivate and write down the supersymmetric Lagrangian.
Our intention is not to give a reasonably complete derivation and discussion. Those are
already published in a variety of works [44, 4, 30, 45, 31, 60] including the much referred
to introduction by Martin [55] which we are following in this section. Our task here is
to assemble all the relevant expressions for later discussion.

As conventional in the business of supersymmetry we will employ the two-component
Weyl spinor notation for fermions. (Later on, for the calculation of cross sections we
will also use four-component Dirac spinors, but the fermions there will be just the SM
fermions in the initial state of collider experiments.) We will use the following short-hand
notation, in which the SM fermions are denoted as

Qi =
(
u

d

)
,

(
c

s

)
,

(
t

b

)
ui = u, s, t

di = d̄, c, b

Li =
(
νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

)
ei = e, µ, τ

(1)

where a fermion f is defined to fulfill(
f

f
†

)
=
(
fL
fR

)
(2)

which is again the well known four-component Dirac spinor. In this notation, for instance,
the kinetic and gauge terms for the leptons of the SM read

L = iL̄†i σ̄
µDµL

i + iē†i σ̄
µDµe

i , (3)

with the family index summed over and Dµ the covariant derivative for the SM gauge
interactions.
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The same structure is to be doubled in order to describe the superpartners of the
fermions, applying a tilde on all these fields, Q̃i, ũi, d̃i, L̃i, ẽi. These sfermions are scalars.
We will refer to the superpartner of the left-(right-)handed fermion as the left-(right-)
handed sfermion, although they obviously do not carry spin. The superpartners of the
gauge bosons g,W 0,W±, B0 are the spin-1/2 fermions g̃, W̃ 0, W̃±, B̃0, called the gaug-
inos. The Higgs sector is a bit more complicated. In contrast to the SM, supersym-
metry requires two complex Higgs isodoublets, one with hypercharge Y = +1/2, Hu =
(H+

u , H
0
u), giving masses to the up-type quarks and one with hypercharge Y = −1/2,

Hd = (H0
d , H

−
d ), giving masses to the down-type quarks and charged leptons.1 The

superpartners of the Higgs bosons are also spin-1/2 fermions, the higgsinos H̃u, H̃d.
These fields build up the particle content of the Minimal Supersymmetric Standard

Model (MSSM). Now, let’s sketch some of the steps on the way to a MSSM Lagrangian.

As long as we discuss unbroken supersymmetry, the Lagrangian is required to build a
renormalizable gauge-theory that is invariant under supersymmetry transformation.The
latter means that fermion and boson fields (and their interaction terms) transform in
such a way into each other under a supersymmetry transformation, that the Lagrangian
stays invariant at least up to a total derivative.

We are starting with the chiral supermultiplets. These contain a left-handed two-
component Weyl fermion ψ, its superpartner a complex scalar field φ (together building
the matter fields of the theory) and a complex auxiliary field F (that doesn’t propagate)
which is required in order to let the supersymmetry algebra close off-shell as well. The
free supersymmetric Lagrangian is

Lchiral
free = −∂µφ∗i∂µφi + iψ†iσ̄µ∂µψi + F ∗iFi , (4)

where the index i is to run over the different chiral supermultiplets, that are all gauge
and flavor degrees of freedom; spinor indices are suppressed.

The non-gauge interactions between the fields within a supermultiplet are again re-
stricted by the requirement that the corresponding Lagrangian terms are invariant under
supersymmetry transformation. These interactions are usually expressed by the super-
potential

W =
1
2
M ijφiφj +

1
6
yijkφiφjφk , (5)

in which the parameters M ij and yijk are restricted to be symmetric under the inter-
change of i, j, k (forthwith, we have dropped a supersymmetry-possible term linear in φ
that can only occur if φ is a gauge singlet, which will not appear in the MSSM with
minimal field content). The interacting Lagrangian then reads

Lchiral
int =

(
−1

2
W ijψiψj +W iFi

)
+ c.c. (6)

1Due to the structure of supersymmetry one Higgs doublet does not suffice to give masses to both
types. Another distinct requirement is due to the fact, that if there were only one Higgs field, its
superpartner would cause a gauge anomaly. But the existence of two isodoublets with Y = ±1 maintain
the anomaly cancelation, that takes place in the SM.
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in which W i and W ij denote the first and second derivative of W with respect to φi,
respectively. Putting together (4) and (6) one obtains purely algebraic equations of
motion for the auxiliary fields F :

Fi = −W ∗i , F ∗i = −W i , (7)

so that one can eliminate them in favor of expressions in the scalar fields. The chiral
supermultiplet Lagrangian thus reads

Lchiral =− ∂µφ∗i∂µφi + iψ†iσ̄µ∂µψi

−M∗ikMkjφ∗iφj −
1
2
M iny∗jknφiφ

∗jφ∗k − 1
2
M∗iny

jknφ∗iφjφk −
1
4
yijny∗klnφiφjφ

∗kφ∗l

− 1
2
M ijψiψj −

1
2
M∗ijψ

†iψ†j − 1
2
yijkφiψjψk −

1
2
y∗ijkφ

∗iψ†jψ†k ,

(8)

where we have organized the kinetic terms, the scalar potential and the fermion mass
plus Yukawa couplings to appear in the first, second and third line, respectively.

Since we are on the way to describe the possible Lagrangian terms for the MSSM we
also have to include the gauge interactions introducing the gauge supermultiplets and all
possible gauge interactions that couple gauge bosons and gauginos to the matter fields.
The gauge supermultiplet Lagrangian reads

Lgauge = −1
4
F aµνF

µνa + iλ†aσ̄µDµλ
a +

1
2
DaDa, (9)

where F aµν is the appropriate Yang-Mills field strength (the kinetic term of the vector
fields and their self interactions) and

Dµλ
a = ∂µλ

a + gfabcAbµλ
c (10)

is the covariant derivative, giving rise to the couplings within the gauge supermultiplets.
Again an auxiliary field is required to let the supersymmetry algebra close off-shell. Da

is a non-propagating real scalar field.
Now let’s look at the possible gauge couplings. To achieve gauge invariance one

has to replace the ordinary derivatives in the kinetic terms of the chiral supermultiplet
Lagrangian by the covariant derivatives

Dµφi = ∂µφi − igAaµ(T aφ)i
Dµφ

∗i = ∂µφ
∗i + igAaµ(φ∗T a)i

Dµψi = ∂µψi − igAaµ(T aψ)i

(11)

(where T a are the hermitian gauge group generators) causing the vector field Aaµ to couple
to the matter fields.
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Now, further gauge invariant Lagrangian terms are possible, which couple gauginos
and the auxiliary field to the matter fields:

−
√

2g(φ∗T aψ)λa , (12)
−
√

2gλ†a(ψ†T aφ) , (13)
g(φ∗T aφ)Da , (14)

where the coefficients are fixed by the requirement of supersymmetry (as one could imag-
ine, the supersymmetry transformation laws for the matter fields—which we don’t want
to display here—had to be modified when introducing these extra terms).

Considering the gauge supermultiplet Lagrangian plus (14) one observes that the
auxiliary field is again—as it was in the case of chiral supermultiplets—expressible purely
algebraically in terms of the scalar field, since it provides the equation of motion

Da = −g(φ∗T aφ) , (15)

and so, this term gives another contribution to the scalar potential. Thus the full super-
symmetry Lagrangian reads

Lsusy = iψ†iσ̄µDµψi −
1
2
M ijψiψj −

1
2
M∗ijψ

†iψ†j

+ iλ†aσ̄µDµλ
a

−Dµφ∗iDµφi − V (φ, φ∗)

− 1
4
F aµνF

µνa

− 1
2
yijkφiψjψk −

1
2
y∗ijkφ

∗iψ†jψ†k −
√

2g(φ∗iT aψi)λa −
√

2gλ†a(ψ†iT aφi) ,

(16)

where we have summarized the scalar potential terms in

−V (φ, φ∗) =

−M∗ikMkjφ∗iφj −
1
2
M∗iny

jknφ∗iφjφk −
1
2
M iny∗jknφiφ

∗jφ∗k − 1
4
yijny∗klnφiφjφ

∗kφ∗l

− 1
2
g2
a(φ
∗iT aφi)2 .

(17)

It is common to refer to the scalar potential terms coming from the superpotential as
the F -terms, we have arranged them to appear in the first line of the right hand side of
(17). Similarly, the term in the last line is called D-term. Appendix B displays all the
interaction vertices (16) gives rise to.

We want to emphasize that almost all of the couplings within the Lagrangian (16)
are determined by the already known SM parameters. These are the SM gauge coupling
constants g in (10), (11) and (12)-(14) that determine the interactions A↔ λ, A↔ φ, ψ
and λ↔ φ, ψ.
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Furthermore one observes that the Yukawa couplings in (16) coming from the super-
potential are restricted by gauge invariance

W i(T aφ)i = 0 , (18)

causing the coupling yijk to vanish for supermultiplet fields that transform in represen-
tations that can combine to form a gauge singlet (a similar argument holds for the mass
matrixMij). An additional restriction comes from R-parity [37] conservation. In contrast
to the SM, in the MSSM the mere demand of renormalizability does not automatically
preserve baryon number (B) and lepton number (L) and therefore does not prevent a
disastrous proton decay. The conservation of the multiplicative quantum number

PR = (−1)3(B−L)+2s (19)

fixes this problem (s is the spin).2 All SM particles (including fermions, gauge bosons
and the Higgs scalars) have even R-parity while all the others have odd R-parity. As a
consequence the SM particles only couple to an even number of supersymmetric parti-
cles3.

After all—returning to the argument—it turns out that each allowed Yukawa coupling
term in (16) includes exactly one Higgs supermultiplet field, that is a Higgs or higgsino.
Thus, due to the symmetry of yijk under the interchange of any of the three indices one
concludes that all the Yukawa couplings yijk are determined by the SM Yukawa couplings
that give masses to the fermions. If one writes down the corresponding superpotential,
applying the short hand notation (1), it reads

WMSSM = ũyuQ̃Hu − d̃ydQ̃Hd − ẽyeL̃Hd + µHuHd (20)

where the Yukawa couplings are expressed by the three 3 × 3 matrices in family space
yu, yd and ye. (A reasonable approximation is that only the third family component of
each matrix is important,

yf = diag(0, 0, yf ) , for f = u,d, e , (21)

due to the fact that the top quark, bottom quark and tau lepton are the heaviest
fermions compared to the others with equal gauge quantum numbers.) The only remain-
ing new parameter of the unbroken supersymmetry Lagrangian is the so called µ-term
µ = MHuHd = MHdHu .

2There are indeed interesting R-parity violating theories that are currently being discussed. In these
theories the amount of R-parity violation is strongly restricted by experiment, especially by the proton
lifetime. Although a small amount of R-parity violation would change the decay branching ratios of
the stau (and therefore provided different cosmological scenarios), it wouldn’t spoil our later results
concerning the direct stau production at colliders, anyway. Introductory reviews in the subject of R-
parity violation can be found in [17, 32].

3Within this thesis we will use the term supersymmetric particles interchangeably for particles with
odd R-parity. Similarly, we will refer to SM particles as those with even R-parity, despite the fact that
the second Higgs doublet is properly not included in the SM.
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This esthetical feature seems to switch completely if one introduces the necessary
breaking of supersymmetry. But this might only be true as long as we are not able
to determine the breaking mechanism. Verily there are several elaborated proposals of
breaking mechanisms available at the present state of research. And most of them suc-
cessfully reduce the 105 new parameters that a general supersymmetry breaking extension
(without any assumptions) brings along to the number of five parameters or so.

But let’s step back and get in touch with the supersymmetry breaking Lagrangian.
The unbroken supersymmetric Lagrangian naturally provides the feature that the qua-
dratic divergencies that appear in the quantum corrections to the Higgs squared mass (the
hierarchy problem) vanish in such a way that the fermion and boson contributions (within
a supermultiplet) cancel each other. (Therefore it is crucial that the (scalar)4-coupling is
the square of the corresponding Yukawa coupling, which is confirmed when looking at (16)
and (17).) We want to maintain this feature when introducing supersymmetry breaking.
The simplest way to achieve this without assuming any breaking mechanism is just to
add an appropriate effective supersymmetry breaking Lagrangian. In order not to spoil
the cancelation of quadratic divergencies it has to contain only dimensionful couplings
(of positive mass dimension) of order msoft which corresponds to the mass scale of the
supersymmetry particles. In such a Lagrangian loop corrections to the Higgs squared
mass are proportional to m2

soft and thus can only be logarithmically divergent (there is
no (scalar)4-coupling or Yukawa coupling in such an effective Lagrangian). The most
general Lagrangian of this form, that is compatible with gauge invariance and R-parity,
is

LMSSM
soft =− 1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)
−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd + c.c.

)
− Q̃†m2

Q Q̃− L̃†m2
L L̃− ũm2

u ũ
† − d̃m2

d
d̃
†
− ẽm2

e ẽ
†

− m2
HuH

∗
uHu −m2

Hd
H∗dHd − (bHuHd + c.c.) ,

(22)

where the couplings M1, M2, M3, au, ad, ae and m2
Q, m

2
L, m

2
u, m

2
d
, m2

e, m
2
Hu
, m2

Hd
, b

each are a priori independent parameters of order msoft and m2
soft, respectively. The bold

characters denote that the respective quantities are 3-matrices in family space (they
have to be hermitian in order to keep the Lagrangian real). We don’t put tildes on the
subscripts. Counting all introduced parameters of the broken MSSM, that are masses,
mixing angles and phases, the said number of 105 remains after absorbing trivial pa-
rameters that could be rotated away by redefining the fields. Together with the 19 SM
parameters it yields 124 parameters for the MSSM.

Anyway, even without assuming any dynamic principle as a breaking mechanism, it
would be sensible to make restrictions on the parameter space. Many of the entries of the
mass matrices can in principle give rise to large flavor-changing and CP-violating effects,
those effects have in experiment been found to be very small. Hence, one doesn’t want
to introduce additional flavor-changing and CP-violating contributions from the MSSM
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(at least those should be relatively small). Therefore one usually makes the following
assumption, sometimes called universality relations:

First, the sfermion mass matrices are flavor blind,

m2
F = m2

F1 , for F = Q,L,u,d, e . (23)

Second, only the (3, 3)-component of the trilinear couplings a should be non zero, and
thus proportional to the Yukawa couplings in the approximation (21),

af = A0 fyf , for f = u,d, e (24)

(that’s just a common notation, nevertheless the numerical value of ai33 has a priori
nothing to do with the one of the SM parameter yi33, since Ai0 is the free parameter).
Third, the Af0 and the Mi (bilinear gaugino terms in (22)) are assumed to be real.

With these assumptions one is able to reduce the parameters the broken MSSM
additionally introduces to 14.

Although these assumptions are sufficient they are not necessary. However, one can
find breaking-mechanisms that provide such restrictions ‘naturally’.

Sparticle masses and mixings

Like the mixing of the coupling and mass eigenstates of the gauge bosons in the SM, in
supersymmetry the higgsinos and electroweak gauginos mix with each other within the
same charge through electroweak symmetry breaking. The neutral higgsinos, H̃0

u and H̃0
d ,

and the bino B̃ and wino W̃ 0 mix to form the neutral mass eigenstates χ̃0
i , i = 1, . . . , 4 ,

the neutralinos. The charged higgsinos, H̃+
u and H̃−d , and winos W̃± mix to form two

sets of charged mass eigenstates χ̃±i , i = 1, 2.4 For the dominating contents in this sector,
one can formulate a rule of thumb [56]: If |µ| > M2 the lighter neutralinos and charginos
χ̃0

1, χ̃
0
2, χ̃
±
1 will be predominantly gaugino-like while the heavier ones χ̃0

3, χ̃
0
4, χ̃
±
2 will be

more higgsino-like. If |µ| < M2 it will be the other way around.
Similarly, in the case of scalars, in principle any scalars with same electric charge,

color charge and R-parity can mix with each other. First, let’s briefly treat the case of
Higgs scalars. The MSSM contains two complex SU(2)L-doublets, that are eight (real)
degrees of freedom. After electroweak symmetry breaking three of them are the massless
Nambu-Goldstone modes G0 and G±, which become the longitudinal modes of Z0 and
W±, when they have mass. After electroweak symmetry breaking there remain five Higgs
mass eigenstate fields. These are the neutral CP-even scalars h0 and H0 (where the latter
is defined to be the heavier one), the neutral CP-odd scalar A0 and the charged scalars
H+ and H−. Hu and Hd mix up in the following pairs: (h0, H0), (G0, A0) and (G±, H±).
This reads (

H0
u

H0
d

)
=
(
〈H0

u〉
〈H0

d〉

)
+

1√
2
Rα
(
h0

H0

)
+

i√
2
Rβ0

(
G0

A0

)
, (25)

4In the case of mass eigenstates the numeration is always defined to be increasing with increasing
masses.
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(
H±u
H∓∗d

)
= Rβ±

(
G±

H±

)
, (26)

whereR are four orthogonal rotation matrices, each characterized by one angle (displayed
in the subscript). 〈H0

u〉 and 〈H0
d〉 are the Higgs vacuum expectation values (VEVs) that

give masses to the up- and down-type fermions, respectively. The ratio of the VEVs is
traditionally called

tanβ = 〈H0
u〉/〈H0

d〉 . (27)

Now, let’s have a closer look at the sfermion mixings and masses. The situation of the
squarks and sleptons is quite similar. Therefore, we will restrict ourselves exemplarily
(and since this case is of importance for this work) to the latter case. The terms of the
full soft broken Lagrangian that give rise to sfermion masses are

Lmass
L = µ∗

(
ẽye L̃H

∗
u + c.c.

)
−
∣∣∣ye L̃Hd

∣∣∣2 − ẽye ẽ
†|H0

d |2

− 1
2
g2
Y

(
|H2

d |+ |H2
u|
)(
|̃e|2 − 1

2
|L̃|2

)
− g2

L

∑
a

(
H†dT

aHd +H†uT
aHu

)
L̃†T aL̃

− ẽae L̃Hd − L̃†m2
L L̃− ẽm2

e ẽ
†
,

(28)

where we have arranged the F -term contributions, D-term contributions and soft terms
to appear in the first, second and third line, respectively.

Now we can relate the parameters in the Lagrangian (that we have introduced and
discussed above) to the mixings and masses that appear in the mass matrix M2

L, storing
all the contributions to the mass:

Lmass
L = (ẽ∗L, ẽ

∗
R) M2

L

(
ẽL
ẽR

)
, (29)

where ẽ stands for ẽ, µ̃, τ̃ . In the sneutrino case only the LL-component of M2
L survives,

that’s why in what follows won’t grapple to find a notation that takes the sneutrino case
along explicitly.5 After the Higgs acquires a VEV the mass matrix takes the form

M2
L =

(
M2

eLL M2
eLR

M2
eLR M2

eRR

)
, (30)

with

M2
eLL = m2

L +
(
T 3
e −Qe sin2 θW

)
cos 2β m2

Z 1 +m2
τ diag(0, 0, 1)

M2
eRR = m2

e +Qe sin2 θW cos 2β m2
Z 1 +m2

τ diag(0, 0, 1)

M2
eLR = m2

τ (A0e − µ∗ cotβ) diag(0, 0, 1)

(31)

5Thus in (31) m2
L is consistently meant to denote only the T 3 = −1/2-components of the Isodoublets.

Nevertheless, the first line in (31) is also true for sneutrinos applying the respective T 3 = +1/2 entries
of m2

L and without the last term.
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where the entries of M2
L are matrices in 3×3 family space, that is what the bold characters

on the right hand side of (31) refer to (not to be confused with the bold character of
M2

L itself). mτ is the mass of the τ -lepton. In (31) we have already adopted (21) and
(24), that’s the reason for the appearance of mτ diag(0, 0, 1). The last term in each line
comes from the F -term. The second term in the first two lines comes from the D-term.
Finally, the first term in each line comes from the soft terms. Since M2

eLR is responsible
for the mixing between interaction and mass eigenstates, such a mixing depends strongly
on tanβ as well as on the trilinear coupling A0.

We said above that in principle all sleptons can mix with each other. True, formally
another choice of ae and ye could of course lead to substantial cross-family mass mixings.
But since the trilinear terms ae are constrained by experiment—as we stated above—it
is most likely that we have very small off-diagonal contributions for the first two families.

To obtain the mass eigenstates we have to perform a rotation via a unitary matrix
R that diagonalizes (30):

RM2
LR† =

(
me 2 0

0 me 1

)
. (32)

A unitary 2×2 matrix is determined by one angle and one phase and thus can be written
in the form

R =
(

eiϕ cos θe sin θe
− sin θe eiϕ cos θe

)
. (33)

The eigenvalues me 1,2 then read

me 1,2 =
1
2

{(
M2

eLL +M2
eRR

)
∓
√(

M2
eLL −M2

eRR

)2 + 4
∣∣M2

eLR

∣∣2} . (34)

And the mixing angle is

cos θe =
−
∣∣M2

eLR

∣∣2√∣∣M2
eLR

∣∣2 +
(
m2

e 2 −M2
eLL

)2 ,
sin θe =

M2
eLL −m2

e 2√∣∣M2
eLR

∣∣2 +
(
m2

e 2 −M2
eLL

)2 .
(35)

We want to emphasize that if one allows to choose the appearing parameters in (31)
independently, me 1,2 and θe are in principle three independent parameters.

The transformation of the stau eigenstates reads explicitly

τ̃1 = cos θeτ τ̃R + sin θeτ τ̃L ,
τ̃2 = cos θeτ τ̃L − sin θeτ τ̃R . (36)

For a vanishing mixing cos θeτ goes to 1 and τ̃1 = τ̃R.

Let us review what we have done so far. We have built up a supersymmetry preserv-
ing Lagrangian that is furthermore renormalizable, gauge invariant under the SM gauge
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group, R-parity preserving and it serves to describe the particle content of the SM (and
especially its gauge multiplet structure) under the premise of minimality (and thereby
introduces the superpartners). Furthermore we met the obvious experimental require-
ment of supersymmetry breaking under the theoretical restrictions from the hierarchy
problem by adding up soft mass terms for the superpartners. And we showed that fur-
ther experimental conditions could be met by applying the universality relations. Now,
as we said there still (after applying the latter) remain 14 new free parameters. So, as
long as there are no further experimental exclusions on the parameter space considering
supersymmetry means to consider a large variety of models. There are many possibilities
for the mass spectrum and thus for the decay channels and production rates of these
particles. So, in the present state of research it is sensible to restrict oneself to a more
or less specific choice of scenario.

There are basically two approaches to restrict oneself to a certain scenario. The first
is to classify a scenario on the basis of its signature in a specific experiment like the
LHC, these are experiment motivated scenarios. The second is to classify a scenario
by its underlying theoretical model. While in the first approach one has in principle to
scan the whole parameter space to cover all possible sources of a certain signature, in
the second approach one has a certain model in mind and tries to look for the different
incarnations in phenomenology it may lead us to. In most cases it is more or less a
mixture of both approaches, and we are no exception here. Therefore, in the next section
we will introduce some supersymmetry-breaking models, that lead to more or less specific
predictions. Although each model still allows a certain parameter space, there are some
basic features provided, for example what the LSP and the NLSP would most likely be.
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3 Choice of scenarios

In the last section we have followed a low-energy approach in just parameterizing the
desired breaking effects without worrying how such terms can be generated by a dynamic
mechanism. Let’s go one step back in our progression in building a viable supersymmetric
model and consider a generic supersymmetric Lagrangian of the form (16). It is easy
to show [55] that supersymmetry is spontaneously broken if the expectation value of at
least one of the auxiliary fields F and D does not vanish in the vacuum state (or some
higher energy metastable state which we live in). The corresponding mechanisms that
fulfill these conditions are called F -term and D-term breaking, respectively. But if one
tries to acquire these mechanisms solely within the particle content and interactions of
the MSSM, one gets into trouble. So it seems to be clear that one has to extend the
MSSM somehow.

We will concentrate our further considerations for the case of F -term breaking, since it
offers broader phenomenological prospects. The general ansatz in extending the MSSM
is to state that there is a breaking source sector that is distinct from the fields that
make up the MSSM. In most models the fields that reside in the breaking source sec-
tor are assumed to be neutral under the SM gauge group, why it is usually called the
’hidden sector’ (in contrast to the ’visible sector’ that hosts the MSSM). The scope of
breaking scenarios is to describe how supersymmetry breaking is communicated from the
source to the MSSM. A phenomenologically valid model could not be achieved only with
renormalizable interactions at tree level. The tree-level squared mass sum rules would
not allow the required overall mass-shift of the superpartners nor would there be any
(gaugino)2(scalar)-coupling (that is required to give masses to the gauginos at tree-level)
in a supersymmetric Lagrangian with the restrictions of section 2. Therefore we have to
contemplate scenarios in which the mediation between the two sectors arise radiatively or
by some effective field theory that describes the low-energy limit of a fundamental theory,
which we are not able to describe fundamentally yet. If the mediating interactions are
flavor-blind, we will furthermore fulfill the universality relations ‘naturally’.

No matter what the hidden sector might be, as long as it contains an auxiliary field F
that obtains a VEV to break supersymmetry, there is a massless Nambu-Goldstone mode
that belongs to the supermultiplet according to F . Due to the Goldstone-Theorem it is
characterized by the same quantum numbers as the generator of the (broken) symmetry.
Thus, the Nambu-Goldstone particle is a Weyl fermion (spin 1/2) that is neutral under
the SM gauge group. It is called the goldstino G̃. In principle the goldstino interacts with
all the particles in the visible sector but its interactions are suppressed by 1/〈F 〉. We
will see below of which order of magnitude 〈F 〉 can be for the different breaking models.
The interactions of the goldstino with all the other supermultiplets can be described by
the supersymmetric Goldberg-Treiman relation [38, 25, 53]

L eG
int = − 1

〈F 〉
jµα∂µG̃α + c.c. , (37)
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where jµα is the supercurrent that depends on all fermion-boson pairs

jµα = (σν σ̄µψi)α∂νφ∗i −
1

2
√

2
(σν σ̄ρσµλ†a)αF aνρ + . . . (38)

(F aνρ is the Yang-Mills field strength of the gauge group a).

The gravitino

Whatever the mediating interaction between the hidden and the visible sector may be,
there is one interaction that always couples to both sectors, since all particles carry en-
ergy6: gravity. The question is if this interaction is the dominant part in the mediation
between the two sectors or not. In case it is, one speaks of gravity-mediation (or some-
times Plack-scale-mediation) and we will give some characteristic features of it below,
when listing a few further breaking-models.

If dominant or not, to introduce gravity in the context of supersymmetry models
means to add another supermultiplet to the scene. And that might lead to phenomeno-
logical signatures. So, although gravity by itself is irrelevant for collider experiments,
the so called supergravity [59, 20] can principally provide very interesting aspects to our
predictions.

The new supermultiplet contains the graviton gµν (the spin 2 tensor field) and its
fermionic superpartner, the gravitino Ψµα , a Majorana vector field with spin 3/2 (there-
fore it carries both indices, a vector index µ and the spinor index α). As long as super-
symmetry is unbroken both fields are massless, but when there is an auxiliary field that
obtains a VEV to break supersymmetry, the gravitino gets a mass. This mechanism is
called the super-Higgs mechanism [26] for it is similar to the Higgs mechanism that take
place in the case of electroweak symmetry breaking. Let us explain this.

The only ingredient to the step from (ordinary) supersymmetry to supergravity is to
make the supersymmetry transformation local. In this sense supergravity appears as a
gauge theory of global supersymmetry, whose gauge field is the gravitino. Just as in the
case of electroweak symmetry breaking, the gauge field absorbs the Nambu-Goldstone
mode of the broken symmetry, which afterwards formally disappeared, but leave its
degrees of freedom to the gauge field. Hence, by absorbing the goldstino, the gravitino
gets its mass and inherits the spin 1/2 components. The gravitino now has 4 spin states.
The interactions of the spin 1/2 components can be approximately described by (37), thus
from the perspective of interaction with other particles we can interchangeably speak of a
gravitino or a goldstino since the spin 1/2- or goldstino-couplings are relatively enhanced
by a factor of M2

P/〈F 〉 with respect to the couplings of the spin 3/2-components that are
of gravitational strength. At tree-level the gravitino mass can be estimated to give [52]

m3/2 =
〈F 〉√
3MP

. (39)

6This simply is our notion of particles.

20



Supersymmetry scenarios from the model-building perspective

In the phenomenology of supersymmetry breaking models the lightest supersymmetric
particle (LSP) plays a key role. This is due to the fact that all supersymmetric particles—
once they are produced—will directly or indirectly (through cascades) decay into the
LSP. But since one considers models that provide an LSP that is neutral with respect
to electric and color charge or even to the whole SM gauge group (as is the case with
the gravitino) the direct decay from heavy supersymmetric particles into the LSP is
usually suppressed. Because of this—at least in the latter case of a gravitino LSP—the
next-to-lightest supersymmetric particle (NLSP) is of special interest, too.

We will now sketch some of the scenarios the different supersymmetry breaking models
will provide. All breaking mechanisms successfully reduce the parameter space of 105
supersymmetry parameters to a few parameters. These parameters fix the particles’
masses at the entrance scale (the scale of the supersymmetry breaking source). The soft
masses at the electroweak scale can then be omitted by evolving the particle masses via
the renormalization group (RG) equations.

In gauge-mediated supersymmetry breaking models [27, 29, 28] (see also [40, 51]) one
extends the MSSM by a messenger sector containing new chiral multiplets that take
part in the SU(3)C × SU(2)L × U(1)Y gauge group interactions of the MSSM and a
hidden sector that provides the supersymmetry breaking VEV 〈F 〉. The direct coupling
of the messenger particles to the hidden sector leads to a supersymmetry breaking mass
spectrum in the messenger sector. The messenger particles appear in the loop corrections
to the MSSM particle masses and so the messenger particles transmit supersymmetry
breaking to the visible sector by virtue of these virtual corrections.

Taken a characteristic scale Mmess for the masses of the messenger particles one can
estimate the order of magnitude of the induced soft masses by dimensional analysis. The
soft masses must vanish in the unbroken limit 〈F 〉 → 0 as well as in the limitMmess →∞
where the messenger particles are too heavy to give reasonable contributions to virtual
corrections. One obtains

msoft ∼
αa
4π
〈F 〉
Mmess

. (40)

Here, αa/(4π) is the one-loop factor for the gauge interaction a. If we take Mmess and
〈F 〉 to be of the same order of magnitude, the desired soft masses of a few hundred
GeV can be obtained by setting the supersymmetry breaking scale to

√
〈F 〉 ∼ 105 GeV.

Applying (39), this leads to a gravitino mass that is typically in the eV to keV range.
But, depending on the chosen parameters the gravitino mass can in principle also be
much higher. Nevertheless, in this scenario, the gravitino would reasonably be the LSP.
As the NLSP the lightest neutralino χ̃0

1 or the lighter stau τ̃1 are a possibility. From (40)
you can also see that gauge-mediation tends to separate the mass spectrum in strongly
coupled and electroweak coupled particles due to the larger value of αs. Figure 1 shows
a gauge-mediation spectrum with a τ̃ NLSP, the benchmark point SPS 7 [7]. The high-
scale parameters in gauge-mediation are Λ = 〈F 〉/〈S〉 (S is the corresponding scalar
field to F ), Mmess, tanβ, sgn (µ) and Nmess, the messenger index that parameterizes the
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structure of the messenger sector.

In gravity-mediated supersymmetry breaking models [22, 46] Planck-scale physics is the
source of supersymmetry breaking. Formally the mediation between the hidden sector
and the MSSM is applied by introducing non-renormalizable terms in the Lagrangian
where the couplings of negative mass dimension are of the order of powers of 1/MP. In
gravity-mediated breaking models the soft masses are of order

msoft ∼
〈F 〉
MP

, (41)

which can again be obtained by dimensional analysis. In contrast to gauge-mediation
one yields a much higher breaking scale to cover the desired order of msoft, roughly√
〈F 〉 ∼ 1011 GeV and the gravitino mass is comparable to msoft. So, the gravitino may

or may not be the LSP. Another candidate is the lightest neutralino. With some further
assumptions, at the Planck-scale the soft parameters take a particularly simple form:

m2
Q(MP ) = m2

L(MP ) = m2
u(MP ) = m2

d
(MP ) = m2

e(MP ) = m01 (42)

m2
Hu(MP ) = m2

Hd
(MP ) = m2

0 (43)
af = A0 yf , f = u,d, e , (44)

as well as
M1(MU ) = M2(MU ) = M3(MU ) = m1/2 (45)

for the bilinear gaugino terms, whereMU is the unification scale. With this the high-scale
parameters in gravity-mediation are m0, m1/2, A0, tanβ and sgn (µ).

As we stated above gravitational phenomena are always present, and supergravity
effects will give a contribution to the supersymmetry-breaking. Speaking of gauge-
mediation for instance only means that the virtual exchange of the messenger particles
dominates over the gravitational interaction between the hidden and visible sector. Any-
way, in principle there could be a mixture of both competing mechanisms and thus one
can achieve any gravitino mass in between the keV range and msoft. But of course, it is
fair to ask why the two distinct mechanisms should be roughly of the same order.

These are the most studied breaking models. Anyway, there are further very inter-
esting proposals.

In gaugino-mediation [50, 21] the supersymmetry breaking source is hidden by extra
dimensions. The matter fields of the MSSM live on a 3-brane that is spatially separated
(in the extra dimensions) from the brane that contains the breaking source. Whereas,
the gauge supermultiplet fields propagate in the bulk and therefore receive mass through
direct interaction with the source brane. The sfermion masses are absent at the input
scale but they are generated via loop corrections (thanks to the appearance of the gaugino
masses in the RG equation) at lower scales. In a large domain of parameter space a
gravitino LSP is favored. Its mass can be estimated to be m3/2 & 10GeV and it is
naturally accompanied by a stau NLSP [19]. Figure 1 shows a spectrum for the gaugino-
mediation model with m1/2 = 500GeV, tanβ = 10, µ > 0, m0 = A0 = 0.
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Figure 1: Left: Spectrum of a gauge-mediation scenario with Λ = 40TeV, Mmess =
80TeV, tanβ = 15, µ > 0 and Nmess = 3, this is the benchmark point SPS 7, taken from
[7]. Right: Spectrum of a gaugino-mediation scenario with m1/2 = 500GeV, tanβ = 10,
µ > 0, m0 = A0 = 0, calculated with SOFTSUSY [6]. Both scenarios provide a gravitino
LSP and a stau NLSP. The stau mass mixing angle is cos2 θeτ = 0.977 and 0.980 in the
case of gauge- and gaugino mediation, respectively.

Another model is the anomaly-mediated supersymmetry breaking [41, 65], where scalar
and gaugino masses arise at the quantum level from the superconformal anomaly. These
models predict very high gravitino masses (typically above msoft) and therefore cannot
provide for a gravitino LSP.

The gravitino-stau scenario from a collider experiment perspective

We have seen that different supersymmetry breaking models exist that provide for a
gravitino LSP. The possible gravitino masses cover the whole range from eV up to the
soft masses. A stau NLSP is possible in all these models. We will now investigate in the
collider signature of a gravitino-stau scenario.
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In a collider like the LHC scattering of SM particles is the origin of all further pro-
cesses. Hence, due to R-parity (or else due to the relative suppression of R-parity-
violating interactions) supersymmetric particles will (almost) always be produced in
pairs. Once they are produced they will almost certainly decay promptly into the
stau NLSP. This is because all supersymmetric particles, except the gravitino, share
the SM gauge interactions. And furthermore the masses of the SM particles that are
involved in the three-body decay of one supersymmetric particle into a lighter one, like
ẽ−L → e−r τ

+
L τ̃
−
R , are typically very light with respect to the involved supersymmetric

particles. Hence, those decays are usually kinematically not suppressed. There might be
exceptions. If, for instance, the slepton mass eigenstates ẽR, µ̃R and τ̃1 are degenerate to
within less than mτ , the three body decay (such of the form from above) are kinemati-
cally not allowed. In such a case ẽR, µ̃R and τ̃1 act as co-NLSPs. Such a situation could
be evoked by small values of tanβ. Another (exotic) exception would be a relatively light
stop t̃R, whose mass is less than meτ1 + mt. But we don’t know breaking models that
favor such situations.

Anyway, we will not discuss such scenarios, although in a co-NLSP scenario the co-
NLSP(s) would behave much like the NLSP and therefore such a scenario is qualitatively
similar to the one-NLSP case. To a first approximation the additional co-NLSPs just give
another degree of freedom to sum over when calculating the production cross section.

Now, once the sparticles have decayed into the NLSP, the NLSP by itself will decay
into the LSP, the gravitino. Of course as we showed above, the gravitino does not share
the SM gauge interactions and therefore this decay is suppressed according to the strength
of the goldstino coupling. Depending on the gravitino mass this decay can be prompt,
delayed or quasi-stable (that is, the stau is long-lived and will escape the detector). Ok, if
the decay is prompt the above argument that all heavy sparticles decay initially into the
NLSP may not be right anymore. Anyway, from (37) one can derive the decay width of a
sparticle X̃ decaying into its SM partner X and the gravitino (respectively its goldstino
components G̃).

Γ (X̃ → XG̃) =
m5eX

16π〈F 〉2
(

1−m2
X/m

2eX
)4
. (46)

By applying (39) to this formula and neglecting mX one obtains the decay length

d

cm
' 1.7× 1013 vγv

(m3/2

keV

)2 ( meτ
GeV

)−5
, (47)

where v and γv (the relativistic gamma-factor according to v) are expressed in the labo-
ratory frame. In figure 2 this expression is plotted for v = 0.6 (vγv = 3/4). It shows the
curves of equal decay length d in cm in the m eG-meτ1-plane. The characteristic dimension
of a LHC detector is roughly 103 cm.7 Thus, in the case the decay length is well below

7Since the staus will be detected in the muon chambers that are positioned cylindrically around the
inner detector, their way of flight through the detector depends on the scattering angle (the angle of their
motion with respect to the beam axis). The minimal distance from the interaction point to the muon
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Figure 2: Curves of equal decay length d in cm in the m eG-meτ1-plane, obtained from the
formula (47). v is set to the low velocity detection-limit of 0.6. Thus, since the velocity
distribution of staus typically increases with increasing velocity—as we will already see
in the next section—these values give a conservative estimation of m eG-meτ1-regions that
provide a long-lived stau. If the velocity is higher the curves have to be pulled down with
respect to the factor (vγv)−1/2.

103 cm the decay would most likely take place inside the detector.This will lead to inter-
esting phenomenology. The signature of such an event would be a high-p⊥ τ -lepton plus
missing energy.

In the region d & 104 cm roughly 90% (and in the region d & 105 cm roughly 99%) of
the staus would escape the detector. These staus are accessible to direct detection. As a
charged massive particle, the staus will be registered as ‘heavy muons’ in the detector.
In contrast to the muons, the staus will not be throughout ultrarelativistic at LHC-
energies and therefore will cause high ionization tracks and anomalously long time-of-
flight measurements. Moreover, the number of long-lived NLSP staus in an event will
always be even (although this doesn’t mean that one is always able to identify both
tracks, be it because of failing discrimination from the muons or insensitive detector

chambers (in the transverse direction) is 7.5m and 11m for the CMS and ATLAS detector, respectively.
The maximal distance (to the outermost corner where the barrel and end-caps come together) is ∼ 12m
and ∼ 16m, respectively [3, 1].
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regions—around the beam axis—or even that the staus are to slow, to match them with
the right bunch crossing). These are indeed very attractive phenomenological features.

Let’s have a closer look at the production channels of staus. We discuss electroweak
and strong production. First we consider the electroweak production. At a pp-collider
like the LHC quark-antiquark annihilation allows scalar-pair production via s-channel Z
and A (photon) or W± at lowest order (α2).

In the case of Z,A direct stau NLSP production is accessible. This is a unique feature,
since this production is independent of all the supersymmetry parameters but the stau
mass (and its mixing angle). Furthermore the two staus within one event always come
with opposite charge and their momenta will be strongly correlated (to the extent of the
smallness of higher order corrections when one adds up parton radiation, but we will still
see this feature in higher orders, as our later calculation will show up). This is a very
prominent collider signature, that gives us a (relatively) simple experimental access. Of
course, Z,A can also produce heavier particles that will afterwards decay into the τ̃1,
but these will surely not give much contribution. The production at hadron colliders via
Z,A in the s-channel is traditionally called Drell-Yan process.

In the production via W± it is unlikely to directly produce a τ̃1. This is because
the W± only couples to the τ̃±L and not to the τ̃±R .8 So, the production is suppressed
by sin2 θeτ , which is typically . 0.1 (in our exemplary scenarios whose spectra are shown
in figure 1 sin2 θeτ is even as small as ∼ 0.02). Furthermore the sneutrino will obviously
be heavier than the stau NLSP (in many models the ratio meντ /meτ1 is typically around
1.8 ∼ 2.0). So, these two facts will overcompensate the factor of ∼ 10 to which the
W±-coupling is typically larger than the Z-coupling. The processes W+ → τ̃+

2 ν̃τ and
W− → τ̃−2 ν̃τ by contrast could be roughly of the same order as the direct production of
τ̃1 via Z,A. The τ̃2 and ν̃τ each decays in a three-body decay into the τ̃1 and a τ . Due to
the charge asymmetry of the initial state particles (that are two protons), the production
via W+ is favored by a factor of roughly 3/2 with respect to the one via W−. This could
cause a small amount of charge asymmetry in the final state staus in the case that sin2 θeτ
is not too small (and therefore the intermediate state in the three-body decay is allowed
to be wino-like). However, in contrast to the case of Z,A the two staus in a single event
do not necessarily have opposite charge.

Let’s consider the strong production. Since the LHC is a proton-proton collider it
is clear that strong production processes are in principle favored. At leading order (α2

s)
squark-and gluon-pair production each allows a variety of diagrams that already includes
gg-annihilation, which is a dominant hadronic channel at the LHC.9 The squark-pair
could either be a squark-antisquark-pair of the same flavor (from a gluon in the s-channel,
a squark in the t- or u-channel or from the four-vertex gg → q̃+q̃−, see (146) ) or a
squark-antisquark pair of different flavor coming from a gluino in the t- or u-channel or
even a squark-pair of the same charge also coming from a gluino in the t- or u-channel.

8Remember, the supersymmetric counterpart of the allowed SM vertex W+ → τ+
R ντ is W+ → eτ+

L eντ .
9Section 5 will show that the the hadronic channel gg is about one to even two orders of magnitude

larger in the region of interest than qq̄, that is the only hadronic channel accessible for electroweak
production at lowest order.
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Figure 3: Exemplary cascade decay chains of strongly produced sparticles down to the
stau NLSP. Each vertex in these decay chains is of the form (147, 148). The chargino
changes the flavor, this is denoted with a prime.The last decay within these chains is
suggestively displayed as transmitted by the lightest neutralino. Here is the reason: A
chargino is either higgsino- or wino-like. While the higgsino-coupling is suppressed by
the relatively lightness of the SM partners of the involved sparticles, the wino coupling
to the τ̃1 is suppressed by sin2 θeτ . Thus, it is most likely to have a bino-like neutralino
in the last link of the decay chain. Now, in a stronger version of the rules of thumb, that
we formulated in the last section, one can state that in supergravity models the lightest
neutralino is most likely to be bino-like.

Additionally there are s-, t- and u-channel diagrams for squark-gluino production from
the hadronic channel qg. Figure 3 shows two exemplary decay chains starting from one
gluino and one squark. The production rate of staus via these cascade decays is only
suppressed by the largeness of the masses of the produced strongly interacting sparticles.

Just for completeness we want to mention that there is one more direct production
channel of τ̃1-pairs, the production via Higgs bosons. Of course, production via h would
be negligible, but the resonance of H could in principle appear in the invariant mass
spectrum of the staus. If sin2 θeτ is not so small this might possibly be measurable. Since
H only couples to left-right-handed stau-pairs, the direct production of a NLSP stau pair
is highly sensitive to sin2 θeτ . But we will not discuss this further, since the contribution
to the total cross section will be negligible, too.

Now, the strong production of staus via cascade decays is most likely to be the
dominant production channel. Nevertheless within a sensible range for the masses of the
sparticles a dominant electroweak production is not ruled out. (We will briefly discuss
this subject again in section 6.) The problem with cascade decays is, that if one makes
predictions for the stau cross sections, nearly all soft parameters enter this calculation.
Thus, to do such a calculation one either has to restrict oneself to a specific choice of
parameters or one has to scan the whole parameter space, which is truly not a trivial
task. Anyway, within this thesis we won’t specify on a certain choice of parameters, but
consider only the direct production of staus via the Drell-Yan process. Therefore our
predictions are fully independent of the parameter space concerning the particles that
are heavier than the NLSP. The only remaining parameters are meτ1 and θeτ . We know
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that the direct production via Drell-Yan is alway present. So in that sense our estimation
of the discovery potential of staus at the LHC gives a strict prediction, at worst a very
conservative one.

In the next section we will thoroughly derive the cross section formulas for the Drell-
Yan process, starting from the Lagrangian terms we’ve introduced in the last section.
We’ll do this first on the elementary level (that is as a scattering process of quarks). In
the then following section we will stick to the hadron level.
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4 Elemental stau production processes

In order to calculate the stau-pair production via the Drell-Yan process, in this section
we will derive the cross section for the elemental process qq̄ → Z,A → τ̃−τ̃+ from the
supersymmetry Lagrangian of section 2 at tree-level.

Thus, we need to have the Vertex function for Z,A → τ̃−τ̃+. Such a term is only
obtained from the scalar gauge coupling term that appears in the first term in the third
line of (16), see also (145). The relevant SU(2)L × U(1)Y covariant derivative reads in
terms of the mass eigenstate fields Zµ and Aµ

Dµ = ∂µ − i
g

cos θw
Zµ(T 3 −Q sin2 θw)− ieQAµ (48)

where g = e/ sin θw (and we have left out the W±µ -contributions). For the corresponding
Lagrangian term we obtain

−Dµφ∗iDµφi |A,Z→f̃Rf̃R, f̃Lf̃L

=− i(φ∗i∂µφi − φi∂µφ∗i)
(

g

cos θw
Zµ(I3 −Q sin2 θw) + ieQAµ

) (49)

yielding the Vertex function

f̃−

f̃+

A,Z

p

p′

= −i
(

g

cos θw
(T 3 −Q sin2 θw) + eQ

)(
p− p′

)µ
. (50)

In (49) and (50) T 3 and Q = T 3 + Y are meant to be the respective eigenvalues of the
corresponding SU(2)L × U(1)Y generators. The formulas hold for all sfermions f̃ . We
obtain Q = −1 and T 3 = −1/2 (0) for charged left-handed (right-handed) sleptons.

QED interaction

In a first step we consider the photon exchange, using the Aµ contribution of (50). This
contribution is independent of T 3. Hence, it holds either for left- or for right-handed
staus. Multiplied by the SM photon propagator, qq̄ → A-vertex and Dirac-spinors of the
incoming quarks, the matrix element reads

τ̃−

τ̃+

Aq

q̄ q

p

p′

k

k′

= ie(p− p′)µ −igµν
(k + k′)2

v̄(k′)(−ieeqγ
ν)u(k) . (51)
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Since in the end we will use the formulas in the context of the Drell-Yan process we assume
the spin orientation of the incoming quark-antiquark pair to be arbitrarily distributed.
Therefore we have to average over the quark spins by applying 1/4

∑
spins to the squared

matrix of the process:

1
4

∑
spins

|M|2 =
e4e2

q(p− p′)µ(p− p′)ν
(k + k′)4

1
4

∑
spins

v̄(k′)γµu(k) ū(k)γνv(k′)

=
e4e2

q

(k + k′)4
(p− p′)µ(p− p′)ν

1
4

tr[(6k′ −mq)γµ(6k +mq)γν ]

=
e4e2

q

(k + k′)4
(p− p′)µ(p− p′)ν {k′µkν + kµk′ν − gµν(k′ · k +m2

q)} .

(52)

(p − p′)µ(p − p′)ν is symmetric under the exchange of µν. Thus we can combine the
first two terms of the sum in curly brackets. Together with (p − p′)2 = 2(m2

τ̃ − p′ · p)
concerning the last term in the curly brackets we arrive at

1
4

∑
spins

|M|2 =
e4e2

q

(k + k′)4
2{ (p− p′) · k′ (p− p′) · k + (p′ · p−m2

τ̃ )(k′ · k +m2
q)} (53)

This is the general expression, although it is not very handy. But before we express
the occurring quantities in a Lorentz-invariant way (which will be very useful later on),
let’s first step into the cm-frame of this process where we can already observe some
central quantities. In the cm-frame one can find (

√
ŝ is the cm-energy of this process):

k0 = k′0, k = −k′ (54)

p0 = p′0, p = −p′ (55)

k + k′ =
(√

ŝ

0

)
(56)

p− p′ =
(

0
2 p

)
(57)

p · p′ = p02 + p2 = m2
τ̃ + 2p2 (58)

k · k′ = k02 + k2 = m2
q + 2k2 (59)

And so, with p · k = |p||k| cos θ the curly bracket in (53) turn into

−4p2k2 cos2 θ + 4p2(m2
q + k2) . (60)

We shall neglect the quark mass, mq = 0, k2 = ŝ/4, and so the squared matrix
element is

1
4

∑
spins

|M|2 =
2e4e2

q

ŝ
p2(1− cos2 θ) . (61)
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Therewith the cross section is
dσ̂
dΩ

=
|p|

32π2ŝ3/2

1
4

∑
spins

|M|2

=
e4e2

q

16π2

|p|3

ŝ5/2
(1− cos2 θ)

=
α2e2

q

8ŝ

(
1− (2meτ )2

ŝ

) 3
2

(1− cos2 θ) .

(62)

In the last line we have applied |p|2 = ŝ/4 −m2
τ̃ as well as e4 = (4πα)2 (since we work

in Heaviside-Lorentz units).
The angle dependency is that of a spherical harmonic with ` = 1, m` = −1, 1. This

is not surprising since the exchanged photon has spin 1 and furthermore the incoming
particles are assumed to be massless, thus the spin orientation has to be parallel to the
beam axis (m` = −1, 1). (In this ultrarelativistic limit there is no overlap with the ` = 1,
m` = 0 wave function.) Thus, the staus carry an angular momentum L = 1.

Integrating over the angles replaces the angle dependency by the factor of
∫

dΩ(1−
cos2 θ) = 8π/3 , obtaining the total cross section10

σ̂tot =
πα2e2

q

3ŝ

(
1− (2meτ )2

ŝ

) 3
2

. (63)

We would like to compare these results to the case of the SM muon pair production,
since this is our SM background. The respective tree-level cross section (in the limit of
relativistic muons) reads [61](

dσ̂
dΩ

)
(qq̄ → µ−µ+) =

α2e2
q

4ŝ
(1 + cos2 θ) (64)

and since
∫

dΩ(1 + cos2 θ) = 16π/3 ,

σ̂tot(qq̄ → µ−µ+) =
4πα2e2

q

3ŝ
. (65)

The muons have a completely different angle distribution. That is because the spins of
the outgoing muons are favored to be parallel to the spins of the incoming quarks that
is parallel to the beam axis. But since the muons are ultrarelativistic the direction of
their momentum is correlated similarly. By contrast, the angle distribution of the staus
vanishes in the direction of the beam axis.

Let’s consider the total cross sections. Their ratio (as a function of ŝ) behaves like

σ̂ eτ−eτ+

tot

σ̂ µ
−µ+

tot

∼
(

1− (2meτ )2

ŝ

) 3
2

Θ

(
1− (2meτ )2

ŝ

)
(66)

10Let’s plug in some numerical values to see in which order of magnitude the cross section turns out
to be. Applying α(MZ)−1 ' 128 and choosing

√
ŝ = 1 TeV and eq = +2/3 for an up-quark (-anti-quark)

pair the stau mass-independent factor of (63) is σ̂tot|(4m2eτ/ŝ)→0 ' 11 fbarn .
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Figure 4: Ratio (66) of muon and stau pair production at tree-level QED as a function of
the cm-energy normalized to the stau production threshold. The ordinate is arbitrarily
normalized. (By the way, of course, above the threshold

√
ŝ/(2meτ ) is just γ—the Lorentz

factor regarding the stau velocity v—and the function itself is equal to v3.)

where the Θ-function expresses the stau threshold (and therefore ensures the ratio to
be real). So, (66) says that as a function of ŝ the ratio of stau production and muon
production is simply zero below the threshold (2meτ )2 and increases relatively rapid over a
region of a few times the threshold energy to converge asymptotically against a constant
value11 for high ŝ (figure 4).

If the incoming quarks don’t come with a defined cm-energy, but come with a certain
distribution Lqq̄(ŝ) of cm-energies (like it is the case in a hadron collider experiment) it
would be sensible to compare a quantity like this:∫

dŝ Lqq̄(ŝ)σ̂tot(ŝ) . (67)

If we consider the ratio of this quantity for staus and muons, the situation will be quite
different than in the case of (66). There might be a huge amount of offset muons that come
from the contribution below the threshold, where the stau production is kinematically
forbidden. Thus, depending on Lqq̄(ŝ) and the stau mass this—latter—ratio might be
very small. That’s a simple fact, but it is the one that makes the detection difficult—the
amount of background muons can be very large.

11When comparing (63) with (65) the constant is 1/4. (Of course, this holds in general for the ratio
σ̂f̃

−f̃+

tot /σ̂f
−f+

tot in the high energy limit, where f and f̃ denotes some kind of fermion and its superpartner).
But, in (65) we consider left- and right handed muons (due to the spin sums that are applied in the
derivation) whereas in (63) we consider only one scalar (that could either be the superpartner of the left-
or the right-handed stau).
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For simplicity let’s assume Lqq̄(ŝ) to be constant in the region above the threshold
and let’s assume to have some detector in the cm-frame that could measure the velocity
of the particles with a statistical uncertainty. Then one possibility to distinguish the
staus from the muons would be to set a cut on the velocity (that is considering events
with v ≤ vcut). The muons could be assumed to have v = 1, thus to have a velocity
distribution that is a delta-function. Since

ŝ =
(2meτ )2

1− v2
(68)

and thus dŝ v3/ŝ = dv 2v4/(1− v2), the velocity distribution of the staus behave like

dσ̂
dv
∼ v4

1− v2
, (69)

which is plotted in figure 5. This distribution is universal for sfermion production via a
massless vector boson, at tree level, as long as the initial state particles are assumed to
be relativistic, that is it doesn’t depend on the mass nor on species.12 It peaks sharply
at v = 1 due to the broad range of ŝ that causes relativistic staus. Such a feature would
be of course absent when multiplying a non-trivial Lqq̄(ŝ) that in particular should have
a compact support, since in a hadron collider experiment the maximum quark energy is
set by the beam energy. According to (68) a maximum ŝ will cause a maximum velocity.
(We will see in the next section how dσ̂/dv changes in the case of a non-trivial Lqq̄(ŝ).)

Thus the number of staus that are accessible to detection
∫ vcut(dσ̂/dv) dv increases

rapidly if one raises vcut. On the other hand the statistical uncertainty of the measure-
ment could have us consider lowering vcut away from 1, since depending on how big the
amount of muons under the threshold is, even a small statistical uncertainty could cause
a lot of mis-identified muons.13

We already see a central challenge in the detection of massive charge particles here.
Depending on the statistical error of the velocity measurement and the distribution Lqq̄(ŝ)
below (and above) the threshold one might prefer a certain value of vcut to obtain an
optimal signal-to-background ratio. (We will return to this subject in section 6.)

Please keep in mind that the appearing quantities are expressed explicitly in the cm-
frame of the qq̄-process. At a hadron collider it is not possible to build up a detector
in the cm-frame of the qq̄-process. The cm-frame changes according to the fact that
the momenta of the incoming quarks are in general not distributed symmetrically in

12Of course the running couplings that we assumed to be constant when writing down the proportion-
ality (69) would somewhat spoil this argument. This becomes obvious when considering the QCD case
(the s-channel process differs only by the coupling and a color factor), since there is no self consistent
way to treat tree-level calculations, due to the lack of an α0 that gives us an asymptote for the coupling
in the tree-level regime, like it is the case in QED. For the weak coupling the Z propagator would alter
this expression, although it gives a good approximation, for the case that the sfermion mass is sufficiently
larger than MZ .

13 A contribution from slow muons (from respective low energies) would spoil our consideration. But
that’s no problem at collider experiments, since a simple p⊥-cut (p⊥ ≥ pcut) would ensure the desired
assumption of v = 1 for the muons.
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Figure 5: Velocity distribution of the QED stau-pair production in the cm-frame for a
flat distribution of cm-energies, at tree-level. The normalization is arbitrarily chosen.
(The result holds for all sfermions.)

the laboratory frame. In the next section we will therefore formulate the appropriate
framework for such a situation. But first we will express the stau cross section in a
Lorentz invariant way, since (62) is not easy to handle when boosting the cm-frame
along the beam axis. The appearing polar angle θ behaves quite unpleasantly under a
Lorentz transformation, which we will briefly demonstrate in appendix C.

To set up our formula (53) for the case that the cm-frame and our laboratory frame
don’t coincide we use Mandelstam variables:

ŝ = (p+ p′)2 = (k + k′)2

t̂ = (k − p)2 = (k′ − p′)2

û = (k′ − p)2 = (k − p′)2 .

(70)

Again, we assume the quark mass to be negligible, mq = k2 = k′2 = 0. Then we could
express all occurring scalar products in (53) in terms of ŝ, t̂, û and mτ̃ . (70) gives us

2pp′ = ŝ− 2m2
τ̃ , 2kk′ = ŝ

2kp = 2k′p′ =− t̂+m2
τ̃

2k′p = 2kp′ =− û+m2
τ̃

(71)

And so (53) turns into

1
4

∑
spins

|M|2 =
e4e2

q

ŝ2

1
2
{ (−û+ t̂)(−t̂+ û) + ŝ(ŝ− 4m2

τ̃ ) } (72)
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Let’s recall that ŝ, t̂, û and mτ̃ are restricted through momentum conservation, leading
to the requirement

ŝ+ t̂+ û =
∑

particles

m2
i = 2m2

τ̃ , (73)

where the last equal sign holds for our case. With this condition we could make further
simplifications on the squared matrix element. Just write the curly brackets as

2ût̂− (û2 + t̂2 + ŝ2) + 2ŝ2 − 4ŝm2
τ̃

= 2ût̂− (û+ t̂+ ŝ)2 + 2ût̂+ 2ûŝ+ 2ŝt̂+ 2ŝ2 − 4ŝm2
τ̃

(74)

and apply (73) on the second and on the last term. Then the squared matrix element
shrinks down to the very handy expression

1
4

∑
spins

|M|2 =
2e4e2

q

ŝ2
(ût̂−m4

τ̃ ) . (75)

Therewith the cross section becomes14

dσ̂
dt̂

=
1

16πŝ2

1
4

∑
spins

|M|2

=
e4e2

q

8πŝ4
(ût̂−m4

τ̃ ) .

(76)

Electroweak interaction

In the same way we derived the QED cross section formula we now want to complete the
expression involving the amplitude for the weak coupling via neutral current.

Since the weak coupling distinguishes between left- and right-handed particles, we
now have to care about the handedness of the involved particles. Let’s first stick to the
‘handedness’ of the staus. We expect τ̃L and τ̃R to mix to the mass eigenstates τ̃1 and
τ̃2 (m1 < m2) according to (33):(

τ̃1

τ̃2

)
= Rτ̃

(
τ̃R
τ̃L

)
=
(

cos θτ̃ sin θτ̃
− sin θτ̃ cos θτ̃

)(
τ̃R
τ̃L

)
. (77)

14Comparing (62) with (76) one finds the relation

ût̂−m4
τ̃

ŝ3/2
dt̂ =

|p|3

2π
sin2 θ dΩ .
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The Z-contribution of (60) then becomes

τ̃−

τ̃+

Z

p

p′

= −ie
1

cW sW

{(
−1

2
+ s2

W

)
Reτ
iLReτ

jL + s2
WReτ

iRReτ
jR

}
(p− p′)µ

= −ie geτieτj (p− p′)µ ,
(78)

where we define geτieτj and use the abbreviations sW = sin θW , cW = cos θW . Next we
display the SM qq̄ → Z-vertex

q

q̄

Z

k

k′

= −ie
1

cW sW
γµ
{(
T 3

q − eqs
2
W

) 1− γ5

2
− eqs

2
W

1 + γ5

2

}

= −ieγµ
{
gq
V − g

q
Aγ

5
}
,

(79)

where we introduce gq
V = (T 3

q − 2eqs
2
W )/(2cW sW ) and gq

A = T 3
q /(2cW sW ). The first

line of (79) displays the left- and right-handed parts of the weak coupling, whereas the
notation in the second line corresponds to the vector current and axial vector current.
Since we are not specifying the spin of the initial state particles, we will use the second
description.

Let’s throw everything together, yielding the amplitude for the Z-coupling:

iMq
ij = (−ie)2 geτieτj (p− p′)µ−i(gµν − qµqν/M2

Z)
q2 −M2

Z

v̄(k′)γν
{
gq
V − g

q
Aγ

5
}
u(k). (80)

The propagator term in this formula simplifies to −igµν/(q2 −M2
Z), since (p− p′)µqµ =

(p− p′)µ(k + k′)µ = 0.
In contrast to the Z-coupling the A-coupling doesn’t allow a final state of two different

staus, since there is no mixing between the coupling eigenstates and the mass eigenstates.
Thus for each stau with mass mi we can apply the amplitude (51). So the tree-level
amplitude for the process qq̄ → τ̃−i τ̃

+
j via s-channel photon and Z boson exchange is

Mq
ij = −e2 (p− p′)µ

{(
eqδij
ŝ
− gq

V

geτieτj
ŝ−M2

Z

)
v̄(k′)γµu(k) + gq

A

geτieτj
ŝ−M2

Z

v̄(k′)γµγ5u(k)
}
.

(81)
Let’s display some steps of the computation of the averaged squared matrix element.

The first thing to bring up is that there is no interference term between the vector and
axial vector part. To show this let’s drop everything but the vector and spinor structure
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of the interference term:

(p− p′)µ(p− p′)ν
∑
spins

(
v̄(k′)γµu(k) ū(k)γνγ5v(k′) + v̄(k′)γµγ5u(k) ū(k)γνv(k′)

)
= (p− p′)µ(p− p′)ν

(
tr[(6k′ −mq)γµ(6k +mq)γνγ5] + tr[( 6k′ −mq)γµγ5( 6k +mq)γν ]

)
.

(82)

Since tr[γµγνγ5] = tr[γµγνγργ5] = 0 and {γ5, γµ} = 0, the two traces are equal and
further more proportional to ερµσν , thus antisymmetric in the exchange of µ and ν,
whereas (p− p′)µ(p− p′)ν is symmetric. So it vanishes.

Henceforth we will now directly drop the quark mass wherever it appears (mq = 0).

1
4

∑
spins

|Mq
ij |

2 =
1
4
e4(p− p′)µ(p− p′)ν

{(
eqδij
ŝ
− gq

V

geτieτj
ŝ−M2

Z

)2

tr[6k′γµ 6kγν ]

+
(
gq
A

geτieτj
ŝ−M2

Z

)2

tr[6k′γµγ5 6kγνγ5]

}

=e4

{
e2

qδij

ŝ2
−

2eq g
q
V δij geτieτj

ŝ(ŝ−M2
Z)

+ (gq
V

2 + gq
A

2)
g2eτieτj

(ŝ−M2
Z)2

}
×
{

2(p− p′) · k (p− p′) · k′ − (p− p′)2 k · k′
}

(83)

The momentum dependency is equal to the case of QED, yielding the same dependency
on the Mandelstam variables t̂ and û and therefore the same angle dependency, but with
one exception: The case of i 6= j. In this case the mass belonging to p is not equal to
the one belonging to p′. Thus to cover the general case we now write

(p− p′)2 = m2eτ +m′
2eτ − 2p · p′

2pp′ = ŝ−m2eτ −m′2eτ
2kk′ = ŝ

2kp =− t̂+m2
τ̃

2k′p′ =− t̂+m′
2
τ̃

2k′p =− û+m2
τ̃

2kp′ =− û+m′
2
τ̃ .

(84)

In a similar way to the above case of QED these equations lead us to

2(p− p′) · k (p− p′) · k′ − (p− p′)2 k · k′ = 2
[
ût̂−m2eτm′2eτ

]
, (85)

yielding the final result(
dσ̂
dt̂

)q

ij

=
e4

8πŝ2

[
ût̂−m2eτim2eτj

]{e2
qδij

ŝ2
−

2eq g
q
V δij geτieτj

ŝ(ŝ−M2
Z)

+ (gq
V

2 + gq
A

2)
g2eτieτj

(ŝ−M2
Z)2

}
.

(86)
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Figure 6: Dependence of the stau cross section (86) on the stau mixing angle θeτ for the
production of τ̃1τ̃1 and τ̃1τ̃2 from an up-type quark-pair (red) and a down-type quark-pair
(blue). We have not displayed the τ̃2τ̃2-curve, since it is just the same as the τ̃1τ̃1-curve
but mirrored around the point π/4. The curves are normalized such that the sum over
all final state contributions is 1. We have set

√
ŝ = 5MZ and taken sin2 θW = 0.231.

Figure 6 shows the dependence of (86) on the mixing angle θeτ for the case of the
final states τ̃1τ̃1 and τ̃1τ̃2 for an up-type and down-type quark-pair in the initial state.
If θeτ differs slightly from zero the cross section for a τ̃1-pair decreases. The exact shape
of the curve differs with the cm-energy. We have plotted it for

√
ŝ = 5MZ . Figure 7

shows the ratio of the photon-coupling cross section (76) to the whole electroweak cross
section (86). The amount of change of the curves in figure 6 with

√
ŝ is precisely of

the same behavior as the change of the ratio (76)/(86) with
√
ŝ. It is just the effect

of the Z-mass in the denominator of the Z propagator. Figure 7 shows that the ratio
(76)/(86) is approximately constant from a few times MZ on. This encourages us to
consider only the case of θeτ = 0 (τ̃1 = τ̃R) in the further discussion and keep in mind
that another θeτ just decreases the cross section according to figure 6. Since we will
consider stau at masses above 100GeV (and we additionally will require a minimum
velocity and minimum transverse momentum) it will be quite a good approximation to
state that σeτ (θeτ ) doesn’t depend on the kinematics.

38



2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6σQED

σEW

√
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Figure 7: Ratio between the QED cross section (76) and the full electroweak cross section
(86) as a function of the cm-energy

√
ŝ for an up-type quark-pair (red) and a down-typ

quark-pair (blue) in the initial state. We have chosen sin2 θW = 0.231.

This fact also motivates a posteriori to spend some time in the above discussion after
equation (62), since applying the whole electroweak coupling would just cause another
constant factor, approximately.

In all these formulas we haven’t paid attention to the colors of the quark-antiquark
pair yet. To do this, we have to apply a factor of 1/3 to the cross section, that takes
into account that there are three possible color states for the incoming quark-antiquark
pair, but for each quark a possibility of 1/3 to be in that color state. And so a resulting
factor of 3× 1/3× 1/3 = 1/3.
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5 Physics at hadron colliders

In the last section we have considered the stau-pair production at the most elementary
level. But since the LHC is a pp-collider and protons are built out of quarks, antiquarks
and gluons (collectively called the partons) that are strongly coupled, we have to know
how to treat such a complex process. Therefore in this section we will discuss (at least
very briefly) some topics of QCD. Since for a hadron-hadron collision the laboratory frame
and the center-of-momentum frame no longer coincide, we will also introduce appropriate
variables that are common in the business of collider physics.

elementary
process

P1

P2

final state
particles

x1P1

x2P2

unobserved
hadrons

...

Figure 8: The situation at a hadron collider, schematically.

Schematically the situation at the hadron collider looks as shown in figure 8, where
the grey circles indicate the interaction points at first without further specifications.
The ’elementary process‘-circle containing the hard scattering of the process is calculable
perturbatively while the proton-circles containing QCD binding states are in principle not
accessible to perturbative QCD (and since respective ab initio lattice QCD calculations
are not applicable at the present state they have to be of empirical nature). This is due
to the asymptotic freedom of the strong interaction. Thus, the desired formulation of
such a problem would be to separate the two regimes from each other. This is provided
by the factorization theorem [24, 23] which allows to formulate process independent
parton distribution functions (PDF)s. Those factorize from the cross section σ̂ of the
hard scattering process performed in the matrix-element description. This leads to the
convolution integral

σpp =
∑
k,l

∫ 1

0

∫ 1

0
dx1dx2 fk(x1, µ) fl(x2, µ)× σ̂kl(x1, x2)Θ(mass cut) , (87)

where (k, l) runs over all possible combinations of partons, called the hadronic channels
(for instance (u, ū), (ū, u), (d, d̄),... for the elementary process of the last section). The
PDFs fk(x1, µ) can be interpreted as the probability density for finding a parton i carrying
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a longitudinal fraction x of the proton momentum P (if the proton mass is small compared
to the momentum transfer of the hard scattering, transversal momentum fractions are
negligible). fk(x1, µ) is slightly scale dependent. µ is called the factorization scale. Let’s
brighten up this quantity a bit, since it is a bit tricky how this is treated in practice
(though again at the end of the day one might not worry about this topic too much).

µ is not an observable, so (87) should be invariant under a variation of µ. This gives
rise to the renormalization group equation dσpp/(d logµ) = 0. Thus, σ̂ also has to have
a scale dependence. It is hidden in its perturbative nature. Since perturbative QCD
breaks down in the limit of low energies, we can’t be too ambitious in making predictions
for the low scale behavior of the hard scattering process. So, in other words, we have
to cut off soft QCD radiation (and also collinear radiations that are undistinguishable
from the unobserved hadrons that doesn’t take part of the hard scattering). This cut-
off should in principle correspond to the factorization scale. However, it is common in
the business of QCD to push the factorization scale up to the scale of the momentum
transfer ŝ of the hard scattering to have a reasonable hope that our calculations yield
a good approximation of nature, since we are always interested (or rather restricted) to
perform calculations only to the very lowest orders in αs. Anyway, ultimately the result
has to be invariant under the variation of µ in an appropriate range, thus the variation
of σpp can be seen as a measure for the theoretical uncertainties. (Taking σ̂ of the last
section for instance we didn’t consider strong coupling at all, thus there is no chance of
a compensating scale dependance of σ̂. In that case it is common to fix µ at ŝ.)

Now we want to restore the ŝ-dependence of σ̂ in (87). Let s be the invariant mass
of the protons in the pp center-of-momentum frame—which from now on we will call the
laboratory frame due to obvious reasons—then in this frame the four momenta of the
relativistic protons read

P1 =
(√

s

2
, 0, 0,

√
s

2

)
, P2 =

(√
s

2
, 0, 0,−

√
s

2

)
. (88)

The invariant mass of the center-of-momentum frame of the partons—which from now
on we will simply call cm-frame—thus reads

ŝ = (x1P1 + x2P2)2 =
s

4

[
(x1 + x2)2 − (x1 − x2)2

]
= x1x2s . (89)

With this (87) can be written as

σpp =
∑
k,l

∫ s

0
dŝ σ̂kl(ŝ)Θ(mass cut)

∫ 1

0

∫ 1

0
dx1dx2 fk(x1, ŝ) fl(x2, ŝ)δ(ŝ− x1x2s)

=
∑
k,l

∫ s

0
dŝ σ̂kl(ŝ)Θ

(
ŝ−

(∑
m final state

)2
)
Lkl(ŝ) .

(90)

In the last line we (displayed the mass cut condition explicitly and) introduced the parton
luminosity Lkl(ŝ) that contains all the information concerning the partons for a certain
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hadronic channel (i, j) depending on ŝ. Performing one of the integrations yields

Lkl(ŝ) =
∫ 1

ŝ
s

dx
xs

fk

(
ŝ

xs
, ŝ

)
fl(x, ŝ) . (91)

What we found here is the general expression of the distribution Lqq̄(ŝ) we mentioned

Figure 9: Parton distribution functions for the quarks and gluons in the proton, at
µ = (200GeV)2. The distributions of quarks and antiquarks has to be equal for each
flavor but u and d, the valence quarks, in order to yield the right quantum numbers for
the proton. Since all of these functions peak sharply at small x, it is common to display
xfk(x, µ). This plot displays the PDF set CTEQ6L1 (CTEQ collaboration), and it is
taken from [68].

in the last section, discussing the challenges in stau searches at a simplified level. There
we have derived the very simple expression (69) for a flat distribution in ŝ. Now we can
see how the velocity distribution is affected when applying a realistic Lqq̄(ŝ).

Therefore we briefly discuss the quantities of the PDFs, that enter Lqq̄(ŝ). Figure
9 shows the PDF set CTEQ6L1 provided by the CTEQ collaboration15 [62] at a scale

15 There are further working groups providing PDF sets, for example MRST/MSTW [54], NNPDF
[16] and Alekhin [5]. All the available PDF sets are in principal extracted from experimental data (often
from deep inelastic scattering experiments). So they come with experimental uncertainties.
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Figure 10: Parton luminosity as a function of the cm-energy
√
ŝ for different partonic

channels in a pp-collision with
√
s = 14TeV. q (resp. q̄) stands for the sum over d, u, s, c, b

(resp. d̄, ū, s̄, c̄, b̄). For later discussion: The green, blue and red hadronic channels
contribute to the Drell-Yan process at order α0

s, α1
s and α2

s, respectively.

µ = (200GeV)2. Since the proton is composed of the valence quarks uud the u and d
quarks are most likely to carry a substantial fraction of the proton momentum, whereas
antiquarks tend to have small fractions. Gluons dominate over all others in the region
of small x. However, all these distributions peak sharply for small x. These features
can be retrieved in the parton luminosity. We have plotted Lqq̄(ŝ) using the CTEQ6L1
PDF sets in figure 10. (We have set the factorization scale to ŝ in the calculation, as
we already denoted in (91).) For all hadronic channels the parton luminosity decreases
with increasing

√
ŝ. Up to ∼ 1TeV this decrease behaves approximately like a negative

power law (at least for the hadronic channels involving one or two q). The belt that the
curves of the hadronic channels span decreases as a whole by a factor of ∼ 10−4 from√
ŝ = 100GeV to 1TeV. Above ∼ 1TeV the parton luminosity begins to decrease more

drastically. This means that it is very unlikely to have nearly the whole beam energy
available in the partonic scattering.

Now, this behavior is reflected in the velocity distribution of the staus in the cm-
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Figure 11: Velocity distribution of the staus in the cm-frame in a leading order Drell-Yan
process at

√
s = 14TeV. Only the relative normalization is meaningful. The curves are

exact for the photon- and approximatively (in the sense we have discussed concerning
figure 7) for the Z-contribution. The CTEQ6L1 PDF set was used.

frame,
dσ̂pp

dv
∼ Lqq̄

(
(2meτ )2

1− v2

)
v4

1− v2
, (92)

which is plotted in figure 11 for four different stau masses. Compared to figure 5 the
divergency at v = 1 has gone and the mass dependence appears. The main effect by
varying the mass is the change of the total cross section—the up-down-shift of the curves.
The shape of the curve changes significantly only at meτ = 1TeV, where the steep slope
of Lqq̄(ŝ) beyond a few TeV governs the higher end of the velocity distribution.

This consideration nicely illustrates the features of the velocity distribution coming
from the elementary process, provided with cm-energies according to the PDFs. Never-
theless, it is not the whole story. There is another contribution coming from the boost
of the cm-frame with respect to the laboratory frame. Let p1 and p2 be the momenta of
the initial state partons. Then their total momentum is

qµ = pµ1 + pµ2 ∝


x1 + x2

0
0

x1 − x2

 . (93)

This gives us the velocity of the cm-frame

β =
qz

q0
=
x1 − x2

x1 + x2
. (94)
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Therefore the distribution of the boosts according to the PDFs is∑
k,l

∫ 1

0

∫ 1

0
dx1dx2 fk(x1) fl(x2) δ

(
x1 − x2

x1 + x2
− β

)
δ(ŝ− x1x2s)

=
∑
k,l

fk

(√
ŝ

s

1 + β

1− β

)
fl

(√
ŝ

s

1− β
1 + β

)
γ2
β

s
,

(95)

where γβ is just the relativistic gamma-factor according to β and we have suppressed the
scale dependence, for simplicity. We have plotted this distribution for different values of√
ŝ in figure 12.16
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ŝ = 250GeV

500GeV

1250GeV

2500GeV

Figure 12: Distribution of the velocity (95) of the cm-frame with respect to the laboratory
frame, as it is obtained from the CTEQ6L1 PDF set for the LHC at s = 14TeV. The
relative normalization is taken arbitrarily.

What is the impact on the stau that already comes with a velocity distribution in the
cm-frame? For simplicity we consider a stau that moves in the transversal direction (i.e.
has a scattering angle of around 90◦) in the cm-frame. That’s not a bad choice, since the
angle dependency of (62) prefers this direction. Then (161) tells us (with v′‖=0) that the
velocity in the laboratory frame is

v =
√
v2
⊥ + β2(1− v2

⊥) . (96)

16We have chosen the numerical values
√
ŝ = 250, 500, 1250, 2500GeV because they correspond via

(68) to the cm-energy of two particles with the masses chosen in figure 11 at velocity 0.6. The latter
just gives a round number.
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Due to the character of the relativistic velocity transformation, if one velocity is reason-
ably closer to one than the other the former will prevail. So the boost of the cm-frame
will cause an additional rise of the velocity distribution close to one that inherits approx-
imately the shape of the cm-boosting curves in region near one.

To be honest, there are additional effects that come into the game when allowing
more than two particles in the final state, considering higher order corrections. But we
will not make efforts to discuss these effects with simple methods. In the Monte Carlo
calculations we will show in the next section that these effects can be seen very clearly
in the peτ+

⊥ -peτ−
⊥ -plane and the ∆φ plot (∆φ is the difference in the azimuth angles of

the two particles). A two-to-two scattering process (with p⊥ = 0 in the initial state)
will always lead to the a momentum distribution that is confined to the diagonal in the
peτ+

⊥ -peτ−
⊥ -plane as well as it always has ∆φ = 180◦. But before discussing higher order

corrections we will provide for a formula that allows us to calculate the Drell-Yan process
at leading order for the case of a differential cross section. Such a formula is not only
needed for calculating the distribution of a certain observable but also when applying
a certain kinematic selection, namely cuts on the cross section. Therefore we will first
introduce variables that are suitable to the case of collider physics. We will partly follow
the derivation given in [61], but with the explicit assumption of a non-negligible mass of
the final state particles.

As mentioned above, we assume the momentum of the incoming particles of an el-
ementary process to be parallel to the collider beam direction (longitudinal), while the
momentum of the outgoing particles have longitudinal and transversal components.

Let’s consider an outgoing particle and work out carefully the Lorentz transformation
from it’s rest frame to the laboratory frame (or any other frame which is only longitudi-
nally boosted with respect to the laboratory frame) by first performing a transversal and
then a longitudinal boost. Here ζ is the transversal while y is the longitudinal rapidity.
For simplicity, we are switching to a three-component notation here, combining the 1-
and 2-components to the perpendicular component. We will make use of this notation
when appropriate.E

p⊥
p‖

 =

cosh y sinh y 0
0 0 1

sinh y cosh y 0

cosh ζ 0 sinh ζ
sinh ζ 0 cosh ζ

0 1 0

m0
0


=

cosh y sinh y 0
0 0 1

sinh y cosh y 0

m cosh ζ
m sinh ζ

0


=

m cosh ζ cosh y
m sinh ζ

m cosh ζ sinh y


(97)

Note that p⊥ = m sinh ζ stays unaffected by a longitudinal boost while E of course
changes by the factor of cosh y. Let’s define

E⊥ = m cosh ζ (98)
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and call it the transversal energy of a particle. It’s nothing else than the energy of the
particle in the longitudinal comoving frame.17 It fulfills

E2
⊥ = m2(sinh2 ζ + 1) = p2

⊥ +m2 . (99)

Now we may find an answer to the question haunting us: ‘What are the appropriate
variables to describe the final state kinematics?’ One choice is to use E⊥ and the azimuth
angle φ (both quantities that are not affected by a longitudinal Lorentz boost) as well as
the transversal rapidity y (that is simply additive under a longitudinal Lorentz boost):

pµ =


E⊥ cosh y
p⊥ sinφ
p⊥ cosφ
E⊥ sinh y

 (100)

In the final state there are two particles. But notice that p⊥ (and therefore through (99)
E⊥as well) is the same for the two particles due to momentum conservation (remember
that there is no transversal momentum in the initial state). Also the azimuth angles of
the two final state particles are constrained through momentum conservation. Anyway,
hence we consider processes that are invariant under rotation by an angle φ, we don’t
care too much about this angle. Effectively we are left which the variables

y3, y4, E⊥ (101)

to describe our final state dynamics, where y3 and y4 are the rapidities of the final state
particles. Then we can define

y? =
1
2

(y3 − y4) (102)

to be the rapidity of the particle 3 (resp. minus the rapidity of particle 4) in the cm-frame
and

Y =
1
2

(y3 + y4) (103)

to be the rapidity of the cm-frame with respect to the laboratory frame.
Since we have expressed the differential cross sections in the last section in terms

of the Lorentz invariant Mandelstam variables, now we would like to formulate them in
terms of our variables (101). We do this by just plugging in the momentum p1, p2 and

17One may think of β⊥ = p⊥/E⊥ = tanh ζ as the transversal velocity. This holds obviously only
for the special case of the longitudinal comoving frame. The general expression of the transversal
velocity is β⊥ = p⊥/E = tanh ζ/ cosh y, which also has the right transformation properties (161) under
a longitudinal boost with rapidity ξ:

β′⊥ = β⊥
1

γξ(1 + βξβ‖)
=

tanh ζ

cosh y

1

cosh ξ (1 + tanh ξ tanh y)
=

tanh ζ

cosh(y + ξ)
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p3, p4 of the initial resp. final state particles expressed in the form (100) in the cm-frame
into the definition (70):

ŝ = (p3 + p4)2 =

E⊥(cosh y? + cosh y?)
0

E⊥(sinh y? − sinh y?)

2

= 4E2
⊥ cosh2 y? (104)

t̂ = (p1 − p3)2 =


√
ŝ/2− E⊥ cosh y?

p⊥√
ŝ/2− E⊥ sinh y?

2

= −2E2
⊥ cosh y?e−y? −m2 (105)

û = (p1 − p4)2 =


√
ŝ/2− E⊥ cosh y?

p⊥√
ŝ/2 + E⊥ sinh y?

2

= −2E2
⊥ cosh y?ey? −m2 (106)

While y? depends only on the interaction of the subprocess, Y is only related to
the momentum fractions of the incoming particles x1, x2. Now, we would like to get an
expression for x1 and x2 in terms of y?, Y and E⊥. From (94) one obtains for tanhY = β

tanhY =
eY − e−Y

eY + e−Y
=
x1 − x2

x1 + x2
=

√
x1
x2
−
√

x2
x1√

x1
x2

+
√

x2
x1

. (107)

Thus we can pick up

eY =
√
x1

x2
. (108)

Together with (89) it yields

x1 =

√
ŝ

s
eY ; x2 =

√
ŝ

s
e−Y (109)

and with (104) one finally arrives at

x1 =
2E⊥√
s

cosh y?eY ; x2 =
2E⊥√
s

cosh y?e−Y . (110)

Now we can work out a differential version of (87). What we can write down imme-
diately is

d3σpp

dx1dx2dt̂
=
∑
k,l

fk(x1, µ) fl(x2, µ)
(

dσ̂
dt̂

)kl
(111)

(using û instead of t̂ would be equivalent). We can translate this formula to our desired
final state variables y3, y4 and E⊥. Therefore we compute the Jacobian

∂(x1, x2, t̂)
∂(y3, y4, E⊥)

=
8E3
⊥ cosh2 y?
s

=
2E⊥ŝ
s

, (112)
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and arrive at
d3σpp

dy3dy4dE⊥
=
∑
k,l

fk(x1, µ) fl(x2, µ)
2E⊥ŝ
s

(
dσ̂
dt̂

)kl
(113)

The expression is independent of the azimuth angle φ, thus you can formally substitute
2πE⊥dE⊥ = d2E⊥. Together with ŝ = x1x2s (113) changes to18

d4σpp

dy3dy4d2E⊥
=
∑
k,l

x1fk(x1, µ)x2fl(x2, µ)
1
π

(
dσ̂
dt̂

)kl
(114)

Plugging in (86) in (114) gives us our master-formula for a leading-order calculation of
the Drell-Yan process. k, l run over all quark-antiquark-pairs of the same flavor (the
hadronic channel qq̄). (86) stores additional lower indices i, j that specify the process.19

If one is interested in the total cross section, but with experimental cuts one has to
perform the integral

(σpp)cuts
ij =

1
π

∫ ∞
−∞

dy3 dy4

∫ ∞
−∞

d2E⊥
∑
kl

x1fk(x1, µ)x2fl(x2, µ)
(

dσ
dt̂

)kl
ij

×Θ(mass cut)Θ(exp cuts) ,

(115)

where the expressions in the Θ-functions have to be expressed in terms of y3, y4, E⊥.
Within this thesis we cut on three variables.

First, the pseudo-rapidity η, that is defined as

ηi =
1
2

log
(
|p|+ p3

|p| − p3

)
=

1
2

log


√
E2
⊥ cosh2 yi −m2 + E⊥ sinh yi√

E2
⊥ cosh2 yi −m2 − E⊥ sinh yi

 . (116)

For m = 0 the argument of the log is just e2yi , so rapidity and pseudo-rapidity agree in
that case. In any case pseudo-rapidity is directly correlated to the polar angle θ by

ηi = − log (tan(θi/2)) . (117)

We apply a η-cut on all of our calculations, since at the LHC detectors there are regions
around the beam axis that are not sensitive to the data of interest. This is called the
’barrel-cut’. We use |η| < 2.5. This correspond to an angle of approximately 10◦.

Second, we will apply a cut on p⊥ to reduce muon background (that sharply peaks
for small p⊥).

p⊥ =
√
E2
⊥ −m2 . (118)

18One may wonder what this last step is about. This is due to numeric computational reasons. Most
often the PDF sets are provided in the from xf(x) because f(x) give very large numerical values at small
x. If one keeps this form the numerical integration converges faster.

19Note that in the above derivation by defining E⊥ we implicitly assumed that the masses of the two
particles in the final state are the same. So this formula is true for i = j.
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Third, we will apply a velocity cut on the staus in order to discriminate them from
the muons. Since, from (97),

v2 =
p2

E2
=
p2
‖ + p2

⊥

E2
=

cosh2 ζ sinh2 y + sinh2 ζ

cosh2 ζ cosh2 y
= 1− 1

cosh2 ζ cosh2 y
(119)

with (98) we get

vi =

√
1− m2

E⊥ cosh2 yi
. (120)

Correction in order αs

The last topic to bring up in this section concerns higher order corrections in the strong
coupling αs. We have already seen in figure 10 that at a pp-collider the hadronic channel
qq̄ is not the dominant one (unlike the situation at a pp̄-collider like the Tevatron).
So higher order corrections in αs could be important for sufficient accuracy, since the
corresponding higher order diagrams involve additional hadronic channels whose parton
luminosities are about an order of magnitude higher than qq̄. Appendix D systematically
lists all Feynman-diagrams that are accessible in the orders α0, α1 and α2. At order α1

just the gq (gq̄) channel adds up while at α2 all hadronic channels contribute.

Figure 13: The rapidity distribution of the Drell-Yan process for the LHC at
√
ŝ = MZ ,

calculated at leading order, NLO and NNLO. The bands indicate the variation of the
renormalization and factorization scales in the range MZ/2 to 2MZ . Taken from [15].

Figure 13 shows the cross sections of the Drell-Yan process for an on-shell Z at the
LHC. It is calculated in a consistent leading order, next-to-leading order (NLO) and
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next-to-next-to-leading order (NNLO) calculation, involving loop corrections and parton
radiation [15]. The tree-level higher order corrections suffer infrared divergencies that
had to be canceled by the (negative) divergent contributions of virtual corrections. Thus
a tree level calculation in higher orders in αs never gives a self-consistent result. As
we will only work with tree-level Monte Carlo generators within this thesis, we have to
deal with this shortcoming. But fortunately the shape of the observable distributions
generated at tree-level are convincing.
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6 Predictions for the LHC

The last two sections have equipped us with the physics for the stau search at the LHC,
especially the Drell-Yan process. Let’s now continue our discussion we started in the
last passage of section 3 and go further into detail of the experimental issues. It already
became clear that the velocity is a central observable when discriminating a heavy charged
particle like the stau from muons. Unfortunately, the measurement of the velocity is not
as easy as it may seem, in particular the resolution of such a measurement is much worse
than e.g. the measurement of the transversal momentum. Let’s consider how the velocity
is measured by a detector at the LHC.

Measurement of the velocity at the LHC

There are two distinct ways to measure the velocity at the LHC detectors ATLAS and
CMS, these are ionization energy loss and time-of-flight measurement.

By transversing the matter of the detector a charged particle looses energy. Ioniza-
tion energy loss is caused by the removal of the electrons from the atoms in the detector
material. The rate of ionization energy loss (or to be more precise its most probable
value) is described by the Bethe-Bloch formula and depends only on the velocity of the
particle. The Bethe-Bloch formula reads〈

dE
dx

〉
= Kv−2 + (relativistic effects) + (density effects) , (121)

where the displayed contribution in v is a good approximation in the region 0.1 < v . 0.8
(K is a constant factor depending mainly on the detector material). At vγv ' 3 the
ionization energy loss rate reaches a minimum. Above vγv ' 3 relativistic effects provide
a slight raise which is again confined due to density effects so that the energy loss for
ultrarelativistic particles is asymptotically constant, in particular (121) is an invertible
function in the above region. At the LHC detectors the ionization energy loss is measured
along the track of a particle in the tracker20. A track is typically associated with∼ 15 hits.
The energy deposition at one hit is statistically distributed around the most probable
value in a Landau distribution which has an especially long tail on the high deposition
side. If one reads out a minimum of 9 hits [2] a reasonable good approximation of the
most probable value can be obtained. Thus, via the first term on the right hand side of
(121) one can conclude the velocity of particles that have perceptibly higher ionization
than ultrarelativistic ones.

The velocity measurement via time-of-flight is based on the data coming from the
muon chambers located at the outermost part of the detector. The muon chambers are
built up of drift tubes that are arranged off-center. Thus a typical track passes drift

20The tracker is the inner part of the detector surrounding the beam pipe. At ATLAS and CMS it is
about 2m in diameter and 6m in length. The innermost high resolution tracking layers of the tracker
are built up of silicon pixel detectors surrounded by silicon stripe detectors. In the outer layers of the
tracker ATLAS uses a transition radiation detector with gas straw tubes while CMS again uses silicon
strip detectors [63].
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tubes on both sides of the sensitive wires. The tracking system tries to reconstruct the
track under the hypothesis of an ultrarelativistic muon, therefore it assigns the track to
a certain bunch crossing. If a particle travels slower than speed of light, it arrives at
the muon chambers with a time delay. The reconstructed hits in each drift tube will
then be shifted away from the wires with respect to its real position. The result will
be a zig-zag pattern instead of a straight line. From this one can conclude the velocity
of the particle. Anyway, at design luminosity the distance between two bunch crossings
is only 25 ns (that corresponds to 7.5m at the speed of light), hence up to three bunch
crossings are simultaneously inside the detector. Therefore there is a lowest velocity
under which one cannot match the signal to the right bunch crossing anymore. This
velocity is approximately vmin ' 0.6 [66].

In both cases the resolution of the velocity measurement has to be evaluated from the
data, especially the tails of the resolution functions—which reach in to the region where
a rare discovery may wait to be made—have to be extracted from data in a robust way.
This is a quite non-trivial task for experimentalists in the initial phase of LHC running.
Within our further considerations we assume the resolution function to provide a 5σ-
reduction of the area under its curve below v = 0.8 with respect to the area under the
whole curve.21 Furthermore we take vcut = 0.8 to be the best choice for discriminating
staus from muons. This is a reasonable first approximation to the real situation [66].

Predictions from Monte Carlo generators

We have performed Monte Carlo computations via the matrix element event generator
MadGraph/MadEvent [9]. The first thing we want to bring up here is to give you a
rough estimate of the ratio between stau productions via cascade decays and the direct
production in the Drell-Yan process as well as the decays from the production of τ̃2ν̃τ
viaW±. If one assumes that any strongly produced sparticle decays in a prompt cascade
decay into the stau NLSP the total cross section of the stau production via these cascades
would dominantly be the production cross sections of the lightest squark(s) plus the
gluino. We stated in section 3 that the cascade decay production of staus would dominate
over the direct stau production via Drell-Yan for a large domain of parameter space. A
dominant direct production indeed requires a large mass gap between the stau NLSP
and the strongly coupled sparticles. For instance, in a scenario where meτ1 = 150GeV,
meτ2 = meντ = 300GeV, met1 = 750GeV and meg = 1200GeV, the production rates of all
these sparticles are roughly the same—about ∼ 30 fb. In this calculation we regard all
contributions that contain the dominant hadronic channels qq̄, qg and gg at the lowest
possible order. Nevertheless, this estimation only concerns the total production without

21 In the literature other approaches can also be found. [13, 12, 47] refer to a velocity resolution of
0.03 and claim that therefore a velocity cut at 0.91 (at 3σ) would give a background rejection factor of
∼ 103. Such an estimation obviously assumes a gaussian-like distribution above 0.91, but on the other
hand if one avoids to shift vcut further down, the only sensible reason for this could be a non-gaussian
curve below 0.91. So the real parameter the choice of vcut depends on is the shape of the tail (especially
the transition point from the gaussian-like region of the resolution function to the wider spread region).
We will come to this subject later on in this section.
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applying any cuts. When applying the detection cuts on the velocity this may affect
the staus from cascade decays more substantially than direct produced ones since the
former are most likely to have larger velocity due to the large phase space in such decays.
This would slightly attenuate the domain of parameter space that provides a dominant
contribution from cascade decays. Another effect will be, that the correlation of the
velocities of the two staus within one event will be smeared away by the cascade. The
two staus will in general have very different velocities. The correlation effect will be even
more obvious in the case of a p⊥-p⊥-plane plot.

Anyway, as stated in section 3 we want to claim model independent predictions.
Therefore in the following we concentrate on the direct production via Drell-Yan. We have
calculated the observables p⊥, v,

√
ŝ, ∆φ, Y and y?. We used MadGraph/MadEvent as

a matrix element based generator and Pythia [67] to describe parton radiation. Pythia
uses Markov chain techniques based on Sudakov form factors. Since MadEvent is a tree-
level generator, in the case of jets in the initial state the result depends on the jet p⊥-cut
(and on the ∆Rjj-cut, the distance between two jets in the η-φ-plane). This is because
tree-level matrix element description diverges logarithmically as jets become soft and
collinear. On the other hand, the parton radiation description breaks down in the limit
of hard and widely separated jets. Thus choices are to be made to adjust cutoffs in both
descriptions so as to get smooth distributions in the region where they work hand in
glove.

Our choices made are: To include contributions up to order α2
s running the MLM

matching scheme [8] implemented in MadEvent; p⊥-cut on jets (at MadEvent level):
15 GeV; ∆Rjj-cut (at MadEvent level): 0.001; xqcut (minimal k⊥ between partons at
MadEvent level): 15 GeV; Qcut (maximal k⊥ between matched partons and jets at
Pythia level): 30 GeV.

All the same, there remain uncertainties about the absolute normalization of the dis-
tributions since the matrix element description is only tree-level, but these uncertainties
are the same for the staus and muons that we consider as the SM background since
the corrections in αs only affect the kinematics of the vector-boson and therefore the
kinematics of the particles it decays into, but not their couplings.

We have used the Les Houches event output files (LHE) [10, 18] for our analysis. An
LHE file stores all the generated events by listing the involved particles22, their momenta
(in the laboratory frame) and the weight for each event. To extract a differential cross
section from such files we have written a script23 that analyses the data and passes it
through to gnuplot. The script runs a loop over all events. For each bin of an observable
it adds up the weights of those events that lie within the corresponding interval of the bin.
We allow for observable-specified cuts on the events. To apply a cut on the events always
means that only those events contribute to the sum whose momenta match with this
cut. Applying a cut on both particles requires both momenta to fulfill the cut condition,
whereas applying a cut on one particle means that the momenta of one or of the other
or of both particles has to fulfill the cut condition.

22The LHE format uses the Monte Carlo particle numbering scheme [14].
23We have written all scripts in the programming language ruby.
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Figure 14: p⊥-distribution of the staus. Left: Unweighted events as dots in the peτ−
⊥ -

peτ+

⊥ -plane. Right: Comparison of the p⊥-distribution of muons and staus. The muon
distribution peaks sharply at small values. A p⊥-cut at 5GeV is already applied. On the
stau distributions the velocity cut 0.6 < v < 0.8 is applied.

The plots in figures 14, 15, 16 and 17 display the observables of τ̃1-pairs with cos2 θeτ =
1 and meτ1 = 240GeV at the LHC with

√
s = 14TeV. We have used the PDFs CTEQ6L1

[62]. As a background the Drell-Yan muon pair production is considered. In all plots the
dimu cross sections are downscaled by a factor of 1000. On all distributions we apply
the barrel cut |η| < 2.5 (on both particles), this takes into account that the detector is
not sensitive for our signal in a certain region just around the beam axis.

Figure 14 shows the p⊥-distribution. The p⊥−p⊥-plane (left) shows that the momenta
of the two particles within an event are strongly correlated. A leading order calculation
would only contain events that are confined exactly to the diagonal. Through higher order
corrections the events are smeared away from the exact diagonal, nevertheless they are
still considerably accumulated around the diagonal. We have already applied the velocity
cut 0.6 < v < 0.8 on both staus. It is due to the upper velocity cut that there are no events
above a maximum transverse momentum according to pmax

⊥ = vcutγvcutmeτ1 which gives
us 320GeV. There is also a minimum p⊥ that comes from lower vmin combined with the
η-cut, but in that region there are only a few events anyway. Of course a maximum and
minimum p⊥ is not the only effect of the velocity cut. There are also many events within
these limits that were removed by this cut. Figure 14 (right) additionally shows the p⊥-
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Total number: 34963 648 728 525

Figure 15: Unweighted events as dots in the veτ−-veτ+-plane. The numbers in the lower
right corner of each region display the numbers of events in these regions. Due to the
symmetry to the diagonal some numbers are omitted. The total number of events is
34963.

distribution of the muons. It peaks sharply at small24 p⊥ with an additional enhancement
around p⊥ . MZ/2. The staus have very few events in that region. Therefore we can
drastically reduce the background by applying a p⊥-cut at p⊥ > 50GeV. Such a cut is
applied for the plots in figures 15, 16 and 17.

Figure 15 shows the unweighted events as dots in the veτ−-veτ+-plane. Most events
(∼ 2/3 of the total number) lie in the region where v > 0.8 for both particles. The
dashed box highlights the region of events that fulfill a velocity cut 0.6 < v < 0.8 on
both particles. The selection efficiency with such a cut is 8.5%. Below v = 0.8 there

24 To gain efficiency we’ve already applied a p⊥-cut at 5GeV at MadEvent-level, therefore the very
first bins are not reliable, the peak for p⊥ → 0 is actually much larger.
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Figure 16: Velocity distribution of one stau depending on three different choices of the
v-cut of the other stau in the same event.

is a slight accumulation around the diagonal, coming from events with low Y , that is
a low longitudinal boost of the cm-frame. Above 0.8 there is a large contribution of
events coming from large cm-frame-boosts, according to figure 12. Those events have
less correlated velocities. The lower limit of the velocity measurement vmin has only a
small effect on the efficiency. In the region ‘both particles below 0.6’ we find less than
2% of the events and in the whole region ‘at least one particle below 0.6’ there are
approximately 9% of the events.

Figure 16 shows the velocity distribution of one particle, when cutting on the other
particle (that is one removes an event in which the other particle lies above vcut). Not
surprisingly, one loses events mainly in the region where the plotted particle also has high
velocity. We’ve applied a velocity cut 0.6 < v < 0.8 on both staus in all distributions of
figure 17.
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Figure 17: Top left: Invariant mass distribution of the staus applying the hypothetical
mass of muons (therefore we take only the spatial momenta from the generated events
and substitute the energy with the muon-mass energy-momentum relation). Top right:
Distribution of the distance in the angle φ of the two staus, ∆φ. Bottom: Distribution
of Y = 1

2(yeτ− + yeτ+) (left) and y? = 1
2(yeτ− − yeτ+)(right). In all these plots the velocity

cut 0.6 < v < 0.8 is applied.
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Figure 18: Inclusive cross section for stau-pair production via Drell-Yan as a function
of meτ1 with cos2 θeτ = 1, at leading order (red) and order-α2

s (green) at the LHC. The
barrel-cut |η| < 2.5 and p⊥-cut p⊥ > 50GeV is applied to both staus. Weighted events
were used. The number of events per process before cuts were 6000-8000. The mash
of the calculation is ∆m = 20 GeV, the height of a step represents the value of its
middle-position in meτ1 .

Figure 17 shows several observables. In the top left plot the invariant mass
√
ŝ

of the stau and muon is plotted. In the experiment such a distribution is obtained
from the momentum measurement under a certain mass hypothesis. We have plotted
the stau invariant mass under a hypothesis of a muon mass. Again the plot shows a
maximum value of

√
ŝ which is due to the velocity cut according to (68), but shifted

downwards here due to the ‘wrong’ mass hypothesis. The ∆φ-distribution makes the
higher order corrections obvious. At leading order this would be a delta-function located
at π. Y describes the longitudinal boost of the cm-frame (of the staus or muons). The
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Y -distribution of the muons is relatively broad according to the large cm-frame boost
a muon with negligible mass gives rise to (according to figure 12). Y is simply limited
through the barrel cut since in the massless case one has ηi = yi and furthermore,
applying (103), yi ≤ ymax means Y ≤ ymax. Similarly, the Y -distribution of the staus is
narrowed due to their high mass. According to figure 12 a mass of 240GeV will already
drive the PDFs in a region where the required

√
ŝ doesn’t favor a large asymmetry since

one of the x would have to be very close to 1 in that case. And in those regions the PDFs
decrease sharply. y? describes the longitudinal boost of the particles in the cm-frame, so
it is related to the angle dependency in the cm-frame. According to the different angle
dependencies of the stau (62) and the muon (64) the former is a narrower distribution
than the latter.

We have also calculated the total cross section depending on the mass of the produced
staus. Therefore, we have written a script that runs a loop over the mass steps executing
MadEvent for each choice of mass. So, there is one LHE file for each mass step. We have
written another script that reads out all the generated LHE files and passes the results
through to gnuplot. Similarly to the above case we allow for kinematic cuts. We have
implemented the barrel-cut |η| < 2.5 and the p⊥-cut p⊥ > 50GeV on both particles.
We have performed the calculation for leading order Drell-Yan process and Drell-Yan
including all tree-level QCD corrections up to order α2

s. Figure 18 shows the result.
The ratio between order α2

s and leading order is approximately 2 at 100GeV and 3 at
500GeV. Let’s compare this to the ratio of NNLO (involving loops) and leading order
calculations in figure 13. There the ratio (in the central Y -region) at

√
ŝ is ∼ 1.3. So,

although the calculations for the stau cross section involve much higher
√
ŝ the order α2

s

MadEvent prediction may be a bit overestimated. However, we are pretty sure that a
precise calculation would give a value somewhere in between the two curves in figure 18.

The discovery potential of the LHC

Now we would like to give an answer to the question: Up to which stau mass could
we expect to discover the gravitino-stau scenario at 5σ-level at the LHC? For simplicity
we’ll perform this procedure for the case of (at least) one stau. A consideration of two
staus may lead to a better signal-to-background ratio. Anyway, we have to keep in mind
that an exhausting estimation of the discovery potential can only be obtained by a full
detector simulation. And this would be beyond the scope of this thesis.

Figure 19 shows the cross section for the inclusive cross section of (at least) one stau
in the initial state. All the same we only apply cuts on one of the staus.25 Such a

25There’s one subtlety about such a choice for the case in which one considers the velocity distribution.
If both particles of an event survive the cuts, one has to choose which one to plot. This situation has
its counterpart in the experiment. If there are more than one ‘slow muon’ one has to choose which
one to pass through to the analysis. One might be tempted to take the slowest one. But this choice
would alter the resolution function to give larger contributions at low velocities because of selection
effects. Depending on the exact shape this might be overcompensated by a similar reweighting of the
stau velocity distribution. Anyway, we will not get involved in this business. Instead we’ll make the
(seemingly strange) choice of simply taking one arbitrarily chosen stau (or ‘slow muon’) that survives
the cuts.
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Figure 19: Inclusive cross section for single stau production via Drell-Yan as a function
of meτ1 with cos2 θeτ = 1 to leading order (red) and order α2

s (green) at the LHC. The
barrel-cut |η| < 2.5 and p⊥-cut p⊥ > 50GeV is applied on one stau. For the blue
curve the velocity cut 0.6 < v < 0.8 is applied additionally. Weighted events were used.
The number of events per process before cuts have been 6000-8000. The mash of the
calculation is ∆m = 20 GeV, the height of a step represents the value of its middle-
position in meτ1 .

velocity-cut selects the events that lie within the green rendered cross in figure 15. By
considering (at least) one stau the cross section increases by a factor of ∼ 4 with respect
to the case of requiring two staus within the cuts. This is the approximate enhancement
you get from adding up the appropriate numbers in figure 15 since the cuts on p⊥ and η
have only a small effect on the stau events (at least for the higher end of the considered
stau masses). The blue curve in 19 shows the respective cross section with a cut on p⊥,
η and v.
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The inclusive cross section for single muon production with p⊥ > 50GeV and |η| < 2.5
is σtot

µ ' 1.1 nb. The dominant contribution comes from the decay of W+ and W− that
where produced either directly in the hard scattering or within the decay of the heavy
quarks t, b and c [34]. (Due to the fact that the LHC is a pp-collider, the cross section
for direct W−-production is appreciably smaller than W+-production—it is more likely
to have a ud̄ initial state than a dū. Hence, there should be a slight asymmetry in the
single muon events favoring positive charged muons.)

Now, the number of stau events we expect at a certain (integrated) luminosity L is

L
∫ vcut

vmin

dv
dσeτ
dv

(v) (122)

where we display the velocity cut explicitly and assume that the others are already
applied in σeτ . From a statistical point of view (dσ/dv) (v) is the theoretical distribution
that is assumed to be traced by the experimental data according to the discrete nature
of events. Similarly, one can think of the resolution function R(v, 1) times the total cross
section of the muons

σtot
µ

∫
dv′ δ(v′ − 1)R(v, v′) = σtot

µ R(v, 1) (123)

as a distribution that will also be complied by the events of the experiment. Now, we
take the latter distribution to be the background of the former one26 and express the
significance of our signal through the formula

nσ =
S√
S +B

=

√
L
∫ vcut

vmin
dv dσeτ

dv (v)√∫ vcut

vmin
dv dσeτ

dv (v) + σtot
µ

∫ vcut

vmin
dv R(v, 1)

, (124)

where S and B stand for signal and background, respectively.27 (124) can be seen rather
as a function of L, meτ1 or even vcut. We adopt the feature∫ 0.8

0.6
dv R(v, 1) ' 1

1.7× 106
(125)

26 A justified question on the subject of this treatment would be, how we accommodate the uncer-
tainties of the stau measurement. Ok, we aren’t doing this, but let us explain. Our approach is truly
a simplified treatment, but it is the best we can do without knowing the explicit form of the resolution
function. The accurate treatment of this problem would be to smear the velocity distribution of the
staus with the resolution function Z

dv′
dσeτ
dv′

(v′)R(v, v′)

as well. Therefore we additionally need to now the shape of R(v, v′) below v′ = 1. Anyway, looking
at the velocity distribution of the staus in figure 16 the curve is still rising at vcut. So, if the shape of
R(v, v′) doesn’t alter in the region v′ > 0.8 to v′ < 0.8 in a completely unexpected way (for instance
that it is very sharp above and very wide below 0.8) we would gain more events that were smeared from
above 0.8 to below 0.8 than we would lose through the opposite effect. (The 0.6-limit would be less
dominant.) So we claim that the simplified approach is a conservative estimation.

27This formula holds for the limit of S,B � 1. Especially, if there are only a few signals and effec-
tively no background at all, this formula considerably underestimates the significance. The appropriate
treatment then is to argue with the null hypothesis.
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for the resolution function given in the discussion in the first passage of this section and
take ∫ 0.8

0.6
dv

dσeτ
dv

(meτ1) (126)

from the blue curve in figure 19. Therewith we have plotted (124) as a function of meτ1
for four different luminosities. The result is shown in figure 20. The intersection point
of each curve with the 5σ-significance-line shows up the maximum stau mass that would
be accessible to a 5σ-discovery at the respective luminosity.
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Figure 20: Significance of the inclusive one-stau signal, as a function of the stau mass
meτ1 for four different luminosities. The intersection points with the dashed 5σ are at the
masses 186, 249, 322, 391 in GeV.

We want to emphasize that these results are very rough and should be used with
caution. On the one hand we were very conservative in our estimation of the stau
production. We only considered the Drell-Yan contribution that is just one production
channel under many others that might be rather dominating. So this result is to be seen
as a lower bound for the discovery potential. But since it is fully model independent
we can claim that if the considered gravitino-stau scenario is chosen by nature than we
can expect to see it at the LHC according to the above results in any case. On the
other hand—just to continue our ‘disclaimer’—the errors of the resolution of the velocity
measurement are not very well known. This is a quantity that has to be developed
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Figure 21: Velocity distributions of the muons and staus. The black curve shows a
resolution function (times σtot

µ that fulfills the condition (125) and the condition that
vcut = 0.8 provides the highest significance for a stau mass of 249GeV. The blue and
red curves are the velocity distributions for a stau mass of 186 and 391GeV respectively.
Only the relative normalization is meaningful. The dashed black line shows the trivial
distribution that fulfills the above condition for any stau mass.

from data. Thus our assumption that a velocity cut at v = 0.8 leads to a background-
suppression at 5σ-level is a very rough estimation. Ultimately a sufficiently accurate
signal-background calculation is the subject of a full detector simulation.

Nevertheless, one can make a few general statements about choosing the right ve-
locity cut for a certain discovery. The resolution function is presumably not Gaussian.
(Otherwise we can always reduce vcut to a point under which the signal-to-background
ratio is abundant, due to the steep slope of the Gaussian distributions, in comparison to
the one of the velocity distribution of the staus. Ok, if this point is below 0.6 then this
is untrue but then there would be no chance to discover the particle anyway.) Typically,
such resolution functions are Gaussian-like but with an additional long tail that gives
a perceptible contribution down to the lower end of the considered velocity frame. We
model such a curve by combining a Gaussian and a Lorentzian distribution. However, we
take just one curve that reconstructs the simplified situation from above for one choice of
stau mass: The integral over the interval 0.6 < v < 0.8 is suppression at 5σ-level against
the total integral (125) and vcut = 0.8 provides the best significance for this specific
stau mass. We have taken meτ1 from the intersection point of the 30 fb−1-curve with the
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Figure 22: Significance as a function of vcut for two stau masses. The blue (meτ1 =
186GeV) and red (meτ1 = 391GeV) curve correspond to the first and last intersection
point mass from figure 20, repectively.

5σ-line in figure 20 (249GeV). This curve is shown in figure 21 as the solid black line.
Now, we have taken two velocity distributions of staus for masses that correspond to

the 10 fb−1- and 300 fb−1-intersection point in figure 20. It is plotted as the blue and red
curve in figure 21, respectively. (For this purpose we use a fit on the MadEvent-computed
data, the fit is optimized for the region 0.6-0.9.) With this we evaluated equation (124)
as a function of vcut. This is shown in figure 22. Of course both curves intersect with
each other at v = 0.8 and nσ = 5, that’s how there are chosen. But this point is no
longer the maximum. Anyway, in this example (we just took the usual suspects for the
distribution and tried it out) the effect is unspectacular. But we may see a tendency
here. Searching for heavy particles at high luminosities might favor smaller values of vcut

than searching for lighter particles with less data.
This procedure can be seen as a procedure for finding the ‘right’ vcut in order to max-

imize the significance when the resolution function of the velocity measurement R(v, v′)
is known from experiment.

65



7 Conclusion and Outlook

In models of gauge-mediation, gaugino-mediation and in a certain domain of parameter
space of gravity-mediation a gravitino LSP is provided and is naturally accompanied by
a stau NLSP. The stau plays a key role in this scenario since its decay into the gravitino
is suppressed by 1/〈F 〉2. For 〈F 〉 & (105 GeV)2 the stau will be long-lived in a collider
experiment.

Our discussion has shown that there are different production channels of long-lived
staus that provide for different signatures. The staus coming from cascades of strongly
interacting particles will typically have very large velocities and the correlation of the
momenta of the initially produced squarks or gluinos will be smeared away in the course
of the cascade decays.

The electroweak direct production via the Drell-Yan process always provides stau
events with two staus of opposite charge and with strongly correlated momenta. Its
production rate depends only on the two supersymmetry parameters meτ1 and θeτ . The
θeτ -dependence of the cross section is independent of the kinematical variables t̂, û and
at first approximation independent of ŝ (as long as ŝ is larger than a few times M2

Z),
thus θeτ only causes a shift of the total cross section. We have seen that there is a
universal velocity distribution in the cm-frame that holds for all sfermion-pairs in the
s-channel production. And we have made further investigations to understand how such
a distribution is affected by boosts of the cm-frame. The conclusion is, that even at high
stau masses around 500GeV the maximum of the velocity distribution lies near 1 and
the largest domain of events lies in the region 0.8-1. This characteristic feature doesn’t
change before the cm-energy comes close to the beam-cm-energy, this takes place at
above meτ1 ∼ 1TeV. Below meτ1 ∼ 500GeV the total cross section of the staus decreases
roughly by an order of magnitude when doubling the mass. Above 500GeV the decrease
is larger due to the change of the character of the slope of the parton luminosity above
∼ 1TeV.

Our discussion has also touched some experimental issues. The determination of the
resolution function of the velocity measurement is a quantity to be extracted from data at
the LHC. The knowledge of such a resolution function is crucial for a precise estimation
of the muon-background, since mis-identified muons are the only background to heavy
charged (s)particles. We have shown how the choice of a velocity cut in principle affects
the significance of a discovery.

In a model-independent, conservative estimation (and with a first estimation for the
velocity measurement resolution function) we stated that if the gravitino-stau scenario
is chosen by nature we can expect to discover it at the LHC at least up to a stau mass
of meτ1 ∼ 400GeV (with 300 fb−1).

The LHC also resembles the appropriate environment to measure the mass of the
staus, once they are discovered. Due to the (relatively) precise momentum measurement
a combination of the velocities and transverse momenta of the stau pairs will give a
relatively easy access to the stau mass. To some extent also the measurement of the
mixing angle is possible. This is especially true when considering other contributions
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to stau production that are sensitive to the mixing angle (like H-resonance or decays
from heavier sleptons that were produced via W±). Another interesting outlook is to
determine the properties of the gravitino by considering stau decays. This could be done
by analyzing data from staus that are stopped inside or near the detector and decay
afterwards into the gravitino and the τ . If the origin of such a stau can be reconstructed
from the data it is in principle possible to conclude the gravitino mass via the lifetime of
the stau and meτ1 .
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A Conventions

Throughout this thesis we work in Heaviside-Lorentz units, that is

~ = c = 1 , (127)

and

α =
e2

4π
. (128)

Whenever cross sections are computed we need to translate the result form GeV−2 to the
SI-related unit barn. So, we have to restore the appropriate powers in ~ and c. Thus, a
factor of

(~c)2 ' 0.39mbarn GeV2 (129)

has to be multiplied. (The precise numerical value can be found at [14].)

The kinetic terms of the Lagrangians contain two quantities we want to fix here.
First, a sign depending on the choice of the Minkowski metric. We have chosen

η = diag(−1,+1,+1,+1) . (130)

Second, σµ and σ̄µ, which is defined as

σ0 = σ̄0 =
(

1 0
0 1

)
, σ1 = −σ̄1 =

(
0 1
1 0

)
,

σ2 = −σ̄2 =
(

0 −i
i 0

)
, σ3 = −σ̄3 =

(
1 0
0 −1

)
.

(131)

With this we can write down the gamma matrices as

γµ =
(

0 σµ

σ̄µ 0

)
, γ5 =

(
−1 0
0 1

)
, (132)

where we adopt a 2× 2 block notation.
A comprehensive treatment of translating between two-component Weyl spinors and

four component Dirac spinors can be found in [33].
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B Supersymmetry interactions

In this section we would like to give an overview of the allowed interactions the super-
symmetry Lagrangian and the soft breaking terms give rise to. We start with the terms
induced by (16).

Terms from W ijψiψj

The fermion mass terms:

M ijψiψj −→ (133)

M∗ijψ
†iψ†j −→ (134)

The Yukawa couplings:

yijkφiψjψk −→ (135)

y∗ijkφ
∗iψ†jψ†k −→ (136)

Note that in the case of the R-parity preserving MSSM (that is with a superpotential of
the form (20)) in (135) and (136) there is always exactly one of the fields belonging to
the Higgs supermultiplets. So in other words the entries of yijk have to be zero except
for the case when i, j or k denotes a Higgs supermultiplet (this is due to the symmetry of
yijk). Similarly, M ij is restricted to vanish except for the Hu-Hd and Hd-Hu component.
This fact also restricts the (scalar)3-interactions.

Terms from |W i|2

The scalar mass term:

M∗ikM
kjφ∗iφj −→ (137)

The (scalar)3-couplings:

M∗iny
jknφ∗iφjφk −→ (138)
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M iny∗jknφiφ
∗jφ∗k −→ (139)

The (scalar)4-coupling:

yijny∗klnφiφjφ
∗kφ∗l −→ (140)

Terms from F a
µνF

µνa

The (vector)3-coupling:

g fabcAµbAνc
(
∂µA

a
ν − ∂νAaµ

)
−→ (141)

The (vector)4-coupling:

g2 fabcfadeAbµa
c
νA

µdAνe −→ (142)

These are just SM couplings. g and fabc are the gauge couplings and the totally antisym-
metric structure constants (fulfilling [T a, T b] = ifabcT c) of the gauge groups, respectively.
To reduce clutter, we won’t display the gauge group index here, of course these interac-
tions only exist in the non-abelian case of SU(2)L and SU(3)C (a = 1, . . . , 3 for SU(2)L
and a = 1, . . . , 8 for SU(3)C).

Gauge couplings from the covariant derivatives

The fermion gauge coupling:

gAaµψ
†iσ̄µ(T aψ)iψi −→ (143)

The gaugino gauge coupling:

gfabcAbµλ
†aσ̄µλa −→ (144)
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The scalar gauge couplings:

g(∂µφ∗i)Aaµ(T aφ)i −→ (145)

g2AaµA
µa(T aφ)i(φ∗T a)i −→ (146)

Other interactions including gauge couplings

The gaugino coupling to a scalar-fermion chiral multiplet pair:

g(φ∗iT aψi)λa −→ (147)

gλ†a(ψ†iT aφi) −→ (148)

Another contribution to the (scalar)4 coupling:

g2
a(φ
∗iT aφi)2 −→ (149)

This (scalar)4 coupling gives the (Higgs)4-contribution to the Higgs potential and there-
fore allows electroweak symmetry breaking. Such a contribution cannot be obtained from
(140), since at most two of the fields can be Higgs fields there.

As a consequence of R-parity conservation you can take each SM three leg diagram
and turn an even number of legs (that are simply two legs) into its superpartner legs to
obtain a corresponding supersymmetry diagram, characterized by the same couplings.
The (scalar)3-, (scalar)4- and the (scalar)2(vector)2-couplings cannot be obtained by this
procedure. As well as that there is no corresponding diagram for the (vector)4-interaction.

Next, we will display the additional diagrams that come with soft supersymmetry
breaking, written down in (22).
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Soft supersymmetry breaking terms

The non-analytic scalar squared mass terms (bilinear terms):

(m2)ijφ
∗
iφ

j −→ (150)

The analytic scalar squared mass terms:

bijφiφj −→ (151)

b∗ijφ
∗iφ∗ij −→ (152)

The trilinear terms:

aijkφiφjφk −→ (153)

a∗ijkφ
∗iφ∗jφ∗k −→ (154)

The gaugino mass terms:

Maλ
aλa −→ (155)

As you can see in equation (22), only the Higgs fields appear in the analytic scalar mass
terms, while in the non-analytic scalar mass terms there are only the sfermions.

The Goldstino/gravitino couplings to the MSSM multiplets

The Goldstino-scalar-fermion term:

(∂µG̃α)(σν σ̄µψi)α∂νφ∗i −→ (156)

The Goldstino-gaugino-(gauge boson) term:

(∂µG̃α)(σµσ̄νσρλ†a)α
(
∂µA

a
ν − ∂νAaµ

)
−→ (157)

The Goldstino-gaugino-(gauge boson)2 term:

g fabc(∂µG̃α)(σµσ̄νσρλ†a)αAbµA
c
ν −→ (158)
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C Transformation of velocities and angles

In the case the cm-frame is boosted along the z-axis, the velocities as well as the angles
transform in a non trivial way. This is what we want to show here.

Let’s see how to perform the Lorentz-boost with velocity β along the z-axis. Let’s
consider an arbitrary vector x′ defined in the cm-frame. We can write it as x′ = x′‖ê‖ +
x′⊥ê⊥ splitting up the vector in its projection parallel and orthogonal to the beam, the
direction of the boost. The Lorentz boost is t

x⊥
x‖

 =

 γ βγ 0
0 0 1
βγ γ 0

 t′

x′⊥
x′‖

 =

γ(t′ + βx′‖)
x′⊥

γ(βt′ + x′‖)

 . (159)

Thus we find

v‖ =
dx‖
dt

=
γd(βt′ + x′‖)

γd(t′ + βx′‖)
=

(
dt′ + βdx′‖

βdt′

)−1

+

(
dt′ + βdx′‖

dx′‖

)−1

=
β + v′‖

1 + βv′‖
(160)

and

v⊥ =
dx⊥
dt

=
x′⊥

γd(t′ + βx′‖)
=

(
γdt′

dx′⊥
+
γβdx′‖
dx′⊥

)−1

=
v′⊥

γ(1 + βv′‖)
. (161)

We always measure the angle θ from the beam-axis, so that (same for primed quan-
tities)

v⊥ = v sin θ
v‖ = v cos θ .

(162)

Thus for the angle in the laboratory frame one obtains

tan θ =
sin θ′

γ(β/v′ + cos θ′)
. (163)

This transformation law has inverse functions that can only be defined by sections.
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D The corrections to the Drell-Yan process in αs

To get en overview over the possible diagrams that contribute to the Drell-Yan corrections
up to order α2

s we have listed all these contributions.
Please note that in figures 23-26 we use a shortened notation: All (s)fermion lines

come without arrows and so all possible combinations of arrow directions are meant by
one diagram. As a consequence we suppress the bar on the qs in the titles. But of course
only in the two diagrams in the first line of figure 26 ‘qq’ (in the accurate notation) is
possible, since the two initial state (anti-)quarks are part of distinct fermion-lines.

In the titles we only display the strong interacting initial and final states.

qq → g:

gq → q:

Figure 23: Order-α1
s -contributions to the inclusive pp → τ̃−τ̃+ tree-level process.
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gq → gq:

Figure 24: Order-α2
s -contributions to the inclusive pp → τ̃−τ̃+ tree-level process.
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qq → gg:

gg → qq:

Figure 25: Order-α2
s -contributions to the inclusive pp → τ̃−τ̃+ tree-level process.
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qq → qq:

Figure 26: Order-α2
s -contributions to the inclusive pp → τ̃−τ̃+ tree-level process. The

two diagrams in the first row are the only ones that allow two distinct quarks in the initial
state and thus inter alia the initial state qq (and here it is meant explicitly without a bar
on one of the quarks).
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