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Abstract

Mildly broken R-parity is known to provide a solution to the cosmological
gravitino problem in supergravity extensions of the Standard Model.

In this work we consider new effects occurring in the R-parity breaking
Minimal Supersymmetric Standard Model including right-handed neutrino
superfields. We calculate the most general vacuum expectation values of
neutral scalar fields including left- and right-handed scalar neutrinos. Ad-
ditionally, we derive the corresponding mass mixing matrices of the scalar
sector. We recalculate the neutrino mass generation mechanisms due to right-
handed neutrinos as well as by cause of R-parity breaking. Furthermore, we
obtain a, so far, unknown formula for the neutrino masses for the case where
both mechanisms are effective.

We then constrain the couplings to bilinear R-parity violating couplings in
order to accommodate R-parity breaking to experimental results. In order to
constrain the family structure with a U(1) bQ flavor symmetry we furthermore
embed the particle content into an SU(5) Grand Unified Theory. In this
model we calculate the signal of decaying gravitino dark matter as well as
the dominant decay channel of a likely NLSP, the scalar τ -lepton. Comparing
the gravitino signal with results of the Fermi Large Area Telescope enables
us to find a lower bound on the decay length of scalar τ -leptons in collider
experiments.



Zusammenfassung

Es ist bekannt, dass schwach gebrochene R-Parität eine Lösungsmöglichkeit
für das kosmologische Gravitino Problem in Supergravitations-Erweiterungen
des Standardmodells darstellt.

Daher berechnen wir in dieser Arbeit die Effekte, die im R-Paritäts-
brechenden minimalen supersymmetrischen Standardmodell unter Berück-
sichtigung von rechtshändigen Neutrinos auftreten. Wir berechnen die allge-
meinsten Vakuumerwartungswerte der neutralen Felder inklusive der links-
und rechtshändigen skalaren Neutrinos. Zusätzlich berechnen wir die Massen-
mischungsmatrizen der skalaren Felder. Im fermionischen Sektor berechnen
wir sowohl die Neutrinomasse, die durch die rechtshändigen Neutrinos er-
zeugt wird, als auch diejenige, die durch die R-Paritäts-Brechung erzeugt
wird. Dadurch werden wir in die Lage versetzt eine bisher unveröffentlichte
Formel für die Neutrinomasse herzuleiten, die gilt, wenn beide Mechanismen
wirken.

Um den experimentellen Ergebnissen Rechnung zu tragen führen wir da-
nach bilineare R-Paritäts-Brechung ein. Um die Familienstruktur durch eine
U(1) bQ-Familiensymmetrie einzuschränken betten wir den Teilcheninhalt in
eine SU(5) große vereinheitlichte Theorie ein. In diesem Modell berechnen
wir ein mögliches Signal von zerfallender dunkler Materie, sowie den do-
minanten Zerfallskanal eines möglichen zweitleichtesten supersymmetrischen
Teilchens, des skalaren τ -Leptons. Durch Vergleich unserer Rechnung für das
Gravitino mit den Ergebnissen des Fermi Large Area Telescope können wir
eine untere Schranke für die Zerfallslänge des skalaren τ -Leptons in Beschleu-
nigerexperimenten vorhersagen.
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1

Introduction

The Standard Model (SM) of particle physics describes the behavior of high
energy physics up to the electroweak scale very well [1, 2]. Up to now all
particles predicted by the SM, except for the Higgs boson, are found and
most parameters it depends on are measured to a high degree of accuracy.
Hence it is expected that the Higgs boson will be found in the near future at
the Large Hadron Collider (LHC). In the SM fermions couple to the Vacuum

Expectation Value (VEV) of the Higgs boson in order to acquire mass.

However, despite all its successes, it is a well-established fact that the SM
must be extended in order to have a full description of nature. One reason
is that neutrinos are known to have a tiny mass, as is required to account
for neutrino oscillations [3]. This small left-handed neutrino masses can
be explained by introducing super-heavy right-handed Majorana neutrino
singlets that generate the light neutrino masses via the seesaw mechanism
[4, 5]. Furthermore the SM suffers from the hierarchy problem, namely the
observation that the Higgs boson is 16 orders of magnitude lighter than the
fundamental Planck scale, despite dominant ultraviolet contributions at loop
level [6].

The hierarchy problem can be circumvented by imposing Supersymmetry

(SUSY), which doubles the particle content by introducing new supersym-
metric particles whose spins differ by one half from the known particles and
which cancel the large loop contributions [6] to the mass of the Higgs bo-
son. In this thesis we consider local SUSY, i.e. Supergravity (SUGRA). It
inevitably predicts the existence of a spin-3/2 particle, the gravitino, as the
supersymmetric partner of the gauge boson of gravity, the graviton [7, 8].

With imposed SUSY new problems emerge, for instance matter instability
and the µ-problem [6]. The latter is a naturalness problem or, in other words,
a moderate hierarchy problem, but it is not the topic of this thesis. Matter
stability, on the other hand, can be assured by introducing R-parity [9].
However, this symmetry is not governed by a fundamental mechanism and
consequently we may take a different approach.

The supersymmetric low-energy mass spectrum is unknown and deter-
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mined by the chosen SUSY breaking model. Hence, there are numerous
different possibilities for the Lightest Supersymmetric Particle (LSP), for in-
stance the scalar τ -lepton, the neutralino or the scalar neutrino. Provided
the LSP is uncharged, it could amount, on cosmic scales, to the observed
Dark Matter (DM) density which is crucial to the SM of cosmology [10].

Consistent cosmology needs in addition an inflationary phase, caused by
an scalar inflaton field [11]. The decay of the inflaton field can lead to re-
heating [12]. If one explains the observed baryon asymmetry via leptogenesis
one has to deal with a high reheating temperature [13]. This constrains the
low-energy mass spectrum. Since the gravitino decays are suppressed by the
Planck mass, the late decays of the gravitino into lighter supersymmetric
particles spoil Big Bang Nuclesynthesis (BBN) predictions [14]. Hence the
gravitino must be the LSP, but then the Next-to-Lightest Supersymmetric

Particle (NLSP) can only decay into the gravitino. This decay, however,
is as well suppressed by the Planck mass, hence it spoils BBN predictions
likewise [14].

Therefore, one has to open new decay channels. Here we focus on the pos-
sibility of R-parity violating couplings and take the experimental constraints
as bounds to these couplings. As a side effect these couplings lead to a tiny
neutrino mass, without considering right-handed neutrinos [15].

Another approach to extend the SM are Grand Unified Theories (GUTs)
[16, 17]. In GUTs the SM gauge group is embedded into a larger simple
symmetry group, for instance, SU(5) or SO(10) [18, 19]. In supersymmetric
GUTs, as opposed to the SM, the gauge couplings approximately unify [1] at
the GUT scale. This is a strong indication that both extensions of the SM
go along. In GUTs the particle content of the SM is combined in different
representations of the larger gauge group.

Supersymmetric GUTs are easily implemented in heterotic string models.
These Orbifold GUTs often predict a U(1) bQ Froggatt–Nielsen flavor symme-
try. The U(1) bQ charges of representations containing the SM are constrained
by, for instance, the CKM-matrix. In models which involve leptogenesis the
charges of the right-handed neutrinos can be constrained as well [20].

As explained above, cosmology accommodating leptogenesis and grav-
itinos requires broken R-parity. Once the U(1) bQ flavor symmetry is imple-
mented, one is able to build an R-parity violating supersymmetric model,
depending on the usual superpotential and SUSY breaking Lagrangian as
well as two small parameters, one describing the amount of R-parity break-
ing and the other one describing the flavor hierarchy of all couplings [21].
Every parameter has to be defined at the GUT scale and run down to the
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weak scale, where the measurable parameters have to be fitted to observa-
tions in order to have a consistent model.

Hence the question arises what the vacuum of R-parity breaking SUSY in-
cluding right-handed neutrino superfields is. Although the R-parity conserv-
ing Minimal Supersymmetric Standard Model (MSSM) is very well-known,
already for the R-parity breaking case one finds contradicting formulas in the
literature. The R-parity breaking theory with right-handed neutrino super-
fields is even less investigated. For instance, both, the right-handed neutrino
and R-parity violation, generate neutrino mass. However, to our knowledge
a formula were both mass generation mechanisms are combined is unknown.

Furthermore, we are interested in finding a supersymmetric R-parity
breaking model including U(1) bQ flavor symmetry, which is compatible with
the SM of particle physics as well as the SM of cosmology including lep-
togenesis and BBN. We would like to have a DM candidate as well as an
observable signal of the NLSP in detectors. Furthermore, we are looking for
a possibility to constrain the predictions for observations in LHC detectors
via cosmological observations.

In Chapter 1 we give a rough overview about the theoretical foundations
needed in this thesis. We start in Section 1.1 with the SM and its limitations.
In Section 1.2 we give a rough overview of SUSY including SUGRA, R-parity
breaking, and SUSY breaking. In Section 1.3 we introduce the Froggatt–
Nielsen flavor symmetry. We finish the theoretical overview in Section 1.4
with a recollection of the theory of renormalization group equations.

In Chapter 2 we define the superfields and couplings of the MSSM in-
cluding the right-handed neutrino superfield as well as R-parity violating
couplings. In Section 2.1 we introduce the chiral superfields and the super-
potentials belonging to these two extensions of the MSSM. In Section 2.2
we describe the rotation freedom of the R-parity breaking Lagrangian and
lay the foundations for bilinear R-parity breaking. In Section 2.3 we intro-
duce vector superfields. Finally, we characterize in Section 2.4 the soft SUSY
breaking Lagrangian.

In Chapter 3 we evaluate the field mixing in the neutral sector, depending
on the couplings and fields chosen. In Section 3.1 we start with the scalar
bosons and concentrate in particular on the VEVs, as we expect to clarify
the confusion about the formula in the R-parity breaking case. In Section 3.2
we recollect the formulas for the vector bosons in the SM. We come finally
in Section 3.3 to the field mixing of the fermions, were we are, in particular,
interested in the mass generation mechanisms for neutrinos.

In Chapter 4 we study the constraints on R-parity breaking and introduce
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bilinear R-parity breaking as a possible solution. In Section 4.1 we examine
the bounds on general R-parity breaking due to proton decay. In Section 4.2
we are gathering the constraints on R-parity violation due to cosmology. In
Section 4.3 we introduce bilinear R-parity breaking which is in accordance
with the constraints mentioned before. Finally, we calculate the gravitino
decay width in Section 4.4, as well as the scalar τ -lepton decay width in
Section 4.5.

In Chapter 5 we eventually constrain the flavor structure with a U(1) bQ
flavor symmetry. In Section 5.1 we constrain the family structure according
to an SU(5) GUT. We derive the flavor dependence of the superpotential pa-
rameter in Section 5.2, as well as the dependence of the soft SUSY breaking
parameters in Section 5.3. In Section 5.4 we calculate the flavor dependence
of the rotated bilinear breaking parameters. In Section 5.5 we finally con-
strain the family structure of the scalar τ -decay.
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Chapter 1

Theoretical Foundation

1.1 The Standard Model and Beyond

The SM of particle physics describes all known phenomena up to the elec-
troweak scale Mew = O (100 GeV) [2]. However, it is expected that new
physics occurs at higher scales; definitely at the Planck scale

MP = (8πGNewton)−
1/2 = 2.4 × 1018 GeV . (1.1)

The large ratio between these two scales give rise to the so called hierarchy
problem. In particular the Higgs is rather sensitive to physical effects as-
sociated with higher energy via loop corrections. Thus the mass generation
mechanism for the SM particles is influenced by this effect. However, one
can calculate that the most severe divergences from boson and fermion loops
cancel if there is a symmetry which relates these two contributions. Super-
symmetry is such a symmetry and since its generator Q connects bosons with
fermions [6]

Q|boson〉 = |fermion〉 , Q|fermion〉 = |boson〉 , (1.2)

it is fermionic itself. A theory that connects the Poincaré algebra with inner
symmetries was formerly ruled out by the Coleman-Mandula theorem [22]
which states that for a realistic theory there can be no nontrivial symmetry
algebra apart from the Poincaré algebra and the internal symmetry alge-
bra. However, as shown by Haag,  Lopuszański and Sohnius [23] this can be
circumvented by using a graded Lie algebra. The Poincaré algebra can be
extended with the SUSY algebra. The anticommuting generators Q form the
(anti)-commutators

[
Q,Q†]

+
= −2σµPµ , [Q,P µ] = 0 ,

[
Q†, P µ

]
= 0 , (1.3)



6 1. Theoretical Foundation

0 5 10 15 log10
M

GeV

10

20

30

40

50

α−1
i

SM

α−1
1

α−1
2

α−1
3

0 5 10 15 log10
M

GeV

10

20

30

40

50

α−1
i

MSSM

α−1
1

α−1
2

α−1
3

Figure 1.1: Gauge coupling running in the SM (left) and in the MSSM (right)
[1]. The gauge coupling g(a) is parametrized as fine structure
constant α(a) = (4π)−1g2

(a).

involving the generator of translations, the momentum four vector P µ. The
Pauli matrices σµ are defined in Appendix B.1.

Additionally, supersymmetric models can be phenomenologically inter-
esting, given that in many cases it turns out that a viable DM candidate can
be found in the supersymmetric particle spectrum.

The running gauge coupling constants g(a) of the SM gauge group,

GSM = SU(3)C × SU(2)L × U(1)Y , (1.4)

calculated using the renormalization group equations (RGE) involving only
the SM particle content, do not intersect in a single point. However, with
the (MSSM) particle content the coupling constants unify approximately at
MGUT ≃ 1016 GeV [1] as can be calculated with the β-function (E.1). This
different high energy behavior of the three gauge coupling constants ga is
shown in Figure 1.1, the index (a) runs over the three factors of the SM gauge
group, and g1 is taken in the unification normalization. This unification is a
strong evidence that SUSY is consistent with GUTs. In GUTs the SM gauge
group is embedded into a simple group with only one gauge coupling constant.
The field content of the SM plus the right-handed neutrino superfields can
be found in the following representations of the SU(5) [18]

10i = (Qi, U
c
i, E

c
i) , 5i = (Dc

i, Li) , 1i = N c
i , (1.5)

where i is the family index. Another possibility are three copies of the 16 =
10 + 5 + 1 multiplet of the SO(10) containing the SU(5) multiplets [24].
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As one can see, the inclusion of the right-handed neutrino singlet is theo-
retically well motivated by SO(10) GUT. Experimentally one finds that the
left-handed neutrino mass is very small but not negligible, as can be observed
from neutrino oscillations [25, 26]. The right-handed neutrino together with
the seesaw mechanism provides an elegant way to give such small masses to
the left-handed neutrinos [4, 5]. The addition of the right-handed neutrino
adds lepton number breaking terms, which can be used to explain the baryon
asymmetry in our universe via thermal leptogenesis [13] as briefly explained
in Section 4.2.

1.2 Supersymmetry

In SUSY every SM particle obtains a supersymmetric partner, whose spin
S differs by ∆S = 1/2 from the SM particle. The supersymmetric particle
spectrum must be jointly shifted to higher masses via SUSY breaking.

Chiral fermions are described as two component Weyl spinors. The details
of the notation can be found in Appendix B.1 and, for instance, in [27]. A
Lagrangian containing Weyl fermions can be written down in such a way
that it contains only left-handed fields. The right-handed fields are included
with the help of charge conjugation of left-handed fields as can be seen in
the representations (1.5).

1.2.1 Global Supersymmetry

The chiral superfield Φi is an object that contains a Weyl fermion χi, a com-
plex scalar field φi, and a complex scalar auxiliary field Fi. The index i runs
over the whole collection of fields, in particular the family index is included.
The component fields are connected via the fermionic super transformation
ξ. After the elimination of the auxiliary field via its equation of motion, the
SUSY Lagrangian of the chiral multiplet is

−Lchiral = ∂µφi
∗
∂µφi − iχi

†
σ̄µ∂µχi

+ 1
2

(
W ijχiχj +Wij

∗χi
†
χj

†
)

+W iWi
∗ ,

(1.6)

where the superpotential W is defined by

W = LiΦi + 1
2
M ijΦiΦj + 1

6
yijkΦiΦjΦk . (1.7)

Here the trilinear term yijk is a Yukawa coupling, the bilinear term M ij is
a mass matrix and the linear term Li is not needed in our model, but is
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nonetheless for gauge singlets allowed. The indices on the superpotential in
the Lagrangian (1.6) imply a derivative with respect to the scalar fields. The
part of the Lagrangian containing the superpotential contribution gives the
scalar potential for the chiral multiplet.

The Lagrangian (1.6) is invariant under the phase change

Φi → Φi exp (iqiα) . (1.8)

Making this phase change local α = α(x) requires the introduction of the
vector superfield, containing the vector boson Aaµ, the fermionic gaugino λa,
and a real bosonic auxiliary field Da. Here the group index a runs over the
adjoint representation of the gauge group. The Lagrangian of the vector
superfield components is

−Lgauge = 1
4
F a
µνF

µνa + iλa†σ̄µDµλ
a − 1

2
DaDa , (1.9)

where Fµν is the usual field strength of Aµ and the auxiliary field has the
trivial equation of motion

Da = −g(a)

(
φi

†
(T a)jiφj

)
, (1.10)

where T a are the representation matrices of the gauge groups. In order to
couple these two supermultiplets in a gaugeinvariant and supersymmetric
way one has to replace the derivative in (1.6) with the covariant derivative
used in the Lagrangian (1.9)

Dµ = ∂µ − ig(a)A
a
µT

a , (1.11)

and add the terms

−Lmix =
√

2g(a)φ
i∗(T a)jiχjλ

a +
√

2g(a)λ
a†χi

†
(T a)jiφj +DaDa (1.12)

to the SUSY Lagrangian.

The chiral Lagrangian (1.6) forms together with the gauge Lagrangian
(1.9) and the mixing Lagrangian (1.12) the complete Lagrangian for global
SUSY. Via the Noether procedure one gets the supercurrent of this La-
grangian

Jµ = σνσµχiDνφ
i∗ − iσµχi

†
Fi − 1

2
√

2
σνσρσµλa†F a

νρ − i√
2
Daσµλa† , (1.13)

which is used in local SUSY.
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graviton gravitino (SU(3)C , SU(2)L)U(1)Y

gµν ψµ (1, 1)0

Table 1.1: The gravity supermultiplet.

1.2.2 Local Supersymmetry – Supergravity

In order to promote SUSY to a local symmetry ξ = ξ(x) one has to explicitly
express the metric tensor in the Lagrangian [8]. After quantization the metric
becomes a bosonic spin two field called the graviton,

gµν = ηmne
m
µ e

n
ν . (1.14)

Where emµ is the vierbein and ηmn = diag (1,−1,−1,−1) is the metric tensor
of the flat spacetime. In this section µ, ν, . . . denote curved spacetime indices
on the manifold and m,n, . . . denote flat spacetime indices on the tangential
space.

The kinetic term for the graviton is the Einstein Hilbert Lagrangian [28]

−e−1LEH = 1
2
M2

PR . (1.15)

It consists of the contracted Riemann curvature tensor called the Ricci-scalar
R and the determinant e of the vierbein emµ .

The off-shell gravitational multiplet contains, except for the spin-2 gravi-
ton, the gravitino ψµ, a spin 3/2 particle, as well as two bosonic auxiliary fields
M and bµ. The latter two can be integrated out [29] and the two remaining
physical fields are written down in Table 1.1.

The kinetic term for the gravitino is the Rarita–Schwinger Lagrangian
[30]

e−1LRS = ǫµνρσψµ
†σν∇ρψσ . (1.16)

Here ǫµνρσ follows from the four-dimensional Levi–Civita symbol by con-
tracting each flat spacetime index with a vierbein. ∇ρ is a Lorentz covariant
derivative.

The full supergravity Lagrangian is rather lengthy, incorporating, besides
general relativity, the global SUSY Lagrangian and new characteristic super-
gravity terms. As supergravity is non-renormalizable, parts of its Lagrangian
depend on the cut-off scale MP .

The scalar fields of supergravity form a Kähler manifold, which is de-
scribed by the Kähler potential K. Ultimately the supergravity Lagrangian
depends only on two functions. The first is the Kähler function G which is
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a function of the superpotential W and the Kähler potential K

G(φ, φ∗) = M−2
P K(φ, φ∗) + ln

(
M−6

P |W (φ)|2
)
. (1.17)

Its second derivative gij∗, called the Kähler metric, modifies mainly the chiral
multiplet part of the SUGRA Lagrangian. The second dependency is the
gauge kinetic function fab which modifies mainly the vector multiplet part of
the SUGRA Lagrangian.

Later we are interested in the coupling of the gravitino to the supercurrent
of global SUSY (1.13), which describes the gravitino coupling to the particles
of the other multiplets. The important interaction terms for this thesis are
[31]

−LJψ = 1√
2
κgij∗Dνφ

j∗χiσµσνψµ + ψµσ
µχi

†
λa†λb

†
+ i

4
κψµσ

νρσµλa
†F a

µν

+ 1√
2
κgij∗Dνφ

jχi
†
σµσνψµ

† + i
4
κψµ

†σνρσµλaF
a
µν + . . . .

(1.18)

Since we are interested in field theories in Minkowski space-time, we require
the cosmological constant to vanish. This happens for [32]

〈V 〉 =
〈
F igij∗F

∗j∗ + 1
2
g2DaDa − 1

3
MM∗

〉
= 0 . (1.19)

Therefore we can neglect the interactions of the graviton, ergo we can analyze
the limit R → 0 and e → 1. This is the so-called flat limit. The distinction
between the curved spacetime indices and the flat spacetime indices vanishes.
If Da or F i have a nonvanishing VEV, as is required in order to break SUSY
(see Section 1.2.5), M must have a nonvanishing VEV as well to fulfill the
requirement in Equation (1.19).

1.2.3 Super Higgs Mechanism

The part of the supergravity Lagrangian giving the gravitino mass consists
of terms which are quadratic in the fermionic fields [33]

−L(2)
F = MP

(
ψµσ

µνψν + ψµ
†σµνψν

†) exp 1
2
G

+ 1
2
M−1

P gDa
(
ψµ

†σµλa − ψµσ
µλa†

)

+ i√
2
MP

(
Giχ

iσµψµ
† +Gi∗χ

i†σµψµ
)

exp 1
2
G

+ 1
2
MP

(
(Gij +GiGj)χ

iχj + (Gi∗j∗ +Gi∗Gj∗)χi
†
χj

†
)

exp 1
2
G

+
√

2iM−1
P g

(
Da
i χ

iλa −Da
i∗χ

i†λa†
)

+ . . . .

(1.20)
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One observes that the gravitino mixes with fermions and gauginos if Da or
F i have a nonvanishing VEV. However, shifting the gravitino field by

η† = i√
2
Gi∗χ

i† + 1
2
M−2

P gDaλa† exp (−1
2
G) (1.21)

eliminates the mixing, therefore this part of the Lagrangian transforms into

−L(2)
F = MP

(
ψµ + 1

3
η†σµ

)
σµν

(
ψν − 1

3
σνη

†) exp 1
2
G

+ 1
6
M−3

P g2DaDbλa†λb
†
exp (−1

2
G)

+ 1
2
MP

(
Gi∗j∗ + 1

3
Gi∗Gj∗

)
χi

†
χj

†
exp 1

2
G

+
√

2iM−1
P g

(
1
3
Gi∗D

a −Da
i∗

)
χi

†
λa† + h.c. + . . . .

(1.22)

Now the gravitino mass can be directly read off to be

m3/2 = 1
3
M−1

P 〈M〉 = M−2
P 〈W 〉 exp 1

2
M−2

P 〈K〉 = MP exp 1
2
〈G〉 . (1.23)

The remaining Lagrangian gives masses to the spin 1/2 fermions.
The field η is a fermionic massless eigenstate of the massmatrix, hence it

is a goldstino component. The gravitino field absorbs the goldstino fermion
field and acquires a nonvanishing mass. As this mechanism is similar to the
Higgs mechanism but includes a spin one half goldstino fermion, it is called
super Higgs mechanism. As the graviton stays massless, the gravitino mass
is directly related to the SUSY breaking scale.

1.2.4 R-Parity

Although it is not governed by an underlying symmetry, the SM does pre-
serve lepton number L and Baryon number B, while the most general su-
persymmetric Lagrangian does not preserve these quantum numbers. This
can introduce some difficulties in model building described in the first two
sections of Chapter 4, among them fast proton decay. These problems can
be solved by imposing a new symmetry, the most common one is R-parity.
For particles with spin S it can be expressed by

Rp = (−1)3(B−L)+2S . (1.24)

It follows that SM particles have even R-parity quantum numbers Rp =
+1, while the supersymmetric particles have odd R-parity quantum numbers
Rp = −1. With imposed R-parity the LSP is absolutely stable, thus it is
a viable DM candidate [6] provided it is uncharged. If one wants to break
R-parity [34], one has to respect experimental bounds. Some are listed in
Section 4.2. From these bounds follows that the R-parity violating couplings
must be small. A comprehensive introduction into the R-parity violating
theory and its constraints is given in [9].
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1.2.5 Supersymmetry Breaking

As no supersymmetric particles have been discovered yet, SUSY must be
broken. A SUSY breaking mechanism must shift all mass terms of super-
symmetric particles to higher energies, preferably in the TeV range. In order
to solve the hierarchy problem, these SUSY breaking parameters must be
soft. That means that they cannot reintroduce quadratic divergences. As
this mechanism cannot occur in the known visible sector of the particle spec-
trum, it must happen in some hidden sector, containing only particles which
couple very weakly to the MSSM [6].

Depending on the breaking mechanism a hidden auxiliary field develops a
VEV and causes soft SUSY breaking terms. Consequently this hidden sector
VEV causes the gravitino mass (1.23) as well.

As the exact breaking scheme is not known, all allowed terms are taken
into account and are treated as free parameters of the theory. They are either
of the form of the superpotential terms

−LW
soft = 1

6
aijkφiφjφk + 1

2
bijφiφj + tiφi + h.c. , (1.25)

or are mass terms for the supersymmetric particles

−Lmass
soft = (m2)

i

jφ
j∗φi + 1

2
M(a)λ

aλa + h.c, . (1.26)

There is another term that is possible in soft SUSY breaking, but it causes
quadratic divergences when one includes a chiral multiplet that is a singlet
under all gauge symmetries [6]. Hence we are neglecting this term as most
authors are doing.

1.3 U(1) Flavor Symmetry

The observed mass hierarchy in the fermion sector, as can be read off of Table
A.1, is striking and can be parametrized via a small parameter:

mt :mc :mu ≈1 :η2 :η4

mb :ms :md ≈1 : η :η3 (1.27)

mτ :mµ :me ≈1 : η :η3 ,

where η is roughly 1
16

. Connected with the mass hierarchy is the pattern
of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, whose definition can be
found in Appendix A.1. Its pattern can be roughly parametrized by [35, 36]

VCKM ∼




1 η η2

η 1 η
η2 η 1


 . (1.28)
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Order one parameter have been neglect in this proximate approach, the
largest of them is approximately 4. This hierarchy must be explained in
the Yukawa matrices but is so far a experimental input for the theory.

One possible explanation is the Froggatt-Nielsen U(1) flavor symmetry
[37]. For that we need a single almost conserved Abelian integrally quantized

charge Q̂. The theory contains many so far unknown heavy fundamental
fermions. The known basic fermions are massless in the limit of exact Q̂
conservation. The heavy particle mass is generated by a VEV 〈φ0〉 of a

neutral Q̂ = 0 Higgs scalar. The symmetry breaking mechanism responsible
for the masses of the light fermions is provided by the VEV 〈φ1〉 of a charged

Q̂ = 1 Higgs boson. The symmetry breaking parameter is

η =
g(µ)

g(µ0)

〈φ1〉
〈φ0〉

. (1.29)

Here g(µ) is any running φ1 Yukawa coupling constant at the low energy

scale. Electroweak symmetry is broken by 〈φ2〉 with Q̂ = 0. The Yukawa
couplings are of order unity and random at the fundamental scale µ0. The
charge for the left-handed fields is Q̂Lj

= c + bj while it is Q̂Ri
= c − ai for

the right-handed fields. For the mass matrix it follows that

Mij = gijη
ai+bj , (1.30)

where the coefficients gij are complex numbers of order unity. The mass ratio
is to leading order

mi

mj
= ηai−aj+bi−bj . (1.31)

Finally the CKM matrix is parametrized by

Vij ∼ η|bi−bj | , (1.32)

where order one coefficients are neglected.

1.4 Renormalization Group

The renormalization group is an extremely powerful mechanism to determine
the behavior of a theory, known at a specific scale, at a completely different
scale. For an introduction see, for instance [2].

In the following we consider a general N = 1 supersymmetric Yang-Mills
model. The chiral multiplet transforms as a representation R of the gauge
group G. The representation matrices T a = (T a)ji for the gauge group G
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form the quadratic Casimir invariant C(R) and the Dynkin index S(R) of a
representation R in a way that

(T aT a)ij = C(R)δij

trR
(
T aT b

)
= S(R)δab .

(1.33)

As dimensional regularization (DREG) with minimal subtraction MS violates
SUSY explicitly, the following is calculated in the dimensional reduction
(DRED) with modified minimal subtraction DR [38].

The β function depends in general on all orders of perturbation theory

β =
1

(4π)2
β(1) +

1

(4π)4
β(2) + . . . , (1.34)

but in this work just the one loop evaluation is used. The RGE for the gauge
couplings is

d

dt
g(a) = βg with β(1)

g = g3
(a)

(
S(a)(R) − 3C(G(a))

)
, (1.35)

where t = log q2 and q is the energy. Here the gauge coupling for the U(1)Y
is normalized for GUTs, that means g1 =

√
3/5 gY . The RGE for the gaugino

mass parameter is

d

dt
M(a) = βM with β

(1)
M = g2

(a)

(
2S(a)(R) − 6C(G(a))

)
M(a) . (1.36)

The β-functions for the superpotential parameters are

d

dt
yijk = yijpγkp + (k ↔ i) + (k ↔ j) ,

d

dt
M ij = M ipγjp + (j ↔ i) ,

d

dt
Li = Lpγip ,

(1.37)

where the anomalous dimension depends on all orders of perturbation theory

γ =
1

(4π)2
γ(1) +

1

(4π)4
γ(2) + . . . (1.38)

and the one loop expression is given by

γ(1)j

i = 1
2
yipq

∗yjpq − 2δji
∑

a

g2
aCa(i) . (1.39)

The β functions for the soft SUSY breaking parameters follow a similar
scheme and can be found together with the explicit formulas for the RGEs in
the R-parity conserving theory in [38] and for the R-parity violating theory
in [39]. The explicit formulas for the MSSM with GSM and R-parity violation
are noted in Appendix E.
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Chapter 2

Supersymmetric Standard
Models

So far, the chiral multiplet, the vector multiplet and the gravitational multi-
plet have been introduced. In Section 2.1 we give the minimal field content
needed for the chiral multiplet to incorporate the particle content of the SM,
taking also the right-handed neutrino superfield into account. In addition we
give the minimal set of supersymmetric interactions, as well as the extensions
needed to have R-parity violation and right-handed neutrino superfields. In
Section 2.2 we observe the ambiguity of the Higgs Lepton doublets, introduce
an adjusted notation and lay the foundations for the bilinear R-parity break-
ing. In Section 2.3 we give the field content needed for the vector multiplet
in order to extended the Standard Model with supersymmetry. Finally we
present in Section 2.4 all soft SUSY breaking terms that can occur depending
on the interactions chosen in Section 2.1.

2.1 Superpotential and Chiral Superfields

The chiral multiplets of the minimal supersymmetric extension of the SM
plus a right-handed neutrino singlet are given in Table 2.1. The standard
naming scheme is introduce in Appendix B. These fields can be grouped into
SU(5) multiplets as expressed in Equation (1.5).

The most general R-parity violating MSSM superpotential with right-
handed neutrino superfields can be written down in the language of a super-
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superfields Φi scalars φi fermions χi (SU(3)C , SU(2)L)Y Q

Qi =

(
Ui
Di

)
Q̃i =

(
ũLi
d̃Li

) (
uLi
dLi

)
(3, 2)

1/6

(
2/3
−1/3

)

U c
i ũci uci

(
3, 1
)
−2/3

−2/3

Dc
i d̃

c

i dci
(
3, 1
)

1/3
1/3

Li =

(
Ni

Ei

)
L̃i =

(
ν̃Li
l̃Li

) (
νLi
lLi

)
(1, 2)−1/2

(
0
−1

)

Ec
i l̃

c

i lci (1, 1)1 1
N c

i ν̃ci νci (1, 1)0 0

Hu =

(
H+
u

H0
u

)
hu =

(
h+
u

h0
u

)
h̃u =

(
h̃

+

u

h̃
0

u

)
(1, 2)

1/2

(
1
0

)

Hd =

(
H0
d

H−
d

)
hd =

(
h0
d

h−d

)
h̃d =

(
h̃

0

d

h̃
−
d

)
(1, 2)−1/2

(
0
−1

)

Table 2.1: Chiral supermultiplets of the MSSM plus a right-handed neutrino
supermultiplet and quantum numbers thereof.

symmetric SU(5) GUT as

W = µHu(5)Hd(5) + µiHu(5)5 − λuijHu(5)10i10j + λeijHd(5)5i10j

+ 1
2
λijk5i5j10k − λνijHu(5)5i1j − λνiHu(5)Hd(5)1i

+ λSijS(1)1i1j .

(2.1)

The VEVs of the Higgs doublets Hu and Hd, which are in the 5-plet and the
5-plet of SU(5), give masses to the SM superfields and the VEV of the sin-
glet Higgs S generates the Majorana mass matrix for right-handed neutrino
superfields. The Yukawa coupling λijk is antisymmetric under the exchange
of 5i and 5j , thus it is convenient to introduce a factor of one half.

Translating the superpotential (2.1) into the SM group notation gives for
the R-parity conserving superpotential

WRp = µHuHd + λeijHdLiE
c
j + λdijHdD

c
iQj − λuijHuQiU

c
j . (2.2)

The terms above will give the Lagrangian of the MSSM. This is the minimal
set of fields and couplings to make the SM supersymmetric. Due to the
embedding into the SU(5) our definition of the coupling λdij is transposed
compared to the standard literature, for instance, [6].
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The R-parity violating counterpart of the MSSM superpotential is

W 6Rp = µiHuLi + 1
2
λijkLiLjE

c
k + λ′ijkLiD

c
jQk + 1

2
λ′′ijkD

c
iD

c
jU

c
k . (2.3)

The couplings λijk and λ′′ijk are antisymmetric in their first two indices. The
first three couplings violate lepton number the last one violates baryon num-
ber. Hence R-parity breaking couplings are strongly constrained by observa-
tion as shown in Section 4.1 and 4.2.

Compared to the standard literature, for instance [9], we had to transpose
the couplings λ′ijk and λ′′ijk in the first two indices and the outer indices
repectively. As in the R-parity conserving case this is due to the embedding
into the SU(5) GUT.

After giving the singlet Higgs S a VEV of order MGUT and contracting
it with the Yukawa coupling λSij to a mass term Mij for the right-handed
neutrino superfields N c, the superpotential for Majorana neutrinos is

WNc

= 1
2
MijN

c
iN

c
j − λνijHuLiN

c
j . (2.4)

The second term couples the right-handed neutrino superfields to the left-
handed ones.

Finally one has to add the R-parity violating couplings for the right-
handed neutrino superfields

WNc

6Rp
= −λνiHuHdN

c
i . (2.5)

The combined effects of R-parity breaking and right-handed neutrino super-
fields are usually neglected, therefore we could find so far unpublished for-
mulas in this sector. But even when both effects are taken into account the
superpotential (2.5) is typically ignored [21] as this term gives rather small
corrections to the physical fields, as can be seen in the course of Chapter 3
and particularly in Appendix C.

2.2 Choice of the Weak Interaction Basis

As can be seen from the charge assignment in Table 2.1, the distinction
between the superfields Hd and Li vanishes in the absence of R-parity. Thus
the weak eigenstate basis can be rotated by a SU(4) transformation [9]

(
Hd

Li

)
→
(
Hd

′

Li
′

)
= Uαβ

(
Hd

Li

)
. (2.6)

It follows that the superpotential parameters that are connected to Hd and Li
have to be rotated in the same manner. Therefore it is sensible to introduce a
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notation where the scalars associated to Hd and the three-component tensors
connected to Li are combined to four-component tensors corresponding to
Lα with α = (0, i) = (0, 1, 2, 3). After the definition of the tensors

Lα = (Hd, Li)
T , µα = (µ, µi)

T ,

λeαβk =

(
0k λejk

†

λeik λijk

)
, λdαjk =

(
λdjk
λ′ijk

)
, λναj =

(
λνj
λνij

)
, (2.7)

the superpotentials (2.2), (2.3), (2.4) and (2.5) combine to

W = µαHuLα + 1
2
λeαβkLαLβE

c
k + λdαjkLαD

c
jQk − λujkHuQjU

c
k

+ 1
2
λ′′ijkD

c
iD

c
jU

c
k + 1

2
MijN

c
iN

c
j − λναjHuLαN

c
j .

(2.8)

The rotation (2.6) allows to rotate away one of the bilinear R-parity violating
parameters, either µi or the sneutrino VEV vi introduced in Section 3.1.3.
In this thesis the rotation fixing is postponed until the introduction of the
bilinear R-parity breaking model in Section 4.3.

The notation used here implies that the Lagrangian and the superpo-
tential can only depend on SU(N) scalars. It follows that terms containing
SU(N) multiplets products where none of the factors is adjoint, must be con-
tracted with the N dimensional Levi-Civita symbol. Our convention for the
SU(2) is ǫab = ( 0 1

−1 0 ). The same argument holds for SU(3) multiplets and
for the SU(5) multiplets in the superpotential (2.1). The contraction gives,
for instance, for the superpotential (2.8)

W = µα
(
H+
u Eα −H0

uNα

)
+ 1

2
λeαβk (NαEβ −EαNβ)Ec

k

+ λdαjk (NαDk − EαUk)D
c
j − λujk

(
H+
u Dj −H0

uUj
)
U c

k

+ 1
2
λ′′ijkǫαβγD

cα
i D

cβ
jU

cγ
k

+ 1
2
MijN

c
iN

c
j − λναj

(
H+
u Eα −H0

uNα

)
N c

j .

(2.9)

Here it becomes clear why some of the Yukawa couplings are defined with
a minus sign. As they will produce mass terms together with fields which
acquire a VEV, the signs are chosen in such a way that these mass terms are
positive in Equation 2.9.

2.3 Vector Superfields

The gauge group of the Standard Model is

GSM = SU(3)C × SU(2)L × U(1)Y (2.10)
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gaugino λa gauge boson Aaµ (SU(3)C , SU(2)L)U(1)Y

g̃a ga (8, 1)0

W̃
i

W i (1, 3)0

B̃ B (1, 1)0

Table 2.2: Gauge supermultiplets in the MSSM.

where SU(3)C is the color gauge group, SU(2)L is the isospin gauge group
and U(1)Y is the hypercharge group. There is one vector multiplet for every
subgroup. These gauge fields and the corresponding gauginos are written
down in Table 2.2.

2.4 Soft SUSY Breaking Lagrangian

All soft supersymmetry breaking terms that have to be added to shift the
supersymmetry particle masses to higher energies can be found with the help
of the Lagrangians given in Section 1.2.5.

The R-parity conserving soft SUSY breaking Lagrangian is

−Lsoft
Rp

= (m2
eQ)ijQ̃i

†
Q̃j + (m2

euc)ij ũ
c
i
†ũcj + (m2

edc)ij d̃
c

i

†
d̃
c

j

+ (m2
eL)ijL̃i

†
L̃j + (m2

elc)ij l̃
c

i

†
l̃
c

j + m̃2
dhd

†hd + m̃2
uhu

†hu

+ (Bhuhd + h.c.)

+
(
AeijhdL̃il̃

c

j + Adijhdd̃
c

iQ̃j + AuijhuQ̃iũ
c
j + h.c.

)

+ 1
2

(
M1B̃B̃ +M2W̃

i
W̃

i
+M3g̃

ag̃a + h.c.
)
.

(2.11)

The R-parity violating soft SUSY breaking Lagrangian is according to the
superpotential (2.3) and the process of Section 1.2.5

−Lsoft
6Rp

=
(
m̃2
dihd

†L̃i +BihuL̃i + h.c.
)

+
(

1
2
AijkL̃iL̃j l̃

c

k + A′
ijkL̃id̃

c

jQ̃k + 1
2
A′′
ijkd̃

c

id̃
c

j ũ
c
k + h.c.

)
.

(2.12)

If one adds right-handed neutrinos to the field content, the scalar neutrinos
get contributions to their Lagrangian according to

−Lsoft
Nc = (m2

eνc)ij ν̃
c
i
†ν̃c +

(
BN
ij ν̃

c
iν̃
c
j + AνijhuL̃iν̃

c
j + h.c.

)
. (2.13)
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The only R-parity breaking counterpart is the trilinear contribution

−Lsoft
6RpNc = Aνjhuhdν̃

c
j + h.c. . (2.14)

Using the notation based on the rotation (2.6) one can combine some La-
grangian terms into four-component objects:

m̃2
αβ =

(
m̃2
d m̃2

dj

†

m̃2
di (m2

eL)ij

)
, Bα =

(
B
Bi

)
, L̃α =

(
hd
L̃i

)
, (2.15)

Aeαβk =

(
0k Aejk

†

Aeik Aijk

)
, Adαjk =

(
Adjk
A′
ijk

)
, Aναj =

(
Aνj
Aνij

)
.

This simplifies the soft SUSY breaking Lagrangians (2.11), (2.12), (2.13) and
(2.14) to

Lsoft = m̃2
αβL̃α

†
L̃β + m̃2

uhu
†hu + (m2

eQ)ijQ̃i

†
Q̃j + (m2

euc)ijũ
c
i
†ũcj

+ (m2
edc)ij d̃

c

i

†
d̃
c

j + (m2
elc)ij l̃

c

i

†
l̃
c

j + (m2
eνc)ij ν̃

c
i
†ν̃c

+
(
BαhuL̃α +BN

ij ν̃
c
iν̃
c
j + h.c.

)

+
(

1
2
AeαβkL̃αL̃β l̃

c

k + AdαjkL̃αd̃
c

jQ̃k + AuijhuQ̃iũ
c
j

+1
2
A′′
ijkd̃

c

id̃
c

j ũ
c
k + AναjhuL̃αν̃

c
j + h.c.

)

+ 1
2

(
M1B̃B̃ +M2W̃

i
W̃

i
+M3g̃

ag̃a + h.c.
)
.

(2.16)

In the following we will make use of the four-component notation whenever
possible.
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Chapter 3

Symmetry Breaking: Higgs and
Sneutrinos

In the SM electroweak symmetry is spontaneously broken down to electro-
magnetism:

SU(2)L × U(1)Y → U(1)em . (3.1)

In this chapter we give the consequences of this transition in the supersym-
metric extensions considered in this thesis depending on the superpotentials
and field content examined. Therefore we give an insight how the fields given
in Table 2.1 mix to the mass eigenstates and which of them acquire a VEV.

An overview of the well known calculations required for the MSSM can be
found, for instance, in [6, 40]. We recalculate the most important formulas
as well, but merely as references to compare what changes when new terms
are taken into account.

The new mixing terms in the R-parity violating theory are summarized
in [9, 41]. In this sector the emphasis for us lies on the sneutrino VEVs, as
one can find contradictory formulas in the literature. Another focus lies on
the neutrino masses induced by R-parity breaking.

The implications of the Majorana neutrino superpotential for the fermion
sector are well known from the SM [3] and the implications for the supersym-
metric theory are shown, for instance, in [42, 43]. Nevertheless, we recalculate
the result to have a common ground to extend on.

The case where both extensions are in effect is not studied very well,
therefore our attention is focused on this area. In the scalar sector we cal-
culate the most general mass mixing matrix, but the more important part is
that we calculate a so far unknown mass formula for neutrinos where both
mass generation effects are combined.

We also calculate the R-parity breaking effects on the charged fields, but
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except for larger mixing matrices due to the lepton number breaking cou-
plings no new effects occur. Nonetheless we have listed the mixing matrices
in Appendix D.

3.1 Scalar Bosons

The neutral scalar bosons are responsible for the mass generation of all
fermions in the SM. In the following we discuss the modifications of the
Higgs mechanism due to SUSY, right-handed neutrinos and broken R-parity.

This is modified by SUSY but the Higgs mechanism is just as well im-
portant in this case.

3.1.1 The Minimal Supersymmetric Standard Model

In the MSSM the neutral Higgs fields h0
u and h0

d acquire VEVs

〈
h0
u

〉
=

1√
2
vu ,

〈
h0
d

〉
=

1√
2
vd , (3.2)

which breaks electroweak symmetry. Their values are connected to the SM
Higgs VEV v via v2 = v2

u+v2
d. The ratio between these two VEVs is commonly

referred to as tan β = vu

vd
.

The minimum of the R-parity conserving scalar potential satisfies

0 = m̃2
u + |µ|2 −B cot β − 1

2
m2
Z cos 2β ,

0 = m̃2
d + |µ|2 − B tan β + 1

2
m2
Z cos 2β .

(3.3)

After diagonalizing the mass matrices, the gauge eigenstate fields can be
expressed in terms of the VEVs, the CP-even mass eigenstate fields (h0, H0)

T

and the CP-odd mass eigenstate fields (G0, A0)
T

as shown in [6, 40],
(
h0
u

h0
d

)
=

1√
2

((
vu
vd

)
+Rα

(
h0

H0

)
+ iRβ

(
G0

A0

))
. (3.4)

Here Rα and Rβ are rotation matrices. The would-be Nambu Goldstone
boson G0 remains massless and becomes the longitudinal mode of the Z
gauge boson. The CP-odd neutral scalar obtains the mass

m2
A0 =

2B

sin 2β
. (3.5)

The masses of the CP-even neutral scalars are slightly more complicated and
fulfill the relation mh0 < mH0 .
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The sneutrino sector is separated from the neutral Higgs sector and the
sneutrinos satisfy the mass relation

meν
ij =

(
m2

eL
)
ij

+ 1
2
m2
Z cos 2β . (3.6)

The first term comes from the soft SUSY breaking Lagrangian, the second
term is the D-term explained before Equation (3.14).

3.1.2 Adding Majorana Sneutrinos

When one adds the right-handed neutrino superfield to the MSSM, one has
to calculate the sneutrino mass for the right and left-handed sneutrinos once
for CP-even and once for CP-odd fields

(ℜν̃ci,ℜν̃i,ℑν̃ci,ℑν̃i) . (3.7)

Assuming CP-conservation, the resulting mass matrix separates into a CP-
even and a CP-odd block

M2 =

(
M2

+ 0
0 M2

−

)
, (3.8)

where the submatrices are given by [44, 45]

M2
± =

(
(m2

eL
)

ij
+

1
2
m2

Z cos 2βδij+λν
ik

†h0
uλ

ν
kjh

0
u ±Aν

ijh
0
u−Mik

†λν
kjh

0
u∓µ†λν

ijh
0
u cot β

±Aν
ij

†h0
u−λν

ik
†h0

uMkj∓µλν
ij

†h0
u cot β ±2BN

ij +Mik
†Mkj+λ

ν
kj

†h0
uλ

ν
ikh

0
u+(m2

eνc)
ij

)
.

(3.9)
Here and in the following the notation λνijh

0
u =

√
2mν

ij means that a Yukawa
coupling and a field that acquires a VEV form a mass matrix.

As the submatrices are hierarchic they can be diagonalized via the seesaw
mechanism sketched in Appendix G.1. The resulting mass matrix for the left-
handed sneutrinos is [46]

mij ≃
(
m2

eL
)
ij

+ 1
2
m2
Z cos 2βδij + λνik

†h0
uλ

ν
kjh

0
u

−
∣∣±Aνijh0

u −Mik
†λνkjh

0
u ∓ µ†λνijh

0
u cot β

∣∣2

±2BN
ij +Mik

†Mkj + λνkj
†h0
uλ

ν
ikh

0
u +

(
m2

eνc

)
ij

.
(3.10)

The second line is the first order correction due to the right-handed sneutri-
nos. The mass of the right-handed sneutrinos are slightly modified as well.
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3.1.3 MSSM Including R-Parity Violating Couplings

Now we turn to R-parity violation without taking into account the right-
handed sneutrinos. Due to the lepton number violating couplings the left-
handed sneutrinos acquire a small VEV

〈νi〉 =
1√
2
vi . (3.11)

Using the notation from Section 2.2 one can combine the VEV of the down-
type Higgs (3.2) and the sneutrino VEVs into a four-component vector

vα = (vd, vi)
T . (3.12)

We use this opportunity to give a small step-by-step instruction how to obtain
the scalar potential in a supersymmetric theory: The general approach is the
same for scalar fields and fermionic fields. The details in this section, however,
differ slightly from the fermionic case explained in Section 3.3.3. First, one
needs the F -terms which are obtained by inserting the superpotential (2.9)
into the last term of the Lagrangian (1.6). In our case the F -terms are

VF = |µα|2
∣∣h0
u

∣∣2 + µβ
†µαν̃β

†ν̃α . (3.13)

Secondly, one needs the D-terms, which are calculated by inserting the equa-
tion of motion (1.10) into the combined chiral Lagrangian (1.6) and gauge
Lagrangian (1.9) taking the mixing terms (1.12) into account,

VD = 1
8

(
g2
1 + g2

2

) (∣∣h0
u

∣∣2 − |ν̃α|2
)2

. (3.14)

In the end one has to add the soft SUSY breaking terms (2.16). These three
contributions give the scalar potential for the neutral scalar fields

Vscalar =
(
|µα|2 + m̃2

u

) ∣∣h0
u

∣∣2 +
(
µβ

†µα + m̃2
αβ

)
ν̃β

†ν̃α

− Bαh
0
uν̃α − Bβ

†ν̃β
†h0
u
†

+ 1
8

(
g2
1 + g2

2

) (∣∣h0
u

∣∣2 − |ν̃α|2
)2

.
(3.15)

The only terms that depend on the phases of the fields are the Bα, therefore a
redefinition of the phases of Lα can make Bα real and positive. The minimum
of the potential satisfies as in [47–49]

vu =
Bαvα

|µα|2 + m̃2
u + 1

2
m2
Z

(
v2u
v2

− |vα|2
v2

)

vα =
Bαvu

|µα|2 + m̃2
αα − 1

2
m2
Z

(
v2u
v2

− |vα|2
v2

) .
(3.16)
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In order to extend this to the common MSSM notation one has to mark that
for the case of small R-parity violation,

ǫ̂i =
vi
vd

≪ 1 , (3.17)

the R-parity violating VEVs are connected to the R-parity conserving VEV
ratio tan β as in

(
v2
u

v2
− |vα|2

v2

)
= (1 − ρ + ρ cos 2β) ≃ cos 2β , (3.18)

with ρ given by

ρ = 2
(
2 + |ǫ̂i|2 + |ǫ̂i|2 cos 2β

)−1 ≃ 1 . (3.19)

Finally one gets three equations for the minimum of the scalar potential
[15, 50]:

0 ≃ m̃2
u +

(
|µ|2 + |µi|2

)
− (B + ǫ̂iBi) cotβ − 1

2
m2
Z cos 2β ,

0 ≃
(
m̃2
d + ǫ̂im̃

2
di

)
+
(
|µ|2 + ǫ̂iµiµ

)
− B tanβ + 1

2
m2
Z cos 2β ,

0 ≃
(
m̃2
id

∗
+ ǫ̂im̃

2
ii

)
+
(
µµi

∗ + ǫ̂i |µi|2
)
− Bi tanβ + ǫ̂i

1
2
m2
Z cos 2β .

(3.20)

The first two equations are just the slightly modified R-parity conserving
equations (3.3) for the minimum of the potential. The last equation is new
and gives the most general value of the sneutrino VEV,

ǫ̂i =
vi
vd

≃ Bi tanβ − m̃2
id

∗ − µµi
∗

|µi|2 + m̃2
ii + 1

2
m2
Z cos 2β

, (3.21)

in terms of tan β and Lagrangian parameters. One still has to constrain
the parameters to fulfill the bounds on the R-parity violating theory [9] (for
an example see Section 4.1), as well as to rotate away one of the bilinear
parameters as done in Section 4.3. Other authors did not take into account
all soft SUSY breaking parameters [51–53] or found other signs for some of
the parameters in the sneutrino VEV [54–57].

The potential has no CP-violation at tree level [48], hence the CP-even
and CP-odd mass eigenstates can be calculated. The CP-odd neutral scalar
fields (

ℑh0
u,ℑν̃α

)T
=
(
ℑh0

u,ℑh0
d,ℑν̃i

)T
(3.22)
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have the mass mixing matrix c.f. (3.18)

M2
ℑφ0 =


 em2

u+|µα|2+1
2
m2

Z

„
v2
u

v2
− |vα|2

v2

«
Bβ

T

Bα em2

αβ+µβ
†µα−1

2
m2

Z

„
v2
u

v2
− |vα|2

v2

«
δαβ




≃




em2

u+µ2+|µi|2−1
2
m2

Zc2β −B −Bj
T

−B em2

d+µ2+ 1

2
m2

Zc2β em2

dj

†
+µµj

†

−Bi em2

di+µµi em2

ij+µj
†µi+

1

2
m2

Zc2βδij


 .

(3.23)

Here and in the following c2β and s2β stand for cos 2β and sin 2β, respectively.
The CP-even fields

(
ℜh0

u,ℜν̃α
)T

=
(
ℜh0

u,ℜh0
d,ℜν̃i

)T
(3.24)

have the mass mixing matrix

M2
ℜφ0 =


 em2

u+|µα|2+
1
2
m2

Z

„
3

v2
u

v2
− |vα|2

v2

«
−Bβ

T −m2

Z

vuvβ
T

v2

−Bα−m2

Z
vuvα

v2
em2

αβ+µβ
†µα−1

2
m2

Z

„
v2
u

v2
−3

|vα|2

v2

«




≃




em2

u+µ2+|µi|2+
1
2
m2

Z(1−c2β) −B−m2

Zs2β −Bj
T −bǫTj m2

Zs2β

−B−m2

Zs2β em2

d+µ2+
1
2
m2

Z(1+2c2β) em2

dj

†
+µµj

†+
1
2

bǫTj m2

Z(1+c2β)
−Bi−bǫim2

Zs2β em2

di+µµi+
1
2

bǫim2

Z(1+c2β) em2

ij+µj
†µi+

1
2
m2

Zc2βδij


 .

(3.25)

As in the R-parity conserving case these matrices can be diagonalized in
order to express the gauge eigenstates via VEVs and mass eigenstates. How-
ever, this cannot be done analytically without assumptions on the sneutrino
Lagrangian terms.

3.1.4 Majorana Sneutrinos and R-Parity Violation

If one takes into account right-handed sneutrinos in addition to R-parity vio-
lation and assumes CP-conservation, the VEVs (3.16) are once more modified
to

〈
h0
u

〉
= 〈να〉 Bα+Mijλαi〈νc

j〉−Aαi〈νc
i〉

em2

u+m2

Z

„
〈h0

u〉2
v2

− |να|2

v2

«
+|λαi〈να〉|2+|µα+λαi〈νc

i〉|2
,

〈να〉 =
〈
h0
u

〉 Bα+Mjiλαi〈νc
j〉−Aαi〈νc

i〉

em2

αα−m2

Z

„
〈h0

u〉2
v2

− |να|2

v2

«
+|λαi〈h0

u〉|2+|µα+λαi〈νc
i〉|2

.
(3.26)

In this case the right-handed sneutrinos acquire a VEV as well:

〈ν̃cj〉 =
〈
h0
u

〉 Mjkλ
ν
αk〈eνα〉−Aν

αj〈eνα〉−µαλν
αj〈h0

u〉−λν
βjµα

〈eνα〉〈eνβ〉
〈h0

u〉
BN

jj+B
N
jj

†
+|λν

αj〈h0
u〉|2+|Mij |2+|λν

αj〈eνα〉|2+(m2

eνc)ijδij
. (3.27)
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Due to the large mass Mij in the denominator this VEV is so small that
the phenomenological consequences can be neglected. This can be seen, for
instance, in the small modifications in the VEVs (3.26) due to the right-
handed sneutrino VEVs.

The mass matrices which include the right-handed sneutrinos and R-
parity violation are given in Appendix C.1.

3.2 Gauge Bosons

The derivation of the physical gauge bosons in the SM can be found, for
instance, in [2].

The U(1)Y gauge force is mediated by the gauge boson Bµ. The repre-
sentation matrix in this simple case is (T a)ji = Y δji δ

a
1 . We name the coupling

constant g(a) = g1.
The SU(2)L gauge force is mediated by the W a

µ gauge bosons, where the

gauge index runs over a = 1, 2, 3. The representation matrices are (T a)ji =
1
2
(σa)ji and the coupling constant is called g(a) = g2.

In the SM the neutral fields are broken to the massless photon

γµ =
1√

g2
2 + g2

1

(
g1W

3
µ + g2Bµ

)
(3.28)

and the Zµ boson

Zµ =
1√

g2
1 + g2

2

(
g2W

3
µ − g1Bµ

)
(3.29)

which has the mass
m2
Z = 1

4

(
g2
2 + g2

1

)
v2 . (3.30)

The charged fields are the W±
µ bosons

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
(3.31)

with mass
m2
W = m2

Z cos2 θw = 1
4
g2
2v

2 . (3.32)

The mixing between W 3
µ and Bµ with the constraint to form the massless

photon defines the weak mixing angle θw. The rotation matrix Tw has the
form

(
γ
Z

)
= Tw

(
B
W 3

)
=

(
cw sw
−sw cw

)(
B
W 3

)
=

(
Bcw +W 3sw
W 3cw − Bsw

)
. (3.33)
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Here and in the following cw and sw symbolizes cos θw and sin θw, respectively.
The angle θw can be expressed by the gauge couplings with the help of

cos θw =
g2√
g2
1 + g2

2

, sin θw =
g1√
g2
1 + g2

2

. (3.34)

The electric charge is then

e =
g1g2√
g2
1 + g2

2

= g1 cos θw = g2 sin θw . (3.35)

The electric charge quantum number is calculated using the Gell-Mann-
Nishijima formula

Q = T 3 + Y . (3.36)

As the MSSM does not add any new propagating vector fields this sector of
the model does not change.

3.3 Neutralinos and Neutrinos

In this section we give an overview about the neutral fermionic fields which
are the fermionic components of either chiral superfields or vector superfields.

3.3.1 Neutralinos in the MSSM

In the R-parity conserving case the wino and the bino are mixing with the
Higgsino due to the electroweak symmetry breaking to the four neutralinos
χ0
Rp

. The Lagrangian in the gauge eigenstate basis

χ0
Rp

=
(
B̃, W̃

3
, h̃

0

u, h̃
0

d

)T
(3.37)

is given by

−Lneutralino = 1
2
χ0
Rp

T
Mχ0

Rp
χ0
Rp
, (3.38)

where the symmetric neutralino mass mixing matrix is

Mχ0

Rp
=




M1 0 1
2
g1vu −1

2
g1vd

0 M2 −1
2
g2vu

1
2
gvd

1
2
g1vu −1

2
g2vu 0 −µ

−1
2
g1vd

1
2
g2vd −µ 0


 . (3.39)

Expressing the coupling constant with the help of (3.30) via mZ and rotating
the gauginos by Tw and the Higgsinos by an analog matrix composed of cosβ
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and sin β, called Tβ , into the photino-zino and the (anti)symmetric Higgs
basis

χ0
Rp

′
=




γ̃

Z̃

h̃
0

S

h̃
0

A


 =

(
Tw 0
0 Tβ

)



B̃

W̃
3

h̃
0

u

h̃
0

d




=




cw sw 0 0
−sw cw 0 0

0 0 cβ sβ
0 0 −sβ cβ







B̃

W̃
3

h̃
0

u

h̃
0

d




=




B̃cw + W̃
3
sw

W̃
3
cw − B̃sw

h0
ucβ + h0

dsβ
h0
dcβ − h0

usβ




, (3.40)

the neutralino mixing matrix simplifies to

Mχ0

Rp

′ = TwTβMχ0

Rp
Tβ

TTw
T

=




M1c
2
w +M2s

2
w

1
2

(M2 −M1) s2w 0 0
1
2

(M2 −M1) s2w M2c
2
w +M1s

2
w 0 mZ

0 0 −µs2β −µc2β
0 mZ −µc2β µs2β


 .

(3.41)

This is a 4×4 matrix, hence an analytic diagonalization with a unitary matrix
S is in general possible [58–61]. In order to get positive mass eigenvalues one
has to multiply a diagonal unitary matrix P . Therefore the diagonalization
is done by multiplying the matrices

P ∗S∗Mχ0

Rp
S†P † = diag

(
mχ0

1Rp
, mχ0

2Rp
, mχ0

3Rp
, mχ0

4Rp

)
. (3.42)

The mass eigenstate is then given by

χ0,mass
Rp

= PSχ0
Rp

′
. (3.43)

The complete formulas as well as the proceeding how to derive them are
written down in Appendix C.2. However, the formulas are in general very
complex and not very helpfull. Therefore an approximating diagonalization
for small mixing gives more insight [62]. In this approach, where mZ ≪ µ,
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one gets to first order

mχ0

1Rp
= M1 −

m2
Z sin2 θw (M1 + µ sin 2β)

µ2 −M2
1

+ . . . ,

mχ0

2Rp
= M2 −

m2
Z cos2 θw (M2 + µ sin 2β)

µ2 −M2
2

+ . . . ,

mχ0

3Rp

mχ0

4Rp

}
=





|µ| +
m2
Z (sgn (µ) − sin 2β) (µ+Meγ)

2 (µ+M1) (µ+M2)
+ . . . ,

|µ| +
m2
Z (sgn (µ) + sin 2β) (µ−Meγ)

2 (µ−M1) (µ−M2)
+ . . . .

(3.44)

Here Meγ = M1 cos2 θw + M2 sin2 θw is the photino mass, a gauge eigenstate
mass parameter that proves helpful to parametrize the weak mixing angle
θw. For the case M1 < M2 < |µ| the neutralino masses mχ0

1Rp
< mχ0

2Rp
<

mχ0

3Rp
< mχ0

4Rp
are sorted by their size.

3.3.2 Neutrino Mass Generation via Majorana Masses

In the R-parity conserving theory, left-handed neutrino masses must be gen-
erated with the help of right-handed neutrinos via the seesaw mechanism
sketched in Appendix G.1.

The scalar potential for left and right-handed neutrinos is

Vscalar =
(

1
2
Mijν

c
iν
c
j + λνijh

0
uνiν

c
j + h.c.

)

= 1
2

(νiν
c
i)Mν

(
νj
νcj

)
+ h.c.

= 1
2

(νiν
c
i)

(
0 λνij

Th0
u

λνijh
0
u Mij

)(
νj
νcj

)
+ h.c. .

(3.45)

If Mij is much larger then the weak scale one can calculate the neutrino
masses directly from this scalar potential. Due to λνijh

0
u ≪ Mij the seesaw

mechanism can be used. This gives the neutrino mass matrix

Mν
ij = −λνikh0

uM
−1
kl λ

ν
lj
Th0

u . (3.46)

This result is well known from SM physics [4, 5]. For an overview in the SM
see [3, 63], for the supersymmetric case see [46].

3.3.3 Neutrino Mass Generation via R-Parity Viola-
tion

In the R-parity violating case at least one neutrino acquires a mass at tree
level without the help of right-handed neutrinos. The other two neutrinos
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become massive at one or two loop level, respectively. This effect is based on
the mixing of the neutrinos with other neutralinos via the bilinear R-parity
violating parameter µi and the sneutrino VEV vi.

As an example how to calculate a supersymmetric fermionic Lagrangian
we perform the calculation for the R-parity breaking neutralino Lagrangian
explicitly. The gauge eigenstate basis gets extended to

χ0
6Rp

=
(
B̃, W̃

3
, h̃

0

u, να

)T
=
(
B̃, W̃

3
, h̃

0

u, h̃
0

d, νi

)T
. (3.47)

The F -terms for the fermions come from inserting the superpotential (2.9)
into the second to last term in the Lagrangian (1.6).

VF = 1
2

(
µαh̃

0

uνα + h.c.
)

(3.48)

The D-terms come from the first two terms of the Lagrangian (1.12) which
is needed to combine the chiral supermultiplet with the vector multiplet in
a supersymmetric way. The D-terms are

VD = 1
2
g1vuh̃

0

uB̃ + 1
2
g1vuB̃

∗
h̃

0

u − 1
2
g1vα

TναB̃ − 1
2
g1vαB̃

∗
να

†

− 1
2
g2vuh̃

0

uW̃
3 − 1

2
gvuW̃

3†
h̃

0

u + 1
2
g2vα

TνW̃
3

+ 1
2
g2vαW̃

3†
να

† .
(3.49)

Finally the soft susy breaking terms are

−Lsoft =
(

1
2
M1B̃B̃ + 1

2
M2W̃

3
W̃

3
+ h.c.

)
. (3.50)

Hence the R-parity violating neutralino Lagrangian is as in the R-parity
conserving case (3.38)

−Lneutralino = 1
2
χ0

6Rp

T
Mχ0

6Rp
χ0

6Rp
, (3.51)

where the mass matrix is given by

Mχ0

6Rp
=




M1 0 1
2
g1vu −1

2
g1vβ

T

0 M2 −1
2
g2vu

1
2
g2vβ

T

1
2
g1vu −1

2
g2vu 0 −µβT

−1
2
g1vα

1
2
g2vα −µα 0αβ


 . (3.52)

Here 0αβ means a 4 times 4 matrix containing only zeros. This matrix has
a 3 times 3 submatrix 0ij which reveals that the neutrinos do not have a
direct mass term. In the case where the diagonal terms containing µi and vi
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are much smaller than the R-parity conserving submatrix (3.39) the seesaw
mechanism can be used and gives

Mν
ij = −mTM−1

χ0

Rp

m =
Meγm

2
Z

detMχ0

Rp

cos2 β

tan2 β
aiaj . (3.53)

The previous expression introduces the misalignment vector

ai =

(
µ
vi
vd

− µi

)
tanβ . (3.54)

The determinant of the R-parity conserving neutralino mass matrix

detMχ0

Rp
= µ

(
Meγm

2
Z sin 2β −M1M2µ

)
(3.55)

emerges due to the relation A−1 = A† det−1A.
The matrix (3.53) has two massless neutrino eigenvalues. The third eigen-

value of this matrix built from the misalignment vector (3.54) equals

|ai|2 = µ2 |ǫ̂i − ǫi|2 tan2 β , (3.56)

where the parameter ǫi = µi

µ
is introduced. The product of the nonzero

eigenvalues of the R-parity violating neutral fermion mixing matrix defines
the reduced determinant det′Mχ0

6Rp
. Therefore the neutrino mass is given by

m 6Rp

ν3
=

det′Mχ0

6Rp

detMχ0

Rp

=
Meγm

2
Zµ

2 |ǫ̂i − ǫi|2
|µ (Meγm

2
Z sin 2β −M1M2µ)| cos2 β . (3.57)

This is the most general formula for the neutrino mass induced by R-parity
violation as, for instance, in [15, 41, 51, 64, 65]. Other authors use a one
neutrino model [50] or stay in the four component-notation [45, 47, 49, 66–
68]. In the latter case, however, one has to introduce new notations like a
misalignment angle in order to describe the three-component neutrino mass
in the four-component framework.

Finally one has to rotate away either the sneutrino VEV vi [69, 70] or the
bilinear coupling µi as we will do in Section 4.3 (see there for references).

3.3.4 Neutrino Mass Generation via Majorana Neutri-

nos and R-Parity Violation

The neutralino Lagrangian including right-handed neutrinos

χ0
6RpNc =

(
B̃, W̃

0
, h̃

0

u, ν
c
i, να

)T
=
(
B̃, W̃

0
, h̃

0

u, ν
c
i, h

0
d, νi

)T
(3.58)
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can again be expressed by a formula analog to (3.38)

−L 6RpNc

χ0 = 1
2
χ0

6RpNc

T
Mχ0

6RpNc
χ0

6RpNc , (3.59)

but the mixing matrix is extended. Going directly into the photino-zino basis
and staying in the four-component notation for the Higgsino-sneutrino fields,
the mixing matrix reads

Mχ0

6RpNc

′ =




M1c2w+M2s2w
1

2
(M2−M1)s2w 0 0j 0β

1

2
(M2−M1)s2w M2c2w+M1s2w −mZ

vu
v

0j mZ
vα

T

v

0 −mZ
vu
v

0 λν
γj

†eνγ
T λν

βk
†eνc

k
T−µβ

†

0i 0i λν
γieνγ Mij λν

βi
†h0

u

0α mZ
vα
v

λν
αkeνc

k−µα λν
αjh

0
u 0αβ


 .

(3.60)

Because of the hierarchy

λνij ν̃
c
i ≪ λνij ν̃i ≪ λνijh

0
u (3.61)

in the matrix and the fact that we have set λνi h
0
d = 0, it is justified to give

first mass to the left-handed neutrinos via the SM seesaw mechanism and
then calculate the mass contribution to the neutrino mass from the R-parity
violating couplings. This procedure results in

M
6Rp+Nc

ij =
mν

6Rp
aiaj +Mν

ij |a|2 + 2mν
6Rp
Mν

ij ǫ̂kak

|a|2 −mν
6Rp
ǫ̂iMν

ij ǫ̂j
, (3.62)

where we neglected the small contribution of the right-handed sneutrino
VEVs and the small coupling λνi . In the R-parity conserving limit this ex-
pression becomes the standard seesaw formula (3.46). In the Mij → ∞ limit
it becomes the R-parity violating formula (3.57). Therefore Equation (3.62)
generalizes the partial results in the literature.
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Chapter 4

Constraining SUSY with
Bilinear R-Parity Breaking

In order to fulfill the experimental bounds it is necessary to constrain the
R-parity violating couplings. In this thesis we work in the bilinear R-parity
violating model.

In the first two sections of this chapter we give the reasons for this choice
and the constraints it is subject to. In the third section we will derive the
relevant terms of the bilinear R-parity breaking and calculate two decays in
the bilinear R-parity violating model in section four and five.

4.1 Proton Decay

The R-parity violating couplings are strongly constrained by experiment [9].
That is why most work is done in the R-parity conserving theory. The
strongest constraint comes from the longevity of the proton.

The coupling λ′ijmλ
′′
1j1

† with m = 1, 2 would lead to proton decay via tree-
level down squark exchange as shown in Figure 4.1. The decay rate would

u

d

u

λ′′1j1 d̃
c

k
λ′ijm

e, νe

u, d

u

Figure 4.1: R-parity violating proton decay channel.
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be much larger [9] than the limits given by observation [1] unless
∣∣∣λ′ijmλ′′1j1†

∣∣∣
is smaller than O (10−26) for squark masses around 300 GeV. This strong
constraint can be dealt with by finding a model where λ′′ijk = 0. In such a
case only lepton number violating couplings are present in the superpotential.

4.2 Gravitino Dark Matter

In this section we recollect the constraints on R-parity violation due to grav-
itino dark matter [21, 71] and cosmology. For a rough overview about cos-
mology see Appendix F. For an introduction see, for instance [11].

Thermal leptogenesis [13] is an attractive theory to explain the observed
asymmetry between baryons and antibaryons [11]:

ηB =
nB − nB

nγ
= (6.1 ± 0.3) × 10−10 . (4.1)

In thermal leptogenesis heavy Majorana neutrinos generate a B − L asym-
metry, which can be converted into a baryon asymmetry via sphaleron pro-
cesses [72]. Thermal leptogenesis requires a high reheating temperature
TR ≃ 1010 GeV after inflation.

So far we have only dealt with the particles that are added by SUSY.
Supergravity adds the gravitino to the mass spectrum, which can cause some
problems, as explained in the following.

In the early universe the gravitino is in equilibrium with the thermal
bath. Calculation of the relic density shows that the gravitino density would
be larger than the critical density, hence the density parameter would be
Ω3/2 > 1, and the universe would overclose. Postulating inflation dilutes the
gravitinos, but they are reproduced in the reheating phase after inflation.
This generates the gravitino density [73]

Ω3/2h
2 ≃ 0.3

(
TR

1010 GeV

)( m3/2

100 GeV

)−1 ( meg
1 TeV

)
. (4.2)

Gravitino DM is compatible with thermal leptogenesis, since for sensible
values of the gluino mass meg ≃ O (1 TeV) , a reheating temperature of order
1010 GeV is needed in order to explain DM solely with thermal gravitinos.
The gravitino mass has to be of order 100 GeV to cause the observed DM
amount.

Without R-parity breaking the gravitino has a lifetime of [74]

τ3/2 ∼ 3 years
( m3/2

100 GeV

)−3

, (4.3)
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due to the Planck mass suppression if it is not the LSP. The late decay of
the gravitino can spoil the successful predictions of the big bang nucleosyn-
thesis [14]. In order to avoid this, the reheating temperature must be below
105 GeV. However, this requirement is ruled out in a thermal leptogenesis
model.

If the gravitino is the LSP, the NLSP can only decay into the gravitino
in R-parity conserving theories. This decay, being also suppressed by the
Planck mass, leads to an NLSP lifetime of [6]

τNLSP ∼ 9 days
( m3/2

10 GeV

)2 ( mNLSP

150 GeV

)−5

. (4.4)

This can be circumvented with R-parity breaking because then the NLSP
can decay via the R-parity violating channels. In order to avoid the dilution
of an existing baryon asymmetry in the early universe before the electroweak
phase transition the R-parity violating couplings must fulfill [75–77]

λ, λ′ < 10−7 . (4.5)

This is a sufficient condition, which can be relaxed for some flavor structures.
On the other hand the slow decay of the NLSP can affect BBN. In order to
make sure that the decay happens fast enough, the couplings must fulfill [21]

10−14 < λ, λ′ . (4.6)

Summing up, thermal leptogenesis demands that R-parity violation must be
small, but cannot be absent.

4.3 Bilinear R-Parity Breaking

In the bilinear R-parity breaking SUSY only bilinear R-parity violating terms
are nonzero at the beginning, hence the superpotential is composed of the
MSSM Yukawa couplings, the right handed neutrino terms as well as the
bilinear R-parity violating term.

Wbil = µHuHd + λeijHdLiE
c
j + λdijHdD

c
iQj − λuijHuQiU

c
j

+ 1
2
MijN

c
iN

c
j − λνijHuLiN

c
j + µiHuLi .

(4.7)

Using the freedom (2.6) to rotate Hd and Li with ǫi = µi

µ
via

Hd = Hd
′ − ǫiLi

′ , Li = Li
′ + ǫiHd

′ , (4.8)
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gives the rotated superpotential

W ′
bil = λeijHd

′Li
′Ec

j + λdijHd
′Dc

iQj − λuijHuQiU
c
j − λνijHuLiN

c
j

− ǫiλ
e
jkLi

′Lj
′Ec

k − ǫiλ
d
jkLi

′Dc
jQk − ǫiλ

ν
ijHuHd

′N c
j

+ µHuHd
′ + 1

2
MijN

c
iN

c
j + O

(
ǫ2
)
.

(4.9)

The term containing Hd
′Hd

′ vanishes because of the SU(2) symmetry. This
superpotential contains the lepton number breaking trilinear couplings as
well as the R-parity breaking right-handed neutrino coupling

λijk = ǫiλ
e
jk , λ′ijk = ǫiλ

d
jk , λνj = ǫiλ

ν
ij . (4.10)

Combining the constraint (4.5) with the requirement, that the Yukawa-coup-
lings together with the Higgs VEVs have to amount to the masses of the third
generation, gives an upper limit on the bilinear R-parity breaking parameter
ǫi [21], ( ǫi

10−6

)(tanβ

10

)
. 1 . (4.11)

In the superpotential (4.9) the bilinear lepton number breaking term µi is
absent by construction. As the superpotential (4.7) does not contain any
baryon number breaking term, λ′′ijk could not emerge. Furthermore they are
not reintroduced via RGE running because the RGE for λ′′ijk (E.12) is self-
contained and the RGE for µi (E.8) does only depend on terms that are
proportional to µi in the bilinear R-parity breaking as shown in Appendix
E.3. Hence the sneutrino vacuum expectation value is the only bilinear R-
parity violating term and the proton is stable.

We neglect the right-handed sneutrino VEV, because of its double sup-
pression first in the mass term Mij and second in ǫi.

The relevant bilinear soft SUSY breaking Lagrangian is

−Lbil
soft =m̃2

uhu
†hu + m̃2

dhd
†hd + (m2

eL)ijL̃i
†
L̃j

+
(
AeijhdL̃il̃

c

j + Adijhdd̃
c

iQ̃j + AuijhuQ̃iũ
c
j + AνijhuL̃iν̃

c
j

+Bhuhd +BihuL̃i + m̃2
dihd

†L̃i + h.c.
)

+ . . . .

(4.12)

After rotating according to (4.8) the Lagrangian becomes

−L′bil
soft =m̃2

uhu
†hu + m̃2

d′h
′
d
†
h′d + (m2

eL′)ijL̃i
′†
L̃j

′

+
(
Aeijhd

′L̃i
′
l̃
c

j + Adijhd
′d̃
c

iQ̃j + AuijhuQ̃iũ
c
j + AνijhuL̃iν̃

c
j

−ǫiAejkL̃i
′
L̃j

′
l̃
c

k + ǫiA
d
jkL̃i

′
d̃
c

jQ̃k + ǫiA
ν
ijhuhd

′ν̃cj

+B′huh
′
d +B′

ihuL̃i
′
+ m̃2

d′ihd
′†L̃i

′
+ O

(
ǫ2
)

+ h.c.
)

+ . . . .

(4.13)
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The rotated bilinear soft SUSY breaking terms are defined by

m̃2
d′ = m̃2

d + ǫim̃
2
di + O

(
ǫ2
)
, (4.14)

(m2
eL′)ij = (m2

eL)ij − ǫjm̃
2
di + O

(
ǫ2
)
, (4.15)

B′ = B + ǫiBi , (4.16)

B′
i = Bi − ǫiB , (4.17)

m̃2
d′i = m̃2

di + ǫj(m
2
eL)ji − ǫim̃

2
d + O

(
ǫ2
)
. (4.18)

Again the trilinear lepton number breaking terms are reintroduced:

Aijk = ǫiA
e
jk , A′

ijk = ǫiA
d
jk , Aνj = ǫiA

ν
ij . (4.19)

In the bilinear R-parity breaking theory the sneutrino VEV (3.21) simplifies
to [78–80]

ǫ̂i =
vi
vd

≃ B′
i tan β − m̃2

d′i

∗

m̃2
i′i′ + 1

2
m2
Z cos 2β

. (4.20)

The neutrino mass induced by R-parity violation is [78–81]

m 6Rp

ν3
≃ µMeγm

2
Z cos2 β

|µM1M2 −Meγm2
Z sin 2β| |ǫ̂i|

2 . (4.21)

The general neutrino mass (3.62) in bilinear R-parity breaking is

M
6Rp+Nc

ij ≃
mν

6Rp
µ2ǫ̂iǫ̂j +Mν

ijµ
2 |ǫ̂k|2 + 2µmν

6Rp
Mν

ij |ǫ̂k|2 cot β

µ2 tan2 β |ǫ̂i|2 −mν
6Rp
ǫ̂iM

ν
ij ǫ̂j

tan2 β . (4.22)

These formulas are bilinear results derived from the most general equations
given in Chapter 3. They are valid as long as the bilinear breaking parameter
is constrained by (4.11). In order to get an overview about the behavior of
these values we will simplify the parameter further in Chapter 5.

4.4 Gravitino Decay into Photon and Neu-

trino

As shown in Section 4.2 the gravitino must be the LSP and the R-parity
violating couplings must be small in order to be compatible with standard
cosmology. Hence the R-parity violating effects can be calculated as a per-
turbation of the R-parity conserving theory. Therefore we can calculate the
gravitino ψ decay via R-parity conserving couplings into a photon γ and a
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ψµ

p

γµ

k

χ0
〈ν̃τ 〉

q

ντ

Figure 4.2: The gravitino decays into a photon and a neutrino via an inter-
mediate neutralino coupling to the sneutrino VEV.

virtual photino γ̃. The latter mixes immediately to a zino Z̃ which in turn
mixes via the R-parity violating sneutrino VEV vτ into a τ -neutrino ντ . That
the coupling to the third family is the largest will be shown in Chapter 5.
The Feynman diagram of this process can be found in Figure 4.2. The cal-
culation has been done before in, for instance,[54, 71, 82–84]. Hence we give
just a rough overview about the calculation. The amplitude of this process
reads in four spinor-notation

iM = − ur(q)i
√

2 〈ν̃τ 〉
(
g2

1
2
σ3,11 cos θw − g1YνL sin θw

)
PR

×
(

4∑

i,j,α=1

S eZi
∗Piα

∗ i
(
6 q +mχ0

α

)

q2 −m2
χ0

α

PαjSjeγ

)
i

4

1

MP
γµ [6k, γρ]ψ+s

µ (p)ǫλρ
∗
(k)

≃− i

8
√

2

1

MP
gZ 〈ν̃τ 〉

(
4∑

α=1

S eZα
∗Sαeγ

mχ0
α

)

× ur(q)
(
1 + γ5

)
γµ [6k, γρ]ψ+s

µ (p)ǫλρ
∗
(k) .

(4.23)

For details of the four-spinor notation see Appendix B.2 and [2]. For details
of the continuous fermion flow used in Figure 4.2 see [85]. By virtue of the
properties of the Dirac γ-matrices the square of the amplitude reduces to

|M|2 ≃ 1

12
ǫ̂2τ

∣∣∣Ueγ eZ

∣∣∣
2

(
m2

2/3 −m2
ν

)2 (
3m2

2/3 +m2
ν

)

m2
2/3M

2
P

cos2 β . (4.24)
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Finally the decay width for the decay into photon and (anti) neutrino is

Γ(ψ → γντ ) ≃
1

32π
ǫ̂2τ

∣∣∣Ueγ eZ

∣∣∣
2 m3

3/2

M2
P

cos2 β . (4.25)

In this calculation we have introduced the photino-zino mixing parameter

∣∣∣Ueγ eZ

∣∣∣ = mZ

4∑

α=1

Sα eZ
†Sαeγ

mχ0
α

, (4.26)

which contains the neutralino diagonalization matrices (3.42) for the zino
and the photino in the R-parity conserving case:

γ̃ =
4∑

i,α=1

Seγi
∗Piα

∗χ0
α , Z̃ =

4∑

i,α=1

S eZi
∗Piα

∗χ0
α . (4.27)

The mixing parameter becomes in the weak coupling limit mZ → 0

∣∣∣Ueγ eZ

∣∣∣ ≃ mZ
|M1 −M2|

2M1M2
sin 2θw . (4.28)

The Higgsino mass modifies this only in the third order. The previous result
can be easily improved by using numerical diagonalization, but the analytical
formula has the advantage, that one can keep track of the dominant depen-
dencies. Equation (4.28) is a more elegant solution than the often used more
heuristic formula, depending on the neutralino mass, as in, for instance, [71]
or the solution which comes from a more simple approach [82].

Taking the GUT relation M1 = M2 one is led to the low energy relation

M2 = 3
5

cot2 θwM1 ≃ 2.2 M1 (4.29)

for the soft SUSY breaking neutralino masses. In this case the mixing pa-
rameter simplifies to

∣∣∣Ueγ eZ

∣∣∣ ≃1

3

mZ

M1
|1 − 4 cos 2θ| tan θ

≃0.128

(
M1

150 GeV

)−1

.

(4.30)

The gravitino lifetime becomes

τ 2-body
3/2 = 2.08 × 1027 s

(
ǫ̂τ

10−7

)−2(
M1

150 GeV

)2 ( m3/2

10 GeV

)−3

. (4.31)
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−iλ233τ̃+
R

τ †(kτ , λτ )

νµ
†(kνµ, λνµ)

Figure 4.3: The right-handed τ̃ -slepton decays into a right-handed τ -lepton
and an anti µ-neutrino.

The decay width (4.25) depends only on the soft SUSY breaking neutralino
masses and the gravitino mass. It is suppressed by the square of the Planck
mass as well as the square of the τ -sneutrino VEV. This double suppression
makes the gravitino, once produced, very long-lived as can be observed in
the lifetime formula (4.31). As it might be generated in a hot phase after
inflation, it can still be present in our universe, and can be responsible for
the observed amount of DM.

Recent results of Fermi LAT give a preliminary lower bound of about

τ & 1029 s (4.32)

on the lifetime of a DM candidate which decays into photons [86]. Hence we
are able to further constrain one of the parameters in the gravitino lifetime
(4.31). If we do not change, for instance, m3/2 and M1, we can constrain the
sneutrino VEV parameter to be

ǫ̂τ . 10−8 . (4.33)

For the case where ǫ̂ ≈ ǫ this is one order of magnitude better than the
constraint coming from non-erasure of primordial baryogenesis.

4.5 Scalar τ -Lepton Decay into τ -Lepton and

Neutrino

For large parameter ranges the τ̃ -slepton is the NLSP [87]. It can decay very
slowly via R-parity conserving channels into the gravitino and SM particles,
however due to the huge suppression by the Planck mass this decay conflicts
with BBN (see Section 4.2).

A possible R-parity breaking channel is the decay into a τ -lepton and an
anti µ-neutrino, as shown in Figure 4.3 and calculated, for instance, in [27].
Why exactly this decay channel is dominant is shown in Chapter 5.
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Inserting the R-parity violating superpotential (2.3) into the chiral La-
grangian (1.6) gives for the trilinear lepton coupling λijk the Lagrangian
which couples one scalar field to two fermions

−LLLEc = λijk

(
νilj l̃

c

k + νi l̃jl
c
k + ν̃iljl

c
k

)
+ h.c. (4.34)

The Feynman diagram in Figure 4.3 shows an incoming scalar field that
couples with −iλ233 to two outgoing fermions, yτ and yνµ where the external

commuting two-component spinor wave functions are y = y(~k, λ). For details
of the notation see Appendix B.1, in particular Equation (B.7), and [27].
Why we take this flavor structure to be the dominant decay channel will be
explained in the next chapter. The amplitude is given by

iM = −iλ233yτyνµ (4.35)

and squared amplitude is

|M|2 = |λ233|2 yτ †yνµ

†yτyνµ . (4.36)

The sum over the spins gives

∑

λτ ,λνµ

|M|2 = |λ233|2
(
m2

eτ c −m2
τ −m2

νµ

)
. (4.37)

It follows that the decay rate is

Γ (τ̃ c → τνµ) =
1

16π

1

meτc


 ∑

λτ ,λνµ

|M|2



= 1
16π

|λ233|2m−1
eτ c

(
m2

eτ c −m2
τ −m2

νµ

)

≃ 1
16π

|λ233|2meτc .

(4.38)

The leptonic decay length of the right-handed τ̃ -slepton is then approximated
by [21]

cτ lep
eτ = 25 cm

( meτ
200 GeV

)−1 ( ǫ2
10−7

)−2
(

tanβ

10

)−2

. (4.39)

For this approximation we have taken into account the decays τ̃R → τνµ, µντ .
One can see that this decay if it happend in a detector would be observable
as a displaced vertex in ATLAS or CMS.
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Chapter 5

SU(5) Grand Unified Theory
with U(1)

Q̂
Flavor Symmetry

In order to make simple calculations for the purpose of getting an overview
about the behavior of the particles we restrict the family structure in partic-
ular in the Yukawa matrices via the U(1) bQ flavor Froggatt-Nielsen symmetry
described in Section 1.3. With this symmetry one can predict the unknown
hierarchy of the unmeasured Yukawa matrices depending only on the mea-
sured hierarchies and on the model chosen.

5.1 U(1)
Q̂

Flavor Charge Assignment

One possible U(1) bQ flavor charge distribution in a SU(5) GUT is developed
in [36]. For concreteness we shall adopt this model here, reducing the com-
plexity of flavor structure to a single parameter. The charges are denoted in
Table 5.1. The value of the b-quark mass allows for a = 0 or a = 1. As shown
in [21] there are two at low energies indistinguishable consistent models

1) a = b = 0 , c = 1 , d = 2

2) b = c = 0 , a = d = 1 ,

Φi (101, 102, 103)
(
51, 52, 53

)
(11, 12, 13)

Q̂i (2, 1, 0) (a+ 1, a, a) (d, c, b)

Table 5.1: U(1) bQ flavor symmetry charge distribution for the chiral multi-
plets in SU(5) notation. The Higgs fields have charge zero.
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The model also predicts the observed baryon asymmetry via leptogenesis for
the case where a+ d = 2. As it turns out the first model is inconsistent with
the constraint from neutrino masses and baryogenesis washout.

In the following ∼ means that a matrix of order one has to be multiplied.
In principle most of the factors in different formulas depend on each other,
but for the sake of clarity we will not write this out.

5.2 Superpotential Parameters

In order to define the flavor dependency of the superpotential (2.1) at the
GUT scale, one has to assign the charges given in Table 5.1 to Equation
(1.30).

5.2.1 R-Parity Conserving Parameters

The SM Yukawa matrices turn out to be

λuij ∼ η
bQ(10)i+ bQ(10)j ∼



η4 η3 η2

η3 η2 η
η2 η 1


 , (5.1)

and

λeij ∼ λdij ∼ η
bQ(5)i+ bQ(10)j ∼ ηa



η3 η2 η
η2 η 1
η2 η 1


 . (5.2)

Hence the CKM-Matrix (1.32) is [36]

VCKM ∼ η| bQ(10)i− bQ(10)j| ∼




1 η η2

η 1 η
η2 η 1


 . (5.3)

If one fits this matrix to the measured CKM-matrix (A.6), one gets the best
result for

η = 1
16

(5.4)

at the weak scale. The value of the largest O (1) parameter is approximately
4.

The neutrino Yukawa coupling is [20]

λνij ∼ η
bQ(5)i+ bQ(1)j ∼ ηa



ηd+1 ηc+1 ηb+1

ηd ηc ηb

ηd ηc ηb


 . (5.5)
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The Majorana mass matrix Mij = λSij 〈S〉 for the right-handed neutrinos
depends on

λSij ∼ η
bQ(1)i+ bQ(1)j ∼



η2d 0 0
0 η2c 0
0 0 η2b


 . (5.6)

Without loss of generality we have chosen a basis where Mij is diagonal and
real. The diagonalization does not change the hierarchy structure of the
neutrino Yukawa couplings. Hence in the the R-parity conserving case the
Majorana mass matrix of the light neutrinos is given by

mν
ij ∼ λνik(λ

S)−1
kl λ

ν
lj ∼ η2a



η2 η η
η 1 1
η 1 1


 . (5.7)

The dependence on the charges of the heavy neutrinos drops out. Diago-
nalization yields a large mixing between the second and third family which
is needed in order to explain the atmospheric neutrino deficit by νµ − ντ
oscillations.

5.2.2 R-Parity Breaking Parameters

The U(1) bQ flavor symmetry enables us to write the bilinear R-parity breaking
superpotential parameter µi as a product of a vector containing the family
structure and a small parameter ǫ of order of the R-parity breaking suppres-
sion

µi
µ

= ǫi ∼ ǫη
bQ(5)i ∼ ǫηa(η, 1, 1)T . (5.8)

In the case where a = 1 the constraint (4.11) leads with this definition to

( ǫ

10−5

)( η
1/16

)2a

. 2.56 . (5.9)

Equation (5.8) yields with (4.10) the trilinear R-parity violating couplings

λijk = λ′ijk = ǫiλ
d/e
jk ∼ ǫη

bQ(5)i+ bQ(5)j+ bQ(10)k

∼ ǫη2a
(
η1, 1, 1

)T


η3 η2 η
η2 η 1
η2 η 1


 (5.10)

and the R-parity breaking right-handed neutrino coupling

λνi ∼ ǫη
bQ(1)i ∼ ǫ

(
ηd, ηc, ηb

)T
. (5.11)

Since the λijk-matrix must be antisymmetric in its first two indices and the
flavor parameter matrix is symmetric in these indices, the coefficient matrix
must be antisymmetric.
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5.3 Soft Supersymmetry Breaking Masses

In order to reduce the parameter space further, we have to impose the flavor
hierarchy from Table 5.1 in the soft SUSY breaking sector and constrain the
soft SUSY breaking masses at the GUT scale.

5.3.1 R-Parity Conserving Masses

At the GUT scale we assume universal scalar masses that are diagonal and
proportional to the gravitino mass m3/2. This mass is usually called m0:

(m2
euc)ij = (m2

edc)ij = (m2
elc)ij = (m2

eL)ij = (m2
eQ)ij = m2

01ij . (5.12)

The Higgs mass parameters are equal to the gravitino mass,

m̃2
d = m̃2

u = m2
0 , (5.13)

and the Higgs B term is equal to

B = m0µ . (5.14)

The dimension of the cubic scalar couplings is given by the scalar A and the
pattern is proportional to the corresponding Yukawa couplings

Aeij = Aλeij , Aνij = Aλνij , Adij = Aλdij , Auij = Aλuij . (5.15)

Hence the nontrivial flavor structure for the R-parity conserving soft SUSY
Lagrangian is determined by Equations (5.1), (5.2) and (5.5)

5.3.2 R-Parity Breaking Masses

The charge distribution for bilinear R-parity breaking parameters is

m̃2
di ∼ ǫη

bQ(5)im̃2
d ∼ ǫηa(η, 1, 1)Tm2

0

Bi ∼ ǫη
bQ(5)iB ∼ ǫηa(η, 1, 1)Tm0µ .

(5.16)

We take the trilinear couplings to be

Aijk ∼ Aλijk , A′
ijk ∼ Aλ′ijk , A′′

ijk ∼ Aλ′′ijk . (5.17)

This is the analog definition to (5.15).
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5.4 SU(5) GUT with U(1) Flavor Symmetry

and Bilinear R-Parity Breaking

After introducing the U(1) bQ flavor symmetry into our supersymmetric model
we can express the bilinear terms found in Section 4.3 at the GUT scale
with the help of this symmetry. The rotated bilinear soft SUSY breaking
parameter Bi (4.17) is

Bi
′ ∼ ǫηa(η, 1, 1)Tµm0 . (5.18)

The rotated Higgs slepton mixing mass parameter (4.18) is

m̃2
d′i ∼ǫηa(η, 1, 1)Tm2

0 + ǫηa (η, 1, 1) 1ijm
2
0 − ǫηa(η, 1, 1)Tm2

0

∼ǫηa(η, 1, 1)Tm2
0 .

(5.19)

and the rotated slepton mass parameter (4.15) is

(m2
eL′)ij ∼ m2

01ij − ǫ2η2a



η2 η η
η 1 1
η 1 1


m2

0 .
(5.20)

The sneutrino VEVs (4.20) follows

ǫ̂i ∼
µm0 tan β −m2

0

3m2
0 + 1

2
m2
Z cos 2β

ǫηa(η, 1, 1)T . (5.21)

Finally we get the square of the sneutrino VEV parameter just in terms of
scalars to leading order in the flavor parameter η

|ǫ̂|2 ∼ (µm0 tan β −m2
0)

2

(
3m2

0 + 1
2
m2
Z cos 2β

)2 ǫ2η2a(η2 + 2) . (5.22)

It depends only on the known parameter mZ , the model-dependend parame-
ters µ, m3/2 and tan β as well as the small scalars ǫ and η. With this formula
and the constraint (4.33) one is able to derive an upper bound on the R-parity
breaking scalar ǫ. However, depending on the parameters chosen, the bound
on ǫ may not be more rigorous then the constraint coming from non-erasure
of primordial baryogenesis. Nonetheless, ǫ can be inserted into the τ̃ decay
length in order to bound it from below.

In order to get accurate results RGE running must be taken into account
(for the formulas see Appendix E). Therefore, the result (5.22) gives only a
rough overview over the dependence on the small parameters ǫ and η.
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η2a η2a+1 η2a+2 η2a+3

τ̃−R → τLνµ τ̃−R → µLνe τ̃−L → µRνe τ̃−L → eRνe
τ̃−R → µLντ τ̃−R → τLνe τ̃−L → eRνµ τ̃−L → uLdR

τ̃−L → τRνµ τ̃−R → eLνµ τ̃−L → cLdR

τ̃−L → tLbR τ̃−R → eLντ τ̃−L → uLbR

τ̃−L → tLsR τ̃−L → µRνµ τ̃−L → uLsR

τ̃−L → τRνe
τ̃−L → tLdR

τ̃−L → cLbR

τ̃−L → cLsR

Table 5.2: Flavor suppression of two-body τ̃−-slepton decays.

We achieve the precise calculation with a version of SOFTSUSY [88] ex-
tend with R-parity breaking couplings [89], that we have modified to correctly
run the small parameters according to the special pattern of the R-parity
breaking couplings predicted by our model.

5.5 Flavor Structure of τ̃ -Slepton Decays

The flavor structure developed in the present chapter allows the investigation
of the main decay channels of the τ̃ -slepton.

The decay width (4.38) depends on the parameters of the Lagrangian uni-
fied at the GUT scale and their RGE running. We performed our calculation
with the modified version of SOFTSUSY mentioned above. If one calculates
the τ̃ -decay length in this model the coupling is to lowest order proportional
to λijk ∝ η2a due to the flavor structure in (5.10). Hence the stau decay
length is given by

cτ lep
eτ = 25 cm

( meτ
200 GeV

)−1
(

ǫ

2.56 × 10−6

)−2(
η2a

1/16

)−2

(5.23)

In order to allow comparison between our model and the more phenomeno-
logical prediction in (4.39) and [21] we take the R-parity breaking parameter
to be ǫ = 2.56 × 10−6, which corresponds exactly to the R-parity breaking
coupling in the phenomenological prediction.

In Table 5.2 we list all allowed decay channels sorted by their power in η.
In Equation (5.23) only the dominant decay channels are taken into account
in contrast to Figure 5.1 which contains all contributions to the two-body
decays. The dominance of the channels τ̃R → τLνµ, µLντ can be seen in the
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Figure 5.1: τ̃ -slepton decay length in cm as function of the τ̃ -slepton mass in
GeV. All orders in η are included the R-parity breaking Param-
eter is 2.56 × 10−6.
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Figure 5.2: τ̃ -slepton branching ratio in order η2a and η2a+1 as function of
the τ̃ -slepton mass in GeV. The Parameters are chosen to be
ǫ = 2.56 × 10−6 and a = 1 .
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Branching Ratio (BR), which is plotted up to the second order in η in Figure
5.2.

The present model yields a unique signal as it predicts a heavy charged
scalar that decays approximately 25 cm away from the interaction point. The
signals featuring these displaced vertices have a negligible background, and
can therefore lead to a rapid discovery, as long as the τ̃ mass stays small
enough. The simple flavor structure of the model predicts additionally, that
the heavy scalar decays equally into τ - and µ-leptons. Hence one should
observe a corresponding ratio between τ -jets and µ-leptons. The combination
of a heavy ionizing charged track and these characteristic branching ratios
allows a discrimination from SUSY models with conserved R-Parity.

The hadronic channel is more unlikely to be discovered as its width is
suppressed by a factor larger than 100 leading to a hadronic decay length of
order 100 larger then the leptonic decay length.
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Conclusion and Outlook

We calculated the effects occurring in supersymmetric extensions of the SM.
We have focused on two extensions to the MSSM: R-parity breaking as well
as right-handed neutrino superfields.

We rederived formulas for the R-parity breaking sneutrino VEVs (3.21),
coming to a result which differs from formulas found in parts of the literature.
It is a useful result that we obtained the sneutrino VEVs without restricting
the interaction terms of the Lagrangian prior to that. Therefore, the model-
dependent restrictions can be applied later without recalculating the VEVs.
As we have also taken into account the right-handed sneutrinos we were able
to derive the VEVs as well as the mass mixing matrices for this extension
of the MSSM. To the best of our knowledge, we are the first to derive all
mixing effects when both extensions are taken into account.

As both expansions generate neutrino masses separately most authors
settle with one of them. Hence we were able to derive a new formula where
both mass generating mechanisms are in effect (3.62). In the limiting cases
this formula simplifies, respectively, to the known formulas (3.46) and (3.57).
Here we want to emphasize that the pure R-parity breaking formula seems
not to be known well enough, as many authors use a more heuristic approach,
depending on the unknown neutralino masses.

Afterwards we calculated an R-parity breaking supersymmetric model.
In order to obey experimental constraints and to have one single R-parity
breaking parameter we constrained bilinear R-parity breaking with a U(1) bQ
flavor symmetry in an SU(5) GUT. This enabled us to derive the lifetime of
the gravitino LSP. By comparison with recent Fermi LAT results we could
restrict the order of R-parity breaking (4.33) from above. We also derived
the decay length of one possible NLSP, the τ̃ -slepton (4.39). This decay is as
well governed by R-parity breaking, hence the satellite results bound it from
below. We came to the conclusion that it would have a spectacular signal at
LHC.

Although we were able to derive numerical results, concerning the con-
nection between gravitino DM and τ̃ NLSP decays, we were neither able
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to analyze the gravitino DM restrictions on R-parity breaking, nor the re-
sulting constraints for scalar τ -leptons as deeply as we would have liked to.
Hence we see a good opportunity to extend this study in order to derive more
solid predictions for the scalar τ -lepton in detectors based on gravitino DM
searches.
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Appendix A

Units and Physical Constants
in the Standard Model

In table A.1 we summarize the values of the physical constants used in this
thesis. The values are taken from [1].

We are using a system of units where the reduced Planck constant ~ =
6.58211899(16)× 10−25 GeV s , the speed of light c = 299792458 m/s, and the
Boltzmann constant kB = 8.617343(15) × 10−11 GeV/K equal one: ~ = c =
kB = 1 . In this way every physical quantity can be measured in powers of
the mass m. In high energy physics the mass is measured in electron volts
(eV). The only remaining dimensionful coupling constant is the gravitational
constant GN , which defines the reduced Planck mass MP = (8πGN)−1/2 .

A.1 Cabibbo-Kobayashi-Maskawa Matrix

The Cabibbo-Kobayashi-Maskawa (CKM) matrix parametrizes the flavor
changing charged current in the quark sector of the standard model. It
arises from the diagonalization of the Yukawa matrices.

The square of the matrix λu can be diagonalized with two matrices U and
W :

λuλu
† = UuD

2
uUu

† , λu
†λu = WuD

2
uWu

† . (A.1)

Hence the matrix λu can be diagonalized by

λu = UuDuWu
† . (A.2)

The same applies to λd

λdλd
† = UdD

2
dUd

† , λd
†λd = WdD

2
dWd

† . (A.3)
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Quantity Symbol Value

gravitational constant GN 6.70887(67) × 10−39 GeV−2

reduced Planck mass MP ≃ 2.4 × 1018 GeV
electron mass me 0.510998910(13) MeV

muon mass mµ 105.658367(4) MeV
τ lepton mass mτ 1.77684(17) GeV
u quark mass mu 1.5 − 3.3 MeV
d quark mass md 3.5 − 6.0 MeV
s quark mass ms 104(34) MeV
c quark mass mc 1.27(11) GeV
b quark mass mb 4.20(17) GeV
t quark mass mt 171.2(2.1) GeV

W± mass mW 80.398(25) GeV
Z mass mZ 91.1876(21) GeV

neutrino mass mν < 2 eV
SM Higgs VEV v ≃ 174 GeV
proton lifetime τp > 2.1 × 1029 years

weak mixing angle sin θw 0.23119(14)

Table A.1: Physical constants.

Therefore, it can be diagonalized by

λd = UdDdWd
† . (A.4)

Finally the CKM-Matrix can be defined by

VCKM = Uu
†Ud . (A.5)

The observed values are

VCKM ≃




0.97418(27) 0.2255(19) 0.00393(36)
0.230(11) 1.04(6) 0.0412(11)
0.0081(6) 0.0387(23) 0.77(24)


 . (A.6)

One possible parametrization of the obvious hierarchy can be found in Section
1.3.
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Appendix B

Notation

In this thesis we are using letters from the middle of the Greek alphabet
µ, ν, . . . = 0, 1, 2, 3 for the indices of space-time four vectors. We are using
the space-time metric ηµν = diag (+1,−1,−1,−1).

B.1 Two-Component Spinor Notation

As supersymmetric spinors are mostly noted as two-component spinors we
will give a rough overview about important formulas in this area. We are
closely following [27], see there for a more complete introduction.

A left-handed (1/2, 0) two-component Weyl spinor denoted as χα trans-
forms as χα → M β

α χβ under the representation matrix M β
α of the Lorentz

group. A right-handed (0, 1/2) spinor denoted as χα̇
† transforms as χα̇

† →
M∗ β̇

α̇ χβ̇
† under the Lorentz group representation. The spinor indices are de-

noted by letters of the beginning of the Greek alphabet α, β, . . . = 1, 2. Un-
dotted indices represent left-handed spinors and dotted indices right-handed
spinors. Majorana spinors can be composed of either representation. The
free-field Lagrangian for a free neutral massive anticommuting spin-1/2 Ma-
jorana field ξα(x) is

−L = −iξ†σµ∂µξ + 1
2
m
(
ξξ + ξ†ξ†

)
. (B.1)

On-shell, ξα satisfies the free-field Dirac equation

iσµα̇β∂µξβ = mξα̇
†
. (B.2)

After quantization, ξα can be expanded in a Fourier series

ξα(x) =
∑

s

∫
d3~p

(2π)3/2(2Ep)
1/2

(
xα(~p, s)a(~p, s)e−ipx + yα(~p, s)a†(~p, s)eipx

)
,

(B.3)
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where Ep =
√

|~p|2 +m2 , and the creation and annihilation operators a and

a† satisfy the canonical anticommutation relation.
Dirac spinors combine two Weyl spinors of equal mass into a reducible

representation of the form (1/2, 0) ⊕ (0, 1/2). Consider the case of two mass-
degenerate massive fermion fields. Then the Lagrangian (B.1) possesses a
global internal O(2) flavor symmetry. The conserved hermitian Noether cur-
rent

Jµ = i
(
ξ1†σµξ2 − ξ2†σµξ1

)
, (B.4)

corresponds this symmetry. In the basis

χ = 1√
2

(ξ1 + iξ2) , η = 1√
2

(ξ1 − iξ2) , (B.5)

the Noether current is diagonal. The Lagrangian (B.1) in this basis becomes

−L = −iχ†σµ∂µχ− iη†σµ∂µη +m
(
χη + χ†η†

)
. (B.6)

On-shell, χ and η satisfy the free-field Dirac equation (B.2). Together, χ and
η† constitute a single Dirac fermion. We can then write

χα(x) =
∑

s

∫
d3~p

(2π)3/2(2Ep)
1/2

(
xα(~p, s)a(~p, s)e−ipx + yα(~p, s)b†(~p, s)eipx

)
,

ηα(x) =
∑

s

∫
d3~p

(2π)3/2(2Ep)
1/2

(
xα(~p, s)b(~p, s)e−ipx + yα(~p, s)a†(~p, s)eipx

)
.

(B.7)

All four creation and annihilation operators satisfy canonical anticommuta-
tion relations.

Two spinors are combined to a Lorentz vector with the help of the Pauli
matrices σµ

αβ̇
and σµαβ̇ which are defined by

σ0 = σ0 =

(
1 0
0 1

)
, σ1 = −σ1 =

(
0 1
1 0

)
, (B.8)

σ2 = −σ2 =

(
0 −i
i 0

)
, σ3 = −σ3 =

(
1 0
0 −1

)
. (B.9)

Contraction of the Pauli matrices gives

σµαα̇σ
ββ̇
µ = 2δ β

α δβ̇α̇ ,

σµαα̇σµββ̇ = 2ǫαβǫα̇β̇ ,

σµα̇ασβ̇βµ = 2ǫαβǫα̇β̇ .

(B.10)
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particle symbol fermion name two-component field

l− lepton l, lc†

l+ antilepton lc, l†

ν neutrino ν, νc†

ν antineutrino νc, ν†

q quark q, qc†

q antiquark qc, q†

Ñ neutralino χ0, χ0†

C̃
+

chargino χ+, χ−†

C̃
−

antichargino χ−, χ+†

g̃ gluino g̃, g̃†

Table B.1: (Anti-) fermion names and two-component fields.

Pauli matrices with two vector indices are defined by

σµν β
α = 1

4

(
σµαγ̇σ

νγ̇β − σναγ̇σ
µγ̇β
)
,

σµνα̇
β̇

= 1
4

(
σµα̇γσν

γβ̇
− σνα̇γσµ

γβ̇

)
.

(B.11)

For the sake of simplicity we have suppressed the spinor indices in this thesis.
The common fermion particle names and how they are connected to the two-
component spinor notation are written down in Table B.1.

B.2 Four-Component Spinor Notation

For an introduction in the four-component spinor notation see, for instance,
[2]. A four-component Dirac spinor Ψ consists of two mass-degenerate two-
component spinors χα and ηα of opposite U(1) charge, which is based on the
rotation freedom leading to the Noether current (B.4),

Ψ =
(
χα, η

α̇†
)T

. (B.12)

To project onto the left-handed,

ΨL = PLΨ = (χα, 0)T , (B.13)

and right-handed,

ΨR = PRΨ =
(

0, ηα̇
†
)T

, (B.14)
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components, one has to define the projection operators

PL = 1
2

(1 − γ5) =

(
δ β
α 0
0 0

)
, PR = 1

2
(1 + γ5) =

(
0 0
0 δα̇

β̇

)
. (B.15)

Here the gamma matrices

γµ =

(
0 σµ

αβ̇

σµα̇β 0

)
, γ5 = iγ0γ1γ2γ3 =

(−δ β
α 0

0 δα̇
β̇

)
(B.16)

are used.
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Appendix C

Addendum to Neutral Field
Mixing

We have given a thorough insight of the mass mixing phenomena in the
neutral sector in Chapter 3. However we have neither given the most general
scalar mass mixing matrix for R-parity breaking and right-handed sneutrinos
nor the analytic diagonalization of the R-parity conserving neutralino mass
mixing matrix.

C.1 Most General Mass Mixing Matrices of

the Scalar Neutral Fields

The most general scalar potential for neutral scalar fields in the R-parity vio-
lating Minimal Supersymmetric Standard Model with right-handed neutrino
superfields is

Vscalar =
(
|µα|2 + m̃2

u

) ∣∣h0
u

∣∣2 +
(
µα

†µβ + m̃2
αβ

)
ν̃αν̃β

− Bαh
0
uν̃α −Bα

†ν̃α
†h0
u
†

+BN
ij ν̃

c
iν̃
c
j +BN

ij

†
ν̃ci

†ν̃cj
†

+ 1
8

(
g2
1 + g2

2

) (∣∣h0
u

∣∣2 − |ν̃α|2
)2

+
∣∣Miiν̃

c
i + λναjh

0
uν̃i
∣∣2 +

∣∣λναj ν̃αν̃cj
∣∣2 + (m2

eνc)ij ν̃
c
i
†ν̃cj

+
∣∣λναjh0

uν̃
c
j

∣∣2 − Aναjh
0
uν̃αν̃

c
j −Aναj

†ν̃cj
†ν̃α

†h0
u
†
.

(C.1)

The first derivatives with respect to the fields give modified VEVs, see (3.26)
and (3.27).

If one assumes CP-conservation, the second derivative gives for

(hu, ν̃
c
i, ν̃α) = (hu, ν̃

c
i, hd, ν̃i) (C.2)
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the CP-odd mass matrix

M =

(
Mu −Mkjλβk

†eνβ
†−Aβj

†eνβ
† +Bβ

†−Mklλβk
†eνc

l
†

−Mik
†λβkeνβ−Aβieνβ Mij −Aαj

†h0
u−Mkjλαk

†〈h0
u〉

+Bα−Mkl
†λαkeνc

l −Aαjh0
u−Mkj

†λαk〈h0
u〉 Mαβ

)
. (C.3)

The diagonal terms are

Mu =m̃2
u + |µγ|2 +m2

Z

(
|h0

u|2
v2

+ |eνγ |2
v2

)

+ λγj
†ν̃cj

†λγiν̃
c
i + λβk

†ν̃β
†λαkν̃α + ν̃cj

†λγj
†µγ + µγ

†ν̃ciλγi ,

Mij = − Bij
† − Bij +M2

ij + (meνc)2
ij + λβj

†ν̃β
†λαiν̃α + λγj

†h0
u
†
λγih

0
u ,

Mαβ =m̃2
αβ + µβ

†µα +m2
Z

(
eνβ

†eνα

v2
− |h0

u|2
v2

δαβ

)

+ λβk
†λαk

∣∣h0
u

∣∣2 + λβj
†λαiν̃

c
j
†ν̃ci + ν̃cj

†λβj
†µα + µβ

†ν̃ciλαi .

(C.4)

For the CP-even mass matrix we find

M =



Mu Mj Mβ

Mi Mij Miβ

Mα Mαj Mαβ


 . (C.5)

In this case the diagonal terms are

Mu =m̃2
u + |µγ|2 +m2

Z

(
3
|h0

u|2
v2

− |eνγ |2
v2

)

+ λγj
†ν̃cj

†λγiν̃
c
i + λβk

†ν̃β
†λαkν̃α + ν̃cj

†λγj
†µγ + µγ

†ν̃ciλγi ,

Mij =Bij
† +Bij +M2

ij + (meνc)2
ij + λβj

†ν̃β
†λαiν̃α + λγj

†h0
u
†
λγih

0
u ,

Mαβ =m̃2
αβ + µβ

†µα +m2
Z

(
3

eνβ
†eνα

v2
− |h0

u|2
v2

δαβ

)

+ λβk
†λαk

∣∣h0
u

∣∣2 + λβj
†λαiν̃

c
j
†ν̃ci + ν̃cj

†λβj
†µα + µβ

†ν̃ciλαi .

(C.6)

The off-diagonal terms are

Mj = −Mkjλβk
†ν̃β

† − Aβj
†ν̃β

† + 2λβih
0
uµβ + 2λβiλβjh

0
uν̃

c
j ,

Mβ = −Bβ
† +Mklλβk

†ν̃cl
† + Aαj

†ν̃ci
† + 2λαk

†h0
uλγkνγ + 2m2

Z
h0

uνβ
†

v2
,

Miβ = −Aαj†h0
u −Mkjλαk

†h0
u + 2λαj ν̃αλβi

†ν̃ci
† + 2λγiµβνγ

† ,

(C.7)

with the corresponding adjoint values for the other off-diagonal terms.
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C.2 Neutralino Mass Mixing Matrix

As stated in Section 3.3.1 the R-parity conserving neutralino mass mixing
matrix (3.39) is analytically diagonalizable. In this section we give an idea
how to perform the analytic diagonalization. In Section 3.3 we have indicated
by indices as χ0

Rp
in which theory we are working. In the following we are

working in the R-parity conserving MSSM but are supressing the indication
for the sake of clarity.

The square of the diagonalization equation (3.42) gives the eigenvalue
equation, (

M †M −m2
i

)
(PS)i = 0 , (C.8)

which one can transform into the characteristic equation

m8
i − am6

i + bm4
i − cm2

i + d = 0 . (C.9)

This is a quartic equation in m2
i that has four invariants. The first is given

by

a = tr (X) = m2
1 +m2

2 +m2
3 +m2

4 = M2
1 +M2

2 + 2µ2 + 2m2
Z , (C.10)

where we have used the abriviation MM † = X . The second invariant is
given by

b =1
2

(
tr (X)2 − tr

(
X2
))

=m2
1m

2
2 +m2

1m
2
3 +m2

2m
2
3 +m2

1m
2
4 +m2

2m
2
4 +m2

3m
2
4

=
(
M2

1 +m2
Z

) (
M2

2 +m2
Z

)
+ 2

(
M2

1 +M2
2 +m2

Z

)
µ2 + µ4

+m2
Z ((M1 −M2) cos 2θw (M1 +M2 + µ sin 2β) − (M1 +M2)µ sin 2β) ,

(C.11)

and the third invariant is given by

c = 1
6

(
tr (X)3 − 3 tr (X) tr

(
X2
)

+ 2 tr
(
X3
))

= m2
1m

2
2m

2
3 +m2

1m
2
2m

2
4 +m2

1m
2
3m

2
4 +m2

2m
2
3m

2
4

= 1
8

(
3M2

1 + 2M1M2 + 3M2
2

)
m4
Z + 1

2

(
2M2

1 +m2
Z

) (
2M2

2 +m2
Z

)
µ2

+
(
M2

1 +M2
2

)
µ4 − 1

2
m4
Zµ

2 cos 4β

+m2
Z

(
1
8

(M1 −M2)
2m2

Z cos 4θw − (M1 +M2)µ
(
M1M2 + µ2

)
sin 2β

+1
2

(M1 −M2) cos 2θw

×
(
(M1 +M2)

(
m2
Z + 2µ2

)
+ 2µ

(
µ2 −M1M2

)
sin 2β

))

.

(C.12)
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By using the photino mass

Meγ = M1 cos2 θw +M2 sin2 θw (C.13)

the fourth invariant is given by

d = detX = m2
1m

2
2m

2
3m

2
4 = µ2

(
m2
ZMeγ sin 2β −M1M2µ

)2
. (C.14)

As sketched in the next section the solutions of the characteristic equation
(C.9) are as for every other quartic equation given by

m2
i = 1

4
a±1 A±2 B . (C.15)

As stated in Section 3.3.1 these formulas are too lengthy to gain intuition on
the neutralino diagonalization.

C.2.1 Solving Quartic Equations

As we could not find a canonical notation for the solution of a quartic equa-
tion, we will give a rough overview how the solution is composed.

The solution for the quadratic equation

m2 + p2m + q2 = 0 (C.16)

is given by

mi = −1
2
p2 ±2

√
1
4
p2

2 − q2 . (C.17)

In order to solve the cubic equation

a3x
3 + b3x

2 + c3x + d3 = 0 (C.18)

it has to be converted into the depressed cubic equation

y3 + 3p3y + 2q3 = 0 . (C.19)

Here we have defined

y = x +
1

3

b3
a3

,

p3 =
3a3c3 − b23

9a2
3

,

q3 =
1

27

b3

a3
− 1

6

b3c3
a2

3

+
1

2

d3

a3

.

(C.20)
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The real solution of the depressed cubic equation is given by

y =
3

√
−q3 +

√
q2
3 + p3

3 +
3

√
−q3 −

√
q2
3 + p3

3 . (C.21)

The roots of the quartic equation

m4 − am3 + bm2 − cm + d = 0 (C.22)

are identical [90] to the roots of the quadratic equation (C.17) with

p2 = ±12A− 1
2
a , q2 = x±1

c− ax

4A
, (C.23)

where

x = y − 1

3

b3
a3

= y +
1

6
b (C.24)

is the real root of the cubic Equation (C.18) with

a3 = 1 , b3 = −1
2
b , c3 = 1

4
ac− d , d3 = d

(
1
2
b− 1

8
a2
)
− 1

8
c2 . (C.25)

In terms of the depressed cubic equation (C.19) it is

p3 = 1
12
ac− 1

3
d− 1

12
b2 ,

q3 = − 1
216
b3 + 1

12
b
(

1
4
ac− d

)
+ d

(
1
4
b− 1

16
a2
)
− 1

16
c2 .

(C.26)

With the definition of

A =
√

1
2
x+ 1

16
a2 − 1

4
b , B =

√
1

16
(a±1 4A)2 − x±1

1

4

c− ax

A
, (C.27)

the four solutions for the quartic equation (C.22) read

mi = 1
4
a±1 A±2 B (C.28)

These solutions are used in (C.15).
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Appendix D

Field Mixing in the Charged
Sector

We have also calculated the R-parity violation induced mixing of charged
fields in the field content of the MSSM.

D.1 Scalar Fields

The charged scalar fields do not acquire a VEV as that would lead to a
charged vacuum. The mass mixing matrices for the R-parity conserving and
R-parity breaking theory are calculated in this section.

D.1.1 R-Parity Conserving Case

In the R-parity conserving theory just the neutral Higgs acquire a VEV. The
charged Higgs

(
h+
u , h

−
d

)
form the mass matrix

M2
h± =

(
B cot β +m2

W cos2 β B +m2
W cosβ sin β

B +m2
W cosβ sin β B tanβ +m2

W sin2 β

)
. (D.1)

This can be diagonalized in two massless would-be Nambu Goldstone bosons
G± and two massive charged scalars H± with mH± = m2

W +m2
A0 . These two

masses are given in Table A.1 and Equation (3.5)

The sleptons
(
l̃i, l̃

c

j

)T
have the mass matrix

M2
el =

(
λe

ik
†λe

jk|h0

d|2+(m2

eL
)ij−

1
2
m2

Zc2βc2θ −µλe
ij

†h0
u+Ae

ij
†h0

d

†

−µ†λe
ijh

0
u
†
+Ae

ijh
0

d λe
ik

†λe
jk|h0

d|2+(m2

el
c)ij−m2

Zc2βs
2

θ

)
. (D.2)
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The up squarks (ũi, ũ
c
j)
T have the mass matrix

M2
eu =

(
λu

ik
†λu

jk|h0
u|2+(m2

eQ
)ij+

1
6
m2

Zc2β(1+2c2θ) −µλu
ij

†h0

d−Au
ij

†h0
u
†

−µ†λu
ijh

0

d

†−Au
ijh

0
u λu

ik
†λu

jk|h0
u|2+(m2

euc)ij+
2
3
m2

Zc2βs
2

θ

)
(D.3)

and the down squarks
(
d̃i, d̃

c

j

)T
have the mass matrix

M2
ed =

(
λd

ki

†
λd

kj|h0

d|2+(m2

eQ
)ij−1

6
m2

Zc2β(2+c2θ) −µλd
ij

†
h0

u+Ad
ij

†
h0

d

†

−µ†λd
ijh

0
u
†
+Ad

ijh
0

d λd
ki

†
λd

kj|h0

d|2+(m2

ed
c)ij−1

3
m2

Zc2βs
2

θ

)
. (D.4)

As in the neutral sector these matrices are well-known.

D.1.2 R-Parity Violating Case

The charged Higgs and sleptons mix in the R-parity violating theory.
The eight-dimensional mass matrix for

(
h+
u , l̃

c

i, l̃α

)T
=
(
h+
u , l̃

c

i, h
−
d , l̃i

)T
(D.5)

is given by

M2
h±el =



|µγ |2+ em2

u+
1
2
m2

Zc2βc2θ −µγ
†λe

γδj eνδ Bβ
T

−µγλe
γδi

†eνδ
† (m2

el
c)ij+|λe

γδ eνδ|2
ij
−m2

Zc2βs
2

θ −µγ
†λe

γβih
0
u+Ae

γβi
†eνγ

Bα −µγλe
γαj

†h0
u+Ae

γαj eνγ |µ|2αβ+ em2

αβ+|λe
γkeνγ|2

αβ
−1

2
m2

Zc2βc2θ


 .

(D.6)

The up squarks (ũci, ũj)
T do not mix with other fields in the R-parity vio-

lating case, but there arise new terms in the mass matrix [91]:

M2
eu =

(
(m2

euc)ij+λu
ki

†λu
kjh

0
u
†
h0

u+
2
3
m2

Zc2βs
2

θ −Au
ijh

0
u−µγ

†λu
ij eνγ

†

−Au
ij

†h0
u
†−µγλu

ij
†eνγ (m2

eQ
)ij+λu

ik
†λu

jk
h0

u
†
h0

u+
1
6
m2

Zc2β(1+2c2θ)

)
.

(D.7)

The same holds for the down squarks
(
d̃
c

i, d̃i

)T
. Their mass matrix is

M2
ed =

(
λd

γki

†
λd

δkj
eνγ

†eνγ+(m2

ed
c)ij−1

3
m2

Zc2βs
2

θ
Ad

αjk
eνα−µγ

†λd
γijh

0
u
†

Ad
αjk

†eνα
†−µγλd

γij

†
h0

u λd
γki

†
λd

δjkeν†γ eνγ+(m2

eQ
)ij−1

6
m2

Zc2β(2+c2θ)

)
.

(D.8)
Comparing the R-parity conserving formulas with the R-parity violating
mass matrices one finds basically that one has to replace scalar expressions
with corresponding four-component tensor expressions in order to get the
R-parity violating expressions.
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D.2 Fermionic Fields

The charged fermionic fields consist mainly of the well-known fermions of the
SM. Their masses should not be altered too much in extensions to the SM.

D.2.1 R-Parity Conserving Case

The charged Higgsinos and the charged winos mix in the R-parity conserving
theory and form the charginos

χ+
Rp

=
(
W̃

+
, h̃

+

u

)T
, χ−

Rp
=
(
W̃

−
, h̃

−
d

)T
. (D.9)

Their mass term in the Lagrangian is

−Lχ± = χ−
Rp

T
Mχ±

Rp

χ+
Rp

+ h.c. , (D.10)

where the mixing matrix is

Mχ±
Rp

=

(
M2

1√
2
g2vu

1√
2
g2vd µ

)
=

(
M2

√
2mW sβ√

2mW cβ µ

)
. (D.11)

Diagonalization yields the two chargino masses

2m2
χ±

Rp

= |M2|2 + |µ|2 + 2m2
W

∓
√(

|M2|2 + |µ|2 + 2m2
W

)2 − 4 |µM2 −m2
W sin 2β|2 .

(D.12)

The leptons get the same mass as in the Standard Model

V = λeijh
0
dlil

c
j + h.c. = me

ijlil
c
j + h.c. . (D.13)

The same holds for the down quarks,

V = λdijh
0
ddid

c
j + h.c. = md

ijdid
c
j + h.c. , (D.14)

and the up quarks,

V = λuijh
0
uuiu

c
j + h.c. = mu

ijuiu
c
j + h.c. . (D.15)

As there is no way to form another color-neutral combination, the gluino
does not mix with the other particles:

V = 1
2

(M3g̃
ag̃a + h.c.) . (D.16)

The above formulas are partially known from the SM.
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D.2.2 R-Parity Violating Case

In the R-parity violating case all fermionic fields with the same charge Q =
±1 mix. The mass matrix part of the Lagrangian for the charged fermions

χ−
6Rp

=
(
W̃

−
, h̃

−
u , li

)T
=
(
W̃

−
, lα

)T
, χ+

6Rp
=
(
W̃

+
, h̃

+

u

)T
(D.17)

is
−Lχ±

6Rp

= χ−
6Rp

T
Mχ±

6Rp

χ+
6Rp

+ h.c. . (D.18)

The mass matrix has the form

Mχ±
6Rp

=

(
M2

1√
2
g2vu 0j

1√
2
g2vα µα

1√
2
λeγαjvγ

)

=

(
M2

√
2mW

vu

v
0j√

2mW
vα

v
µα

√
2λeγαj

vγ

v

)

≃
(

M2

√
2mW sinβ 0j√

2mW cos β µ
√

2λe
ij cos β+

√
2λkijǫ

v
k cos β

√
2mW ǫvi cos β µi

√
2λe

ij cos β+
√

2λkijǫ
v
k cos β

)
.

(D.19)

The masses in the quark sector do not change as there are no new mass
generating couplings in the R-parity breaking theory. As in the R-parity
conserving case, the gluinos do not mix with the other particles as such a
combination would not be color neutral.
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Appendix E

Renormalization Group
Equations

E.1 RGEs in the Minimal Supersymmetric

Standard Model

The RGE running for the three gauge couplings in the MSSM is governed by
the β function

d

dt
g(a) = βg , (E.1)

which is to first order given by

β(1)
g = g3

(a)B(a) , (E.2)

where the parameter
B(a) = (33/5, 1,−3) (E.3)

is used. Here (a) runs over U(1)Y in a GUT normalization, SU(2)L, and
SU(3)C . Opposed to the SM this leads to an unification of the gauge cou-
plings shown in Figure 1.1.

The β function for the three gaugino mass parameters

d

dt
Ma = βM (E.4)

is to first order proportional to the same parameter:

β
(1)
M = 2g2

(a)B(a)Ma (E.5)

The running of the other parameters is modified by R-parity breaking so that
we are not listing them in this section. For an overview see [38].
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E.2 RGEs in the R-Parity Breaking MSSM

The complete RGEs for the R-parity breaking theory can be found in [39].
As in the rest of this thesis we are using the four-component vector notation.
This has the advantage that the dependencies of the coupling running on
different couplings becomes clearer. For the bilinear couplings the RGE is

d

dt
µα = µαγuu + µβγαβ . (E.6)

In components this decouples in a slightly modified R-parity conserving for-
mula and an R-parity violating counterpart

d

dt
µ = µγuu + µγdd + µjγdj , (E.7)

d

dt
µi = µiγuu + µγid + µjγij . (E.8)

The renormalization group equation for the combined lepton Yukawa cou-
pling and the R-parity breaking counterpart is

d

dt
λeαβk = λeαβlγElEk

+ λeαδkγδβ + λeγβkγγα . (E.9)

The RGE for the combined down quark Yukawa and the R-parity breaking
counterpart is

d

dt
λdαjk = λdαjlγDlDk

+ λdαlkγQlQj
+ λdγjkγγα , (E.10)

the RGE for the up quark Yukawa coupling is

d

dt
λuij = λuikγUjUk

+ λuijγuu + λukjγQiQk
, (E.11)

and the RGE for the baryon number breaking trilinear coupling is

d

dt
λ′′ijk = λ′′ilkγDjDl

+ λ′′ljkγUiUl
+ λ′′ijkγDkDl

. (E.12)
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The one-loop anomalous dimensions for the quarks are given by

γ
(1)
QkQl

= λeαjkλ
e
αjl

† + λuikλ
u
il
† − δij

(
1
30
g2
1 + 3

2
g2
2 + 8

3
g2
3

)
(E.13)

=
(
λdλd

†
)
lk

+
(
λuλu†

)
lk

+
(
λ′

†
λ′
)
kl
− δij

(
1
30
g2
1 + 3

2
g2
2 + 8

3
g2
3

)
,

(E.14)

γ
(1)
DkDl

= 2λdαjk
†
λdαjl + 2λ′′ijk

†
λ′′ijl − δij

(
2
15
g2
1 + 8

3
g2
3

)
(E.15)

= 2
(
λd

†
λd
)
ij

+ 2 tr
(
λ′i

†
λ′j

)
+ 2

(
λ′′λ′′

†
)
ji
− δij

(
2
15
g2
1 + 8

3
g2
3

)
,

(E.16)

γ
(1)
UiUj

= 2λuik
†λujk + λ′′ikl

†
λ′′jkl + δij

(
8
15
g2
1 + 8

3
g2
3

)
. (E.17)

The anomalous dimension for the right- handed leptons is

γ
(1)
EkEl

= λαβkλαβl
† − δkl

6
5
g2
1

= 2
(
λeλe†

)
lk

+ tr
(
λijkλijl

†)− δkl
6
5
g2
1

(E.18)

and the one for the up-type Higgs is

γ(1)
uu = 3λuijλ

u
ij −

(
3
10
g2
1 + 3

2
g2
2

)
. (E.19)

The four-component lepton anomalous dimension is given by

γ
(1)
αβ = λeαγl

†λeβγl + 3λdαkl
†
λdβkl − δαβ

(
3
10
g2
1 + 3

2
g2
2

)
(E.20)

which is a symbolic expression for the four components

γ
(1)
dd = λekl

†λekl + 3λdkl
†
λdkl −

(
3
10
g2
1 + 3

2
g2
2

)
, (E.21)

γ
(1)
ij = λeil

†λejl + λikl
†λjkl + 3λ′ikl

†
λ′jkl − δij

(
3
10
g2
1 + 3

2
g2
2

)
, (E.22)

γ
(1)
dj = −λekl†λjkl − 3λdkl

†
λ′jkl , (E.23)

γ
(1)
id = −λikl†λekl − 3λ′ikl

†
λdkl . (E.24)

In the general R-parity breaking theory the parameters that can be combined
in a four-component parameter, are created mutually in the RGE running if
not collectively set to zero.

E.3 Bilinear R-Parity Breaking RGEs

In the bilinear R-parity breaking the mixing between the Higgsino mass
parameter µ and the lepton number breaking mass term in Equation (E.6)
vanish to first order. The Higgsino mass term gets only corrections of order
µ2
i and the dependency of µi on µ drops out completely.
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E.4 RGEs in the SU(5) Flavor Model

Integrating the renormalization group equation from the GUT scale and tak-
ing into account the decoupling of heavy fermions at their respective masses
Mk for scales µ ≪ Mk one gets the leading logarithmic order for the scalar
masses [36]:

(δm2
eL)ij ≃ − 1

2(2π)2

(
3m2

3/2 + A2
)
λνik

† ln
ΛGUT

Mk
λνkj
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2(2π)2
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3m2
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)

ln
ΛGUT

Mk
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η2 η η
η 1 1
η 1 1
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(δm2
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v
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(δm2
euc)ij ≃ − 1
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)

ln
ΛGUT
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
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The leading logarithmic order for the cubic scalar couplings is

δAdijvd ≃ − 3

4(2π)2
Avd

(
huhu†
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Appendix F

Cosmology

The basics of cosmology can be found in most books about general relativity,
for instance in [92]. The Einstein-Hilbert Lagrangian (1.15) gives with a
matter Lagrangian the Einstein equations

Rµν − 1
2
Rgµν = M−2

P Tµν , (F.1)

where Tµν is the energy-momentum tensor. In order to solve this set of
equations for the whole universe we assume that we live in an isotropic and
homogeneous universe. This assumption is justified by the measurement of
the cosmic microwave background (CMB) and large scale galaxy surveys.
The most general space-time metric compatible with this assumptions is the
Robertson–Walker metric. To simplify the problem further we assume that
the matter and energy densities of the universe are compatible with a perfect
fluid on large scales

T νµ = diag (ρ,−p,−p,−p) . (F.2)

Solving the Einstein equations with these assumptions gives the Friedmann
equations. Depending on the Hubble constant H , which is the proportionality
constant for the linear expansion of our universe, the energy content of the
universe can be characterized by the equation of state:

pi = wiρi . (F.3)

Relativistic particles have wr = 1/3, nonrelativistic particles have wm = 0
and the cosmological constant can be parametrized with wΛ = −1. In order
to have a flat universe the density must be critical. The present-day critical
density is given by

ρc = 3H2
0M

2
P ≃ 1.05 × 10−5h2 GeV cm−3 , (F.4)
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where H0 is the present-day Hubble constant which usually is parametrized
by

H0 = 100 h km s−1Mpc−1 (F.5)

with h ≃ 0.7. The unit pc stands for parsec, the common astrophysical unit
of length. The Friedmann equation can be expressed in terms of the critical
density by introducing the density parameter

Ωi =
ρi
ρc
. (F.6)

As observation shows that we live in a spatially flat universe, the Friedmann
equation gives the sum rule

1 ≃ Ωtot ≃ Ωm + ΩΛ + Ωr . (F.7)

In the present-day universe the radiation contribution can be neglected and
the matter density makes up for Ωm = 0.24 of the total density. However,
observable baryonic matter can only explain Ωb = 0.0425, therefore, the rest
of the matter must consists of dark matter. One possible explanation for
particle dark matter is introduced in Section 4.2.

Standard cosmology needs very specific initial conditions to give the ob-
served results. In particular it suffers under the flatness problem and the
homogeneity problem. We will not specify this further, but to solve this
problems one introduces inflation, where the scale factor of the universe
grows by a factor of about e60. Afterwards the density of the particles is
diluted. However, after inflation the inflaton field decays into, among others,
SM particles. This process is called reheating and the reheating temperature
constraints which particles can be produced in the thermal bath [12].

As opposed to the observable universe, matter and antimatter are still
in equilibrium at this stage. The observed baryon-photon ratio (4.1) can
be explained by baryogenesis via thermal leptogenesis [13]. In this theory
CP-violating out-of-equilibrium decays of heavy right-handed neutrinos cre-
ates nonvanishing lepton number, which can be converted into nonvanishing
baryon number via sphaleron processes.

When the universe is cold enough to allow particles to form atoms, BBN
takes place [93]. It predicts the abundance of the light elements. These
predictions agree with the observed abundances. Hence extensions to the
SM must not spoil these predictions.
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Appendix G

Matrix Diagonalization

Any matrix M can be diagonalized by two unitary matrices U , V via

V †MU = M ′ = diag (m1, m2, ..., mn) =

(
M1 0
0 M2

)
, (G.1)

where m2
i are the eigenvalues of MM † and M1, M2 are two diagonal sub-

matrices. Hence, one can always rewrite M in the form

M = VM ′U † = V A†AM ′B†BU † , (G.2)

where A and B are unitary matrices of the form

A =

(
A1 0
0 A2

)
, B =

(
B1 0
0 B2

)
. (G.3)

the submatrices A1,2 and B1,2 which are also unitary. Thus we can write

M = QMBP
† , (G.4)

where

MB = AM ′B† =

(
A1M1B1

† 0
0 A2M2B2

†

)
(G.5)

is block-diagonal and Q = V A† and P = UB†. Of course, MB is not unique.

G.1 Hierarchical Matrices

For the case of hierarchical matrices one can find an analytical approximate
formula for P and Q.
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For example the matrix

M =

(
mA mB

mB
† mC

)
, (G.6)

where

mA = mA
† ,

mC = mC
† ,

|mA|2 ≫ |mB|2 , |mC |2 ,
(G.7)

is transformed by

U =

(
1 −m−1

A mB

mB
†m−1

A 1

)
(G.8)

into approximately block-diagonal form [43]:

U †MU =

(
mA +m−1

A mBmB
† + mBmB

†m−1
A m−1

A mBmC

mC
†mB

†m−1
A mC −mB

†m−1
A mB

)

+ O
(
|mB,C |3

|mA|2

)

≃
(
mA 0
0 mC −mB

†m−1
A mB

)
+ O

(
|mB,C |2
|mA|

)
.

(G.9)

As one can see, to lowest order only the small diagonal block gets modifica-
tions.
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