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The numerically dominant QED contributions to the anomalous magnetic moment of the muon stem
from Feynman diagrams with internal electron loops. We consider such corrections and present a
calculation of the four-loop light-by-light-type corrections where the external photon couples to a closed
electron or muon loop. We perform an asymptotic expansion in the ratio of electron and muon mass and
reduce the resulting integrals to master integrals which we evaluate using analytical and numerical
methods. We confirm the results present in the literature which are based on different computational
methods.
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I. INTRODUCTION

The anomalous magnetic moment of the muon provides
an important test of the standard model of particle physics.
It has been measured to an impressive accuracy at the
Brookhaven National Laboratory [1,2] and two new experi-
ments at Fermilab [3] and J-PARC [4] are planned to
further improve the measured value.
On the theory side much effort has been made to provide

a precise prediction for the muon magnetic moment, see
e.g. Refs. [5–7] for detailed reviews. The comparison of the
precise measurements and calculations shows a deviation
of about three standard deviations, which already persists
for several years. This fact makes the anomalous magnetic
moment of the muon, aμ, an interesting quantity for further
investigations.
Several ingredients are needed to obtain the theory

prediction for aμ. The numerically most important one
origins from QED radiative corrections which are analyti-
cally known up to three loops [8–10] and numerically up
to five-loop order [11]. Also the electroweak correction,
which are known at the two-loop level, are under control
[12–15]. The dominant contribution to the uncertainty
comes from the hadronic contribution which can be split
into a vacuum polarization and light-by-light contribution.
The vacuum polarization contribution is obtained with the
help of a dispersion integral over the experimentally
measured cross section eþe− → hadrons where the dom-
inant contribution comes from low energies. The corre-
sponding analysis has been performed at leading order
[16–19], next-to-leading order [17,20–22] and next-to-
next-to-leading order [23]. The least known contribution
origins from the hadronic light-by-light part which has been

considered by several groups at leading order [24–26]. The
corresponding next-to-leading order effects have been
estimated to be small [27].
In this paper we focus on the QED contribution to the

muon anomalous magnetic moment which can be cast in
the form

aμ ¼
X∞
n¼1

að2nÞμ

�
α

π

�
n
; ð1Þ

where α is the fine structure constant. The first three
coefficients on the right-hand side, which correspond to
the one-, two- and three-loop corrections, are known
analytically [8–10,28–34]. For the four- and five-loop
contributions only numerical results are available
[11,35,36]. Note, that even for the four-loop coefficient

að8Þμ there is no systematic cross check by an independent
calculation; only a few special cases have been computed
analytically (see, e.g., Refs. [37–42]). An independent

calculation of að8Þμ is important since the four-loop con-
tribution in Eq. (1) amounts to1

ð−1.910…þ132.685…jeþ…Þ
�
α

π

�
4

≈381×10−11; ð2Þ

which is comparable to the deviation between the exper-
imentally measured and theoretically predicted result for aμ
given by [11]

1The ellipses stand for further digits and small contributions
which are not shown.
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aμðexpÞ − aμðSMÞ ≈ 249ð87Þ × 10−11: ð3Þ

In Eq. (2) we have separated the contributions containing
at least one closed electron loop (second term on left-
hand-side) from the pure photonic part. The former are
numerically dominant2 which provides the motivation to
concentrate in a first step on these contributions. Note that
about 95% of the electron loop contribution originates from
the so-called light-by-light-type Feynman diagrams where
the external photon couples to a closed fermion loop. Such
contributions arise for the first time at three loops; see Fig. 1
for sample diagrams. In this paper we perform an inde-
pendent calculation of the four-loop corrections.

It is convenient to decompose the four-loop term að8Þμ into
a purely photonic piece and contributions involving elec-
tron and/or τ loops. Following Ref. [11] we write

að8Þμ ¼ Að8Þ
1 þ Að8Þ

2 ðmμ=meÞ þ Að8Þ
2 ðmμ=mτÞ

þ Að8Þ
3 ðmμ=me;mμ=mτÞ: ð4Þ

Að8Þ
2 ðmμ=mτÞ has been computed in Ref. [43] using an

asymptotic expansion for m2
μ ≪ m2

τ. Analytic results have
been obtained for several expansion terms which show a

rapid convergence. Að8Þ
2 ðmμ=mτÞ and Að8Þ

3 ðmμ=me;mμ=mτÞ
are suppressed by m2

μ=m2
τ and thus they are numeri-

cally small.

Að8Þ
2 ðmμ=meÞ can be split into light-by-light-type con-

tributions (cf. Fig. 1) and contributions where the external
photon couples to the external muon line. The leading term
of the latter can be obtained from calculations where in a
first step the electron mass is set to zero and the fine
structure constant is renormalized in the MS scheme.
Afterwards α is transformed to the on-shell scheme which
introduces logðme=mμÞ terms in the final result. Using this
approach, the non-light-by-light contributions with two
closed electron loops have been computed analytically
in Ref. [40].
In this paper we compute the four-loop light-by-light

contributions to Að8Þ
2 ðmμ=meÞ which are exemplified by

three Feynman diagrams in Fig. 1. In case the external
photon couples to a closed electron loop it is not possible to
set me ¼ 0 since this generates infrared singularities. To
circumvent this problem we perform an asymptotic expan-
sion for me ≪ mμ which is described in some detail in
Sec. II. Results for contribution IV(a) with two closed
electron loops have already been considered 40 years ago in
Refs. [44,45]. In Sec. III we will discuss in detail our results
and compare to their findings and also to the ones in
Ref. [11]. Section IV contains our conclusions.

II. TECHNICAL DETAILS

The Feynman integrals which contribute to the light-

by-light part of Að8Þ
2 ðmμ=meÞ contain two widely separated

scales, which provides a small expansion parameter

x ¼ me

mμ
≈ 1=206.7682843: ð5Þ

Thus, it can be expected that already a few expansion terms
provide a good approximation to the exact result. We
compute four terms and show that the one of order x3 leads
to negligible contributions. The linear and quadratic term,
however, can still lead to sizable contributions since the
coefficients of xn contain logðxÞ ≈ −5.3 terms which at
four-loop order are raised up to fourth power.
We have implemented the asymptotic expansion using

two different programs. In the first approach we use the
Mathematica package ASY [46,47] which is based on
expansion by regions [48,49] formulated at the level of
the alpha representation [50]. It provides the possibility to
obtain the asymptotic behavior of a Feynman diagram in a
given limit. In fact, the output of ASY are scaling rules for
the alpha parameters. To exploit this information one has
to find a distribution of the external momentum and the
loop momenta obeying certain scaling rules which we
obtain by trying out all possible combinations.
The second approach is based on an in-house program

which generates all possible combinations of loop
momenta and external momentum and assigns for each
combination all possible scalings of the loop momenta (i.e.
each loop momentum can either be soft or hard). In this
way one obtains by construction all contributing regions.
However, a double counting is introduced since the routing
of the loop momenta is not unique. The double counting is
eliminated with the help of the unique alpha representation
which is generated for each momentum distribution.
We have applied both methods to each Feynman diagram

and have obtained identical final results. Note, however,
that ASY requires significantly more CPU time than our in-
house program which is tailored for the problem at hand.
The output of the asymptotic expansion is manipulated

with FORM [51,52] and TFORM [53] (see also Ref. [54])

FIG. 1. Sample light-by-light-type Feynman diagrams contrib-
uting to aμ. The external solid line represents the muon and at
least one of the internal solid loops denotes electrons. In the case
of IV(a) the second fermion loop can either be an electron or
muon loop. Wavy lines represent photons.

2This is also true at two and three loops, see. e.g., Ref. [6] for
explicit results.
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which are used to perform traces and to deal with tensor
structures. Afterwards only scalar integrals are left which
are reduced to master integrals with the help of FIRE [55]
and CRUSHER [56]. For the classification of the master
integrals we introduce the following set of propagators

Pi ¼
�
1

k2
;

1

k2 −M2
;

1

k2 − 2k · q
;

1

2k · q

�
;

M ∈ fme;mμg; ð6Þ

where k is a linear combination of loop momenta and q,
the external momentum, with q2 ¼ m2

μ. Using these propa-
gators we can build the required three integral classes
Vacuum integrals

Vði1;…; inÞ ¼
Z �YL

j¼1

dDkj

�
Di1

1 � � �Din
n ;

Di ∈ fP1; P2g; ð7Þ

On-shell integrals

Oði1;…; inÞ ¼
Z �YL

j¼1

dDkj

�
Di1

1 � � �Din
n ;

Di ∈ fP1; P2; P3g; ð8Þ

Linear integrals

Lði1;…; inÞ ¼
Z �YL

j¼1

dDkj

�
Di1

1 � � �Din
n ;

Di ∈ fP1; P2; P4g; ð9Þ

which are exemplified in Fig. 2.
To get an impression how the individual types of

integrals arise after asymptotic expansion we discuss in
some detail the three-loop case (cf. left diagram in Fig. 1).
The valid regions are obtained by considering appropriate
routings of the loop and external momenta, allowing each
loop momentum to be either soft (k ∼me) or hard (k ∼mμ).

In total we obtain eight possible regions. In case all loop
momenta are hard the electron propagators are expanded in
me and one ends up with three-loop on-shell integrals. On
the other hand, in case all loop momenta are soft the muon
propagators are expanded for k2 ≪ 2k · q and one has

1

m2
μ − ðk − qÞ2 ¼

1

2k · q − k2
¼ 1

2k · q

�
1þ k2

2k · q
þ � � �

�
;

ð10Þ

which leads to linear integrals whereme sets the mass scale.
If two loop momenta are hard and one is soft one obtains
two-loop on-shell (with mass scale mμ) and one-loop
vacuum integrals (with mass scale me). The remaining
three regions, i.e. two soft and one hard loop momentum,
leads to one-loop on-shell integrals and either vacuum or
linear integrals where the massive scale is given by the
electron mass. It is interesting to note that on-shell and
vacuum integrals only occur for the even powers of x
whereas linear integrals are present both for even and odd
powers. Note, however, that the corresponding master
integrals differ: the x0 and x2 terms involve master integrals
with even number of linear propagators whereas for the x1

and x3 terms their number is odd.
The pattern observed at three loops repeats itself at four

loops. For some diagrams one obtains more than 20 regions
leading to single-scale integrals of the type

(i) four-loop on-shell,
(ii) four-loop linear,
(iii) products of three-loop on-shell and one-loop

vacuum,
(iv) products of two-loop on-shell and two-loop vacuum

or linear,
(v) products of one-loop on-shell and three-loop

vacuum or linear,
(vi) and products two one-loop and one two-loop

integrals involving vacuum, on-shell and/or linear
integrals.

The mass scale of the on-shell integrals is given by mμ and
the one of the vacuum and linear integrals by me, with the
following exception: one-loop vacuum integrals with mass
scale mμ occur in IV(a) in case a closed muon loop is
present.
Massive vacuum integrals, which are only needed up to

three loops, are well documented in the literature [57,58].
All one-, two- and three-loop on-shell integrals entering our
calculation are known analytically [59]. There are about 70
four-loop on-shell integral which are needed for IV(a),
IV(b) and IV(c), about 40 are known analytically or to
high numerical precision. All of them are taken from the
calculation of the four-loop MS-on-shell quark mass
relation performed in Ref. [60]. We furthermore require
about 70 four-loop linear master integrals where about 20
have been computed analytically or to high numerical

FIG. 2. Sample Feynman diagrams for the three appearing
integral classes introduced in Eqs. (7) (left), (8) (middle) and (9)
(right). Solid and dashed lines denote massive and massless
propagators. Double lines stand for denominators of the form
1=ð2k · qÞ.
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precision using Mellin-Barnes techniques [61]. The
remaining ones have been computed using the package
FIESTA [62]. We propagate the uncertainty from each ϵ
coefficient of each master integral to the final result.
To obtain the final error estimate we add the uncertainties
in quadrature.
The renormalization of the light-by-light contribution

only involves one-loop on-shell counterterms for the fine
structure constant, the muon and electron masses and the

wave function which are well established in the literature
(see, e.g., the textbook [63]).

III. DISCUSSION OF RESULTS

We start with looking at the three-loop light-by-light

contribution to Að6Þ
2 ðmμ=meÞ which is known analytically

[8]. Using the method described in the previous section we
obtain in numerical form (x ¼ me=mμ)

Að6Þ
2;lblðmμ=meÞ ¼ −14.5525 − 6.5797lx þ x½18.0169 − 13.1595lx� þ x2½−12.4582þ 1.5944lx − 5.5700l2

x þ 0.6667l3
x�

þ x3½−12.0628 − 10.9662lx� þ x4½14.4529 − 19.0431lx þ 2.2778l2
x − 0.7778l3

x�
¼ −14.5525þ 35.0805þ ½0.08714þ 0.3393� þ ½−0.0002914 − 0.0001988 − 0.003703 − 0.002363�
þ ½−0.0000014þ 0.0000066� þ ½0.0000000079þ 0.000000056þ 0.000000035þ 0.000000064�

¼ 20.5280þ 0.4265 − 0.006557þ 0.0000052þ 0.0000002 ¼ 20.9479; ð11Þ

where terms of order x5 are neglected and lx ¼ logðxÞ ≈
−5.3. For completeness we provide analytic results in the
Appendix. One observes that odd powers in x contain at most
linear terms inlxwhereas evenpowers contain termsup tol3

x.
After the second equality sign the numerical value for x is
inserted, however, the contribution from the various powers
of x and lx are kept separately. At order x0 and x1 the
logarithmic contribution dominates over the constant. At
orderx2 the constant and linear logarithmic term isof the same
order of magnitude and about a factor ten smaller than the
quadratic and cubic contribution. After the third equality sign
all contributions to xn are added.One observes that the overall
contribution of the x2 term is already quite small and amounts
to only 0.03% of the leading term. The linear term provides a
2% contribution and is still important. Let us mention that the
cubic and quartic terms are below 0.00003% and are thus
negligible. For completeness we present the final result for

Að6Þ
2;lblðmμ=meÞ after the last equality sign.
We now turn to the four-loop results. For convenience we

split IV(a) into three contributions: IV(a0) contains two

closed electron loops, in IV(a1) only the fermion loop with
the coupling to the external photon contains electrons, and
in IV(a2) electrons are running only in the two-point
polarization function and muons in the other fermion loop.
Let us mention that the coefficients of the logarithmic
contributions in the case of IV(a0) are known analytically
since the contributing four-loop on-shell integrals are
available in the literature [40] and only the four-loop linear
integrals have to be evaluated numerically. As a conse-
quence, it is possible to reconstruct the pole terms of the
IV(a0) contribution, which are in one-to-one correspon-
dence to the coefficients of the logarithms, analytically.
Similar arguments can be used to obtain the logarithmic
contributions of IV(a1) and IV(a2), for the x1 and x3 terms
of IV(b) and for the x0, x1 and x3 terms of IV(c). They are
given in the Appendix. In the main part of the paper we
restrict ourselves to numerical results.
Using the same scheme for presenting the results as in

Eq. (11) we obtain for the five four-loop light-by-light-type
contributions

Að8Þ;IVða0Þ
2 ¼ 7.5018� 0.0026þ 14.8808lx þ 6.5797l2

x þ x½6.29� 0.46 − 14.6216lx þ 8.7729l2
x�

þ x2½−16.81� 0.43þ 30.0172lx − 6.5069l2
x þ 7.6489l3

x − 0.8889l4
x�

þ x3½−48.31� 0.24 − 4.8739lx þ 13.1595l2
x�

¼ 7.5018� 0.0026 − 79.3384þ 187.0352þ ½0.0304� 0.0022þ 0.3770þ 1.2061�
þ ½−0.000393� 0.000010 − 0.003743 − 0.004326 − 0.02711 − 0.01680�
þ ½−0.0000055þ 0.0000029þ 0.0000423�

¼ ½115.1986� 0.0026� þ ½1.6135� 0.0022� þ ½−0.052378� 0.000010� þ ½0.000040�
¼ 116.7598� 0.0034; ð12Þ
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Að8Þ;IVða1Þ
2 ¼ 2.734� 0.028þ x½−9.5571� þ x2½−7.494� 0.033 − 14.2010lx þ 0.3559l2

x� þ x3½6.1668 − 9.0654lx�
¼ 2.734� 0.028þ ½−0.04622� þ ½−0.000175� 0.000001þ 0.001771þ 0.0002366� þ ½0.000001þ 0.000005�
¼ ½2.734� 0.028� þ ½−0.04622� þ ½0.001832� 0.000001� þ ½0.000006�
¼ 2.690� 0.028; ð13Þ

Að8Þ;IVða2Þ
2 ¼ 0.370� 0.033 − 0.7420lx þ x½0� þ x2½0.8628� 0.002618� þ x3½−2.6844�

¼ þ½0.370� 0.033þ 3.9561� þ ½0� þ ½0.00002018� 0.00000006� þ ½−0.0000003�
¼ þ½4.326� 0.03288� þ ½0� þ ½0.00002018� 0.00000006� þ ½−0.0000003�
¼ 4.326� 0.033; ð14Þ

Að8Þ;IVðbÞ
2 ¼ 27.395� 0.014þ ð4.93482� 0.00003Þlx þ x½−0.81� 1.22þ 59.0235lx�

þ x2½142.5� 7.6þ 40.6546lx þ 20.5582l2
x − 9.6167l3

x þ 0.8333l4
x�

þ x3½62.11� 2.89þ 132.7421lx − 40.9406l2
x�

¼ 27.395� 0.014þ ð−26.3105� 0.0002Þ þ ½−0.0039� 0.0059 − 1.5219�
þ ½0.003334� 0.0001769 − 0.005070þ 0.01367þ 0.03409þ 0.01575�
þ ½0.000007� 0. − 0.000080 − 0.000132�

¼ ½1.084� 0.014� þ ½−1.5259� 0.0059� þ ½0.06177� 0.00018� þ ½−0.0002047�
¼ −0.380� 0.016; ð15Þ

Að8Þ;IVðcÞ
2 ¼ −14.900� 0.059 − 3.2899lx þ x½65.4209�

þ x2½33.61� 9.96þ ð56.76� 0.78Þlx þ ð−24.66� 0.27Þl2
xþð−1.935� 0.091Þl3

x�
þ x3½25.11� 0.60þ 107.4325lx − 19.8610l2

x�
¼ −14.9� 0.05945þ 17.54þ ½0.3164� þ ½0.00079� 0.00023þ ð−0.007078� 0.000097Þ
þð−0.01640� 0.00018Þ þ ð0.00686� 0.00032Þ� þ ½0.00000284� 0.00000007 − 0.00006479 − 0.00006387�

¼ ½2.641� 0.059� þ ½0.3164� þ ½−0.01583� 0.00045� þ ½−0.00012582� 0.00000007�
¼ 2.941� 0.059; ð16Þ

where the uncertainties origin from the numerical integra-
tion using FIESTA. It is common to all five cases that the x3

term only provides a negligible contribution of at most
0.05% [in the case of IV(b)] which is much smaller than
the uncertainty estimate of the leading x0 term. In most
cases the x2 terms lead to contributions comparable to the
numerical uncertainty of the leading term. Together with
the x3 terms they confirm the good convergence property of
the asymptotic expansion. It is nevertheless interesting to
note that in general the cubic and quartic logarithms of the
x2 term lead to the largest numerical contributions, how-
ever, also the quadratic logðxÞ terms are not negligible.
In the linear mass correction terms we observe loga-

rithmic contributions up to second order. They lead to
significantly larger numerical contributions than the linear
logarithms which are in turn much larger than the constant.

In the leading term only IV(a0) has a quadratic loga-
rithm, one from each electron loop. The log2ðxÞ term
provides the numerical dominant contribution, however,
more than 40% are canceled by the linear logarithm; the
constant term is an order of magnitude smaller. Linear
logarithmic terms are also present for IV(a2), IV(b) and
IV(c). In the latter two cases strong cancellations between
the logðxÞ and the constant are observed, which leads to an
interesting effect for IV(b): the leading term is smaller than
the me=mμ-suppressed term. As a consequence the final
numerical result for IV(b) is quite small and has a big
relative uncertainty.
In Table I we summarize our findings for IV(a0), IV(a1),

IV(a2), IV(b) and IV(c) and compare with the literature. To
be on the conservative side we multiply the Monte-Carlo
uncertainty from Eqs. (12) to (16) by a factor of five. For all

LIGHT-BY-LIGHT-TYPE CORRECTIONS TO THE MUON … PHYSICAL REVIEW D 92, 073019 (2015)

073019-5



classes under consideration we find good agreement with
previous results. For the dominant contribution IV(a) we
find excellent agreement.
Although our numerical precision cannot compete with

the one of Ref. [11], let us note that our computation
procedure is completely different from the numerical
method used in [11]. As our calculation is a second
evaluation of the complete light-by-light contribution to

Að8Þ
2 ðmμ=meÞ, our result is an important check of the

existing value. Furthermore, since the asymptotic expan-
sion and the reduction to master integrals were done
analytically, it is possible to systematically improve the
precision by evaluating more and more master integrals
analytically.

IV. CONCLUSIONS

We have computed the four-loop QED corrections to the
muon magnetic moment induced by the light-by-light-type
Feynman diagrams involving a closed electron loop. This is
a finite and gauge invariant subset, which provides about
95% of the total four-loop contribution. Our results for the
individual subclasses IV(a), IV(b) and IV(c) agree with the
literature [11].
We want to stress that our approach is completely

different from the one of Ref. [11] and thus should be
considered as an independent cross check. We perform an
analytic reduction of all occurring integrals to a small set of
master integrals which are then computed using analytical
or numerical methods. In particular all counterterm con-
tributions are available analytically. On the other hand, in
Ref. [11] infrared and ultraviolet finite multidimensional

integrands for the individual subclasses of að8Þμ are con-
structed which are then integrated numerically.
Our final results can be found in Table I. Although our

numerical uncertainty, which amounts to approximately
0.4 × ðα=πÞ4 ≈ 1.2 × 10−11, is larger than the one of
Ref. [11], it is still much smaller than the difference
between the theory prediction and experimental result of
aμ [cf. Eq. (3)]. We also want to note that our result can be
systematically improved by evaluating more and more
master integrals analytically.
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APPENDIX: SELECTED ANALYTIC
THREE- AND FOUR-LOOP RESULTS FOR aμ

In this appendix we provide analytic results for the three-

loop light-by-light contribution Að6Þ
2;lblðmμ=meÞ and for some

of the four-loop contributions.
The analytic version of Eq. (11) reads

Að6Þ
2;lblðmμ=meÞ ¼ x0

�
2

3
−
10π2

3
þ 59π4

270
− 3ζ3 −

2π2

3
lx

�
þ x

�
424π2

9
−
196 lnð2Þπ2

3
−
4π2

3
lx

�

þ x2
�
−
283

12
þ 25π2

18
−
61π4

270
þ 3ζ3 þ

4π2ζ3
3

þ
�
61

3
−
32π2

9
þ 16π4

135
þ 4ζ3

�
lx þ

�
π2

9
−
20

3

�
l2
x þ

2

3
l3
x

�

þ x3
�
−
11π2

9
−
10π2

9
lx

�
þ x4

�
13283

2592
þ 191π2

216
þ ζ3

2
þ
�
−
517

108
−
13π2

9

�
lx þ

41

18
l2
x −

7

9
l3
x

�
; ðA1Þ

where ζn is Riemann’s zeta function evaluated at n.

TABLE I. Summary of the final results for the individual four-loop light-by-light-type contributions and their
comparison with results from the literature. Note that the uncertainties given in the second column are obtained from
Eqs. (12) to (16) after multiplication by five.

Að8Þ
2 ðmμ=meÞ This work [11,35] [44] [45]

IV(a0) 116.76� 0.02 116.759183� 0.000292 111.1� 8.1 117.4� 0.5
IV(a1) 2.69� 0.14 2.697443� 0.000142
IV(a2) 4.33� 0.17 4.328885� 0.000293
IV(a) 123.78� 0.22 123.78551� 0.00044
IV(b) −0.38� 0.08 −0.4170� 0.0037
IV(c) 2.94� 0.30 2.9072� 0.0044
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At four-loop order one can obtain analytic results for the coefficients of ln
x (n ≥ 1) for IV(a0), IV(a1) and IV(a2), for the

x1 and x3 terms of IV(b) and for the x0, x1 and x3 terms of IV(c). These contributions are given by

Að8Þ;IVða0Þ
2 jlx ¼

�
−
4

3
þ 8π2

3
−
8π4

45
þ 6ζ3

�
lx þ

2π2

3
l2
x þ x

�
−40π2

27
lx þ

8π2

9
l2
x

�

þ x2
��

47

3
þ 6π2 −

98π4

405
− 10ζ3 −

8π2ζ3
27

−
50ζ5
9

�
lx

þ
�
−
220

9
þ 32π2

9
−
16π4

135
−
14ζ3
3

�
l2
x þ

�
82

9
−
4π2

27

�
l3
x −

8

9
l4
x

�
þ x3

�
−40π2

81
lx þ

4π2

3
l2
x

�
; ðA2Þ

Að8Þ;IVða1Þ
2 jlx

¼ x2
�
137

27
−
12629π2

9720
−
2 lnð2Þπ2

3
−
31π4

405
þ 125ζ3

27

�
lx þ x2

�
π2

9
−
20

27

�
l2
x − x3

124π2

135
lx; ðA3Þ

Að8Þ;IVða2Þ
2 jlx ¼

�
−
10

9
− 32a4 −

4ln4ð2Þ
3

−
931π2

27
þ 48 lnð2Þπ2 þ 4ln2ð2Þπ2

3
þ 41π4

270
þ 8ζ3

3
þ 5π2ζ3

9
−
5ζ5
3

�
lx; ðA4Þ

Að8Þ;IVðbÞ
2 jx1;lx ¼ x

�
3π3 −

31π2

9

�
lx; ðA5Þ

Að8Þ;IVðbÞ
2 jx3;lx

¼ x3
��

137π2

4050
þ 1153π3

270

�
lx −

112π2

27
l2
x

�
; ðA6Þ

Að8Þ;IVðcÞ
2 jx0;lx ¼ −

π2

3
lx; ðA7Þ

Að8Þ;IVðcÞ
2 jx1;lx ¼ 0; ðA8Þ

Að8Þ;IVðcÞ
2 jx3;lx

¼ x3
�
2939π2

270
lx −

163π2

81
l2
x

�
; ðA9Þ

with a4 ¼ Li4ð1=2Þ.
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